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Abstract We present a framework for modeling gliomas growth and their mecha-
nical impact on the surrounding brain tissue (the so-called, mass-effect). We employ
an Eulerian continuum approach that results in a strongly coupled system of nonli-
near Partial Differential Equations (PDEs): a reaction-diffusion model for the tumor
growth and a piecewise linearly elastic material for the background tissue. To estimate
unknown model parameters and enable patient-specific simulations we formulate and
solve a PDE-constrained optimization problem. Our two main goals are the following:
(1) to improve the deformable registration from images of brain tumor patients to a
common stereotactic space, thereby assisting in the construction of statistical anatomi-
cal atlases; and (2) to develop predictive capabilities for glioma growth, after the model
parameters are estimated for a given patient. To our knowledge, this is the first attempt
in the literature to introduce an adjoint-based, PDE-constrained optimization formula-
tion in the context of image-driven modeling spatio-temporal tumor evolution. In this
paper, we present the formulation, and the solution method and we conduct 1D nume-
rical experiments for preliminary evaluation of the overall formulation/methodology.
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1 Introduction

Primary brain tumors constitute a significant health challenge, due to their grim prog-
nosis. More than 50% of primary brain tumors are gliomas. Gliomas are seldom trea-
table with resection and ultimately progress to high-grade, leading to death in only
6–12 months [1]. Despite efforts of the clinical and research communities to improve
these statistics, little has been achieved in the past decades in terms of improving
treatment of brain tumors, while frequency of brain tumors seems to be increasing.

One of the fundamental difficulties in treating gliomas is their highly diffusive nature
and ability to infiltrate healthy tissue well beyond the bulk tumor boundary seen in
various imaging modalities. Due to this highly invasive behavior, radical resection
of gliomas rarely leads to cure, since cancer cells that have invaded adjacent healthy
tissue proliferate at rates that can reach doubling times of 1 week at advanced stages
[1], and quickly spread the disease to tissue that can be distant to the original tumor
mass, especially if cancer cells find natural pathways of higher diffusivity, such as
white matter fiber tracts [2–4].

Whenever the tumor is not proximal to eloquent areas a margin of normal-appearing
tissue surrounding the tumor can be treated together with the cancer itself for preventive
reasons. This approach is often over-conservative and highly empirical, partly due to
the lack of availability of systematic quantitative approaches to characterizing the
spatially heterogeneous patterns of cancer progression, and determining tissue that
is likely to be infiltrated and display cancer recurrence. Therefore, there is need for
a better understanding of the spatio-temporal progression of brain cancer, and for
determining predictive factors for cancer invasion, using phenotypic cancer profiles
derived from imaging, histopathology, and potentially other sources, in conjunction
with relevant genotypic characteristics. Such predictive factors would allow us to apply
more aggressive spatially adaptive treatments.

There has been significant effort to develop mathematical tools that simulate tumor
evolution, and to help quantify the impact of various treatments (surgery, chemothe-
rapy, radiotherapy) on the tumor and on the host. Simulation tools based on mathema-
tical modeling have the potential to create a framework for understanding, organizing
and applying experimental data acquired during laboratory or clinical studies. Two
major approaches are traditionally highlighted in modeling tumor growth: discrete
models [5,6] and continuous hypothesis based models [7]. Recently, hybrid formula-
tions have been investigated [8,9].

The continuous hypothesis along with macroscopic conservation laws (mass,
momentum) translates into a set of partial differential equations. These equations
involve a reaction-diffusion framework [10–12]. Some recent continuous models are
multiphase, and account for cellular heterogeneity and mechanical effects [13,14].
Cellular Automata (CA) models treat the discrete nature of the actual cells realisti-
cally, and offer good local adaptability in complex situations. Continuous models, on
the other hand, may offer more generality and computational tractability. A mechani-
cal approach has also been attempted to account for the macroscopic growth of tumors
and its impact on the surrounding normal parenchyma [15,16].

Regardless of their particular nature, all tumor growth models involve a number of
parameters (the more complex the model, the larger the number of parameters) whose
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Image-driven parameter estimation problem 795

estimation for actual simulation purposes remains a difficult issue. Some attempts
have been made [11] to use patient-specific imaging information. One main limitation
is the lack of extensive and systematic fitting of these models using large numbers of
in vivo patient data, as well as the evaluation of their predictive power on independent
datasets.

Imaging plays an important role in diagnosis, treatment, and follow-up of brain can-
cer. Conventional imaging methods, such as MRI T1-(with and without gadolinium)
and T2-weighted sequences, are generally limited to highlighting the bulk of the main
tumor mass, and the surrounding mixture of healthy tissue with invading cancer and
edema. Less conventional methods, such as perfusion and spectroscopy, are very pro-
mising techniques carrying complementary information related to vascularization and
tumor biochemistry, respectively. Finally, Diffusion Tensor Imaging (DTI) provides
additional information about the structural changes and displacement of major white
matter fiber tracts caused by brain tumors.

Contributions In this article we propose a framework for modeling gliomas growth
and the subsequent mechanical impact on the surrounding brain tissue (mass-effect),
with estimation of unknown parameters via PDE-constrained optimization. We target
a medical imaging context, where such a framework primarily aims at the following
goals: (1) improving the deformable registration from the brain tumor patient image
to a common stereotactic space (atlas); and (2) developing predictive capabilities for
glioma growth. The first is important for integrative statistical analysis of tumors in
groups of patients and surgical planning. The second is important for general treatment
planning and prognosis. Both are long-term goals.

One of the main interests of this article is the experimental comparison of solution
algorithms for the parameter estimation problem associated with the tumor growth
and the associated mass-effect. Deformation (compression) of the neighboring tissue
induced by tumor growth is commonly referred to as mass-effect. This is a crucial phe-
nomenon, which occurs in the majority of brain-tumor patients and causes distortions
(mild to severe) in the various structures (e.g., ventricles, white matter tracts, etc.); it
is visible at imaging and well-documented in the medical literature. The importance
of modeling and simulating it for the purpose of aiding registration and subsequent
surgery/treatment planning has been addressed in detail in a series of publications
[16–21].

In our approach, glioma growth is modeled via a nonlinear reaction-advection-
diffusion equation, with a two-way coupling with the underlying tissue elasticity
equations. Our formulation is fully Eulerian and naturally allows for updating the tumor
diffusion coefficient following structural displacements caused by tumor growth/
infiltration. The overall model is governed by a strongly coupled nonlinear system
of partial differential equations, which makes the numerical solution procedure quite
challenging. In a recent companion piece [22], we employed this model and we solved
parameter estimation problems for a handful of tumor parameters using a direct search
method. We did not use sophisticated optimization formulations there, but rather we
assessed the performance of our model on real brain tumor data from 3D MR images.
We illustrate this briefly with an example of such simulations on real brain tumor
patient data in Sect. 6.
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In the present paper, we are concerned with developing an adjoint-based PDE-
constrained formulation and assessing the feasibility of using it to invert for a larger
number of tumor parameters (e.g., initial location and profile) in an algorithmically
scalable manner. To our knowledge, this is the first attempt in the literature to introduce
a PDE-constrained optimization formulation in the context of image-driven modeling
of spatio-temporal tumor evolution. The work presented is dedicated to overall for-
mulation/methodology, with emphasis on preliminary analysis and evaluations.

In the inverse estimation phase, we seek find the best set of parameters of a tumor
growth model that fits patient-specific data (e.g., images). However, complex models
involve a large number of unknown parameters, which makes them difficult to calibrate
in a clinical setting give the very sparse data (only one or a few scans per patient.)
Here, we choose the simplest model possible with a number of parameters that could
be realistically determined and validated from existing data via inverse estimation.
We would like to capture the spatio-temporal spread of gliomas and subsequent mass
effects (mechanical deformations from tumor growth).1

The paper is organized as follows: Sect. 2 introduces the tumor growth model (for-
ward problem), in a fully Eulerian description. Section 3 addresses the associated
optimization problem, formulated as a PDE-constrained optimization (inverse pro-
blem). The numerical approximation and solution is discussed in Sect. 4. In Sect. 5
we discuss numerical experiments and discuss the feasibility of our framework, while
Sect. 6 briefly illustrates some of our simulations on real brain tumor patient data.

2 Modeling growth of gliomas

Continuous model. Our primary focus is on biophysical tumor models that can capture
the mass-effect caused by invasion and infiltration. In [17], we have employed a purely
biomechanical tumor model to simulate tumor mass-effect in 3D MR images. Here we
incorporate more physically-realistic tumor growth models with the assumption that
such models may improve predictive capabilities. The modeling framework consists
of a reactive–advective–diffusive mass transport for the tumor cells, coupled with
elasticity for the brain. [10,20,23]. The mechanical coupling is assumed to be by
means of a local pressure field, which is a (parameterized) function of the tumor cell
density [15,20].

Let ω denote the (fixed) spatial domain occupied by the brain and (0, T ) a specified
time interval. Let U = ω × (0, T ). Without regard to tumor cell heterogeneity, let
c = c(x, t) denote the local density of tumor cells. The general mass balance for the
tumor then reads

∂c

∂t
︸︷︷︸

rate of change

= ∇ · (D∇c)
︸ ︷︷ ︸

diffusion

−∇ · (cv)
︸ ︷︷ ︸

advection

+ r(c)
︸︷︷︸

reaction

in U , (1)

1 The tumor model parameter estimation via PDE-constrained optimization, is general and not necessa-
rily restricted to medical imaging data. However, imaging data contains readily available patient-specific
information that has not been exploited so far for calibrating and validating mathematical models of tumor
growth.
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Here r(c) is a function representing a reactive term that primarily accounts for
tumor cell proliferation and death; and D is the diffusion coefficient of tumor cells
in brain tissue. Experimental evidence [24] suggests that tumor diffusion may be
transversely isotropic in the white matter and isotropic in the grey matter. Here, for
simplicity, we shall consider the case of isotropic diffusion in both the white and the
grey matter, with diffusion coefficients Dw and Dg , respectively. The tumor cell drift
velocity v in Eq. (1) may well depend on tumor specific mechanisms (chemotaxis, etc.
[25]) in reality. In our simplified Eulerian framework, however, it only accounts for
the tumor cells being displaced as a consequence of the underlying tissue mechanical
deformation (e.g., mass-effect). This velocity field will be defined in what follows.

In an Eulerian frame of reference, regarding the brain as a deformable solid occu-
pying the bounded region ω in space, its motion is described by the following general
set of equations:

ρv̇ = ∇ · T + b in U , momentum (2)

T = ̂T(F, Ḟ) in U , constitutive (3)

Ḟ = ∇vF, v = u̇ in U , kinematics (4)

ṁ = 0 in U , material properties. (5)

Here v is the (Eulerian) velocity field, u is the displacement field, T is the Cauchy
stress tensor and ̂T denotes the constitutive law depending on the deformation tensor
F = I +∇u and its material time derivative Ḟ. b in the momentum conservation equa-
tion represents distributed forces. Here m denotes material properties (e.g., Lame’s
coefficients in linear elasticity, and the diffusion coefficient D) that are advected with
the underlying material motion. The material time derivative operator of a field (scalar,
vector, tensor) f is

ḟ = ∂f
∂t

+ (∇f)v. (6)

We assume that the forces b are pressure-like, directly proportional to the local gradient
of the tumor cell density [15,20]:

b = − f (c,p)∇c, (7)

where f is a strictly positive p-parameterized function introduced to regulate the
strength/location of the tumor-induced tissue deformation. Equations (1)–(5) aug-
mented with appropriate initial conditions for c, u, v,F,m and boundary conditions
for c,T,u respectively, constitute a coupled, nonlinear system of PDEs.

Additional modeling assumptions. A basic model for the reactive term r(c) in the
general diffusion equation (1) can be formulated in terms of growth (cell mitosis)—
characterized by a growth rate a and competition for resources—characterized by a
competition parameter b: r(c, a, b) = ac−bc2. Here, we shall consider an even more
particular form. We introduce a threshold value for the tumor cell density—let it be
denoted by cs , a positive constant corresponding to a saturation level. Then the bulk
part of the tumor is assumed to be characterized by spatial regions where c ∼= cs .
More refined distinctions within the tumor region are possible through additional
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corresponding thresholding. Let c = c
cs

denote a normalized tumor cell density. For
simplicity, in everything that follows we shall continue to employ the notation c instead
of c, from here on regarded as a normalized tumor cell density. All the terms involving
c in (1) and (7) shall be assumed correspondingly scaled. Then let

r(c, ρ) = ρc(1 − c). (8)

Thus, in regions where c � 1 (infiltration), the customary proliferation term ρc cor-
responding to exponential growth at rate ρ is retrieved [10]. Proliferation is assumed to
slow down in regions with c getting closer to 1 (tumor bulk), and it eventually becomes
a death term if c becomes larger than 1. For simplicity, we shall employ the linear
elasticity theory and approximate the brain tissue as a linear elastic inhomogeneous
material:

T = σ = (λ∇ · u)+ µ(∇u + ∇uT ), (9)

where λ andµ are the spatially varying Lame’s coefficients (related to Young’s modu-
lus E and Poisson’s ratio ν). The simplest possible candidate for the function f (c,p) in
(7) is a positive (a priori unknown) constant. However, such a choice does not allow for
much flexibility in capturing both strong tumor mass-effect (generally caused by the
tumor bulk) and milder mass-effects (generally caused by tumor infiltration). While
various other possibilities exist, here a smooth expression for f (c,p) is suggested, of
the form

f (c,p) = p1e− p2
cs e− p2

(2−c)s , (10)

where p = (p1, p2, s) and p1, p2, s are positive constants. This function is monoto-
nically increasing for 0 < c ≤ 1 and has a maximum at c = 1, which corresponds
to the tumor bulk part. The parameter p2 regulates both the spatial location and the
strength of the mechanical deformation caused by the tumor, while p1 is simply a
scaling factor.

Remark Since the bulk tumor is characterized by c ∼= 1, we assume that the maximum
tumor cell density does not deviate significantly from 1.

Let us summarize the coupled system of PDEs governing our deformable model
for simulating glioma growth:

∂c

∂t
− ∇ · (D∇c)+ ∇ · (cv)− ρc(1 − c) = 0 (11)

∇ · ((λ∇ · u)+ µ(∇u + ∇uT ))− f (c,p)∇c = 0 (12)

v = ∂u
∂t

(13)

∂m
∂t

+ (∇m)v = 0 (14)

The reduced expression (13) of the Eulerian velocity field v holds in the linear theory,
under the assumption of small strains. Also, given the actual tumor growth scale (cell
mitosis), the mechanical deformation may be approximated as a quasi-static process,
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which explains the absence of the inertial term in the momentum conservation equa-
tion (12). For concision, we used the collective notation m = (λ, µ, D) in Eq. (14).
Elastic material properties λ and µ are advected due to the assumption of brain tis-
sue elastic inhomogeneity. The advection equation for the diffusion coefficient D has
been written with the assumption in mind that diffusivity of tumor cells is different in
white and gray matter respectively; therefore, D must also be updated to reflect the
displacement of such structures in the brain.

In a shorthand notation, the system of equations (11)–(14) can be re-written in the
following compact form:

∂φ

∂t
+ Aφ + F(φ) = 0, (15)

where we introduce the collective notations m = (D, λ, µ) for the material properties
and φ = (c,u, v,m) for the model state variables. A in Eq. (15) is a linear differential
operator, while the nonlinear function F(φ) represents the source/force terms. The
following boundary and initial conditions are specified to complete the system of
equations (11)–(14):

∂c

∂n
= 0 on ∂ω × (0, T ) (16)

u = 0 on ∂ω × (0, T ) (17)

This implies that
v = 0 on ∂ω × (0, T ). (18)

c(x, t = 0) = c0(x) prescribed on ω (19)

u(x, t = 0) = 0, v(x, t = 0) = 0 on ω (20)

(D, λ, µ)(x, t = 0) =
⎧

⎨

⎩

(Dw, λw,µw), x in the white matter
(Dg, λg, µg), x in the grey matter
(Dv, λv, µv), x in the ventricles

(21)

The boundary conditions (16) and (17) come from the assumptions of zero tumor cell
flux and zero tissue displacement at the skull. The advection equations (14) are regar-
ded as initial value problems, with the initial values (21) piecewise-constant, assigned
from the corresponding segmented MR image [17] (see Fig. 1). Equations (11)–(14)
with the boundary and initial conditions (16)–(21) represent a mixed parabolic-elliptic-
hyperbolic nonlinear system of PDEs. The numerical solution procedure shall be dis-
cussed and illustrated in Sect. 4.

3 The inverse problem

Motivation. A few references exist in literature regarding tumor cell diffusivity Dw in
white matter and Dg in grey matter, as well as the tumor growth rate ρ [10]. In reality,
they are unknown, especially in vivo.
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Fig. 1 Segmented MR image — axial slice

Regarding the elastic parameters in Eq. (12): various values for the elastic material
properties E (stiffness) and ν (compressibility) of the brain have been used so far in
literature [26]. While for white and grey matter there is a range of values frequently
employed in the biomechanics community, there is no established approach for the
ventricles or for the tumor. In [17], we modeled the ventricles as a soft material, with
reasonable results.2 Little is known about material properties of tumors; they should
be regarded as unknown parameters as well.

The set of parameters p in (10) introduced to model the mechanical deformation
of the brain tissue following tumor growth is also unknown.

Another point of interest is to find the spatial location where the tumor initially
originated, based on later MRI scans, which in our model formulation is related to
the initial condition (19) on tumor cell density. In medical image analysis, registration
of a tumor-bearing patient image with a normal brain template requires estimating an
initial tumor seed [27].

Here, we consider the case of available serial scans (3D MR images) for a brain-
tumor subject at different moments in time over a time interval of length T . The pro-
blem is to find a set of model parameters able to generate images that ‘best match’ the
available scans over time (0 < t ≤ T ) by applying the model starting from the earliest
scan (re-labeled as time t = 0). This translates into a PDE-constrained optimization

2 The ventricles are filled with cerebrospinal fluid. A more correct approach would be to use a fluid-
structure interaction approach, with a Stokesian fluid for the ventricles. For reduced complexity, given other
uncertainties in the model, we have opted to model the ventricles as a soft elastic material.

123



Image-driven parameter estimation problem 801

problem, with the constraints given by the model governing equations (11)–(21). An
objective functional that defines a ‘best match’ needs to be constructed.

Note:

1. From a practical point of view, serial scans of human subjects with low grade
gliomas progressing into higher malignancy are difficult to gather, although some
clinical studies have been conducted [28]. These studies are more readily achie-
vable in mouse/rat subjects (e.g., [29]), injected with glioma cells and kept under
observation over a time interval (days-weeks), during which successive scans are
acquired. Such serial data sets can be employed in conjunction with our proposed
framework for a preliminary validation/calibration of the tumor growth model
in-vivo.

2. It is likely that in the case of actual human subjects, the earliest scan acquired has a
visible tumor seed present. In this case, for completeness, one may consider aug-
menting the initial condition (21) with (D, λ, µ)(x, t = 0) = (Dtum, λtum, µtum)

for points x in the tumor region. The newly introduced set of model parame-
ters (Dtum, λtum, µtum) stands for the diffusivity and elastic material coefficients
inside the tumor.

The objective functional. One functional can be constructed by matching the spatio-
temporal evolution of the (normalized) tumor density c(x, t) predicted by the model
with the corresponding tumor probability maps independently estimated by a trained
classifier [30] from the available serial scans for one particular subject. Let N ≥ 1
be the number of available scans for the subject under consideration. Given estimates
{c∗

k (x)}N
k=1 of the tumor density at times {tk}N

k=1, minimize

J = 1

2

N
∑

k=1

T
∫

0

∫

ω

δ(t − tk)(c(x, t)− c∗
k (x))

2dx dt. (22)

A second candidate for the objective functional is related to landmark registra-
tion, a common technique in medical imaging: sets of corresponding landmarks
manually tracked in the original scan and in the follow-up target scans by an expert.
Let {xl}l=1,...,L denote a set of L manually-placed landmarks in the initial scan and
{xk

l }l=1,...,L; k=1,...,N the corresponding manually-placed landmarks at times {tk}N
k=1

in the follow-up target scans. Define

J = 1

2

N
∑

k=1

L
∑

l=1

T
∫

0

∫

ω

δ(t − tk)δ(x − xk
l )(ψ(x, t)− xl)

2dx dt, (23)

where ψ(x, t) is the solution to the following initial-value problem:

∂ψ

∂t
+ (∇ψ)v = 0

(24)
ψ(x, t = 0) = x.
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The functionψ is introduced in our Eulerian formulation to keep track of the particles
of interest (initial given landmarks) over time.

We assume that the initial material properties (elastic material properties and diffu-
sion coefficients) are known. Let the set of inversion variables be g = (ρ, p1, p2). The
first-order necessary conditions for optimality, or KKT conditions, may be derived by
introducing an associated Lagrangian functional

L(φ, ζ , g) = J +
∫

U

ζ ·
(

∂φ

∂t
+ Aφ + F(φ, g)

)

dx dt + a

2
gT g,

where ζ represents the adjoint (or dual) variable of the corresponding set of state
variables φ; g denotes the inversion parameters; and a ≥ 0 denotes a regularization
parameter. By requiring stationarity of the Lagrangian functional with respect to the
adjoint, state, and inversion variables respectively, we obtain the so-called the KKT
optimality conditions [31]:

δL

δζ
= 0 ⇒ state equations (25)

δL

δφ
= 0 ⇒ adjoint equations (26)

δL

δg
= 0 ⇒ inversion equations (27)

(The notation δL here denotes the first variation of L .) These equations form a set
of nonlinear PDEs on the state, adjoint, and inversion parameters respectively. The
adjoint equations are given by

−∂ζ
∂t

+ A∗ζ + F∗(ζ ,φ, g) = 0, ζ(t = T ) = ζ0. (28)

Operator A∗ is the adjoint of the A; F∗ involves Frechet derivatives of F. The
corresponding boundary conditions on the adjoint variable(s) ζ , along with the detailed
adjoint and inversion equations can be found in the Appendix:3

G(φ, ζ , g) = 0

Let us note that one can include additional constraints on the inversion variables
g, for example box constraints. In our implementation we use such box constraints to
avoid non-physical values of g. For a discussion on the optimality conditions for the
case of inequalities see [32]. In our experiments, the regularization parameter is chosen
using a trial-and-error procedure to obtain the minimum discrepancy between the data
and the prediction. In general, the choice of the regularization parameter requires
quantification of the noise in the data and an iterative procedure, for example, using the

3 The explicit inversion equations are given in Appendix (see Eq. (A-6)).
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Morozov discrepancy-principle approach [33]. This work is a preliminary evaluation
of the optimization framework; we have attempted to analyze neither the behavior
of the inversion operator nor the effects of noise on the choice of the regularization
parameter.

Below we outline the iterative algorithm we use to solve for the optimality condi-
tions (25)–(27).

• Given g, solve the state equations for φ:

∂φ

∂t
+ Aφ + F(φ, g) = 0, φ(t = 0) = φ0

• Given g and φ, solve the adjoint equations for ζ :

∂ζ

∂t
+ A∗ζ + F∗(ζ ,φ, g) = 0, ζ(t = T ) = ζ0

• Given φ and ζ , solve the inversion equations to update g:

G(φ, ζ , g) = 0

The adjoint equations (28) (see the detailed Eqs. (A-2) and (A-5), (A-3) in
Appendix) are posed backward in time with a terminal condition at t = T , while
the state equations are posed forward in time, with an initial condition at t = 0.
When one discretizes the coupled optimality system (see Appendix for details), the
marching directions in time for the state and the adjoint systems are opposite to each
other, therefore the unknowns are coupled at all time levels.

Gradient-based optimization algorithms require the evaluation of the gradient of
the functional. There are two customary ways of determining this gradient: sensitivity-
based approaches and adjoint-based approaches. Evaluation of the gradient through
sensitivities requires solving a number of sensitivity systems equal to the number of
inversion variables [31] (per optimization iteration). Evaluating the gradient through
adjoints only requires one solve of the adjoint system (per optimization iteration),
regardless of the number of inversion variables [31]. Finite differences can be used for
gradient approximation, but this is an again an expensive approach: at each optimiza-
tion iteration it requires a number of the forward problem solves equal to the number
of inversion variables.

4 Discretization and numerical solution

Our goal is to design efficient and robust schemes for solving both the forward problem
(Eqs. (11)–(21)) and the adjoint problem (e.g., Eqs. (A-2)–(A-5) in Appendix). In the
present paper we discuss only one dimensional numerical experiments.4

4 The 3D MRI-based simulations are work-in-progress and will be reported elsewhere; the biomechanics-
only version (no reaction–diffusion for the tumor) has already been implemented and reported in [17,34].
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The fictitious domain method. Brain has complex geometry. Solving PDE’s in
such a domain is challenging. Various techniques exist for solving PDEs in com-
plex domains: unstructured meshes that conform to the irregular domain boundary
in finite element methods; immersed interface/ghost-fluid methods in finite volume
(FV)/finite difference methods (FD); or integral equation methods. In [17,34], we
successfully employed a fictitious domain. We use a similar approach here. Details
on implementing a fictitious domain method in the present context are given in the
Appendix.

Numerical approximation: regular grids and fractional time steps. For simplicity,
we use an operator-splitting approach for the forward and adjoint problems. The
independent operators correspond to the advection, diffusion and reaction processes
[35,36]; and the elasticity operator. Each operator is handled independently. We have
implemented the diffusion and elasticity elliptic solvers, and two advection solvers
conservative term in the mass transport (the ∇ · (cv) term in (11)) and the other for
the non-conservative transport (the (∇ψ)v term in (25)).

Consider the forward problem (11)–(21). Let φ = (c,u, v, D, λ, µ) denote the
vector of unknowns. Let
,A1,R denote the diffusion, advection and reaction operators
in the diffusion equation (11), and A2 denote the advection operator in Eq. (14).
These operator notations will be preserved in the adjoint problem as well. If φn =
(cn,un, vn, Dn, λn, µn) is the solution at time t = tn , then a simple way to update the
solution φn+1 at the next time step tn+1 = tn +
t is as follows:

• Solve the advection equation (14) using an explicit upwind scheme over time 
t
to obtain (Dn+1, λn+1, µn+1).

• Solve the diffusion equation (11) using a simple fractional step method [35]:
– Solve ∂c

∂t = A1(c, v) over time
t with data (cn, vn), using an explicit conser-
vative upwind scheme, to obtain c∗;

– Solve ∂c
∂t = 
(c, D) over time 
t with data (c∗, Dn+1), using an implicit

scheme, to obtain c∗∗;
– Solve ∂c

∂t = R(c) over time 
t with data c∗∗, using an implicit scheme, to
obtain cn+1.

• Solve the elasticity equation (12) with data (cn+1, λn+1, µn+1) to obtain un+1 and
update the velocity vn+1 using backward time-differencing in Eq. (13).

A similar description of the proposed numerical solution algorithm for the adjoint
problem can be found in the Appendix.5

5 Numerical experiments

In this section, the 1D versions of the forward problem (11)–(21) and adjoint problem
(A-2)–(A-5) are employed. In the 1D case, let ω = [x1, x2] , 0 ≤ x1 < x2 < ∞
denote a bounded interval on the real positive axis.6 The 1D version of the elasticity

5 Higher-order numerical schemes can be employed for advective steps. (e.g., ENO/WENO schemes [37],
Strang splitting [35]).
6 Length is measured in cm’s and time in days.
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equation (12), with s = 1, reads

∂

∂x

(

µe
∂u

∂x

)

− p1e− p2
c e− p2

(2−c)
∂c

∂x
= 0 in ω × [0, T ], (29)

In the inhomogeneous case:

µe(x, t = 0) =
{

µew, x in S1 (‘white matter’),
µeg, x in S2 (‘grey matter’),

(30)

with S1 and S2 subsets of the 1D spatial domain ω such that S1 ∪ S2 = ω. (The
homogeneous case is retrieved by setting µe(x, t = 0) = µew in ω.) For convenience
here, we choose to further scale µe and p1 in Eq. (29) by a factor equal to µew. We
keep the same notation as in (29), with µew = 1, while the values of µeg and p1 are
accordingly scaled.7

Remark • As discussed in [10], the inter-play between the diffusion coefficient D
and the tumor growth rate ρ in Eq. (11) allows the model to simulate multiple
tumor grades: high-grade (high ρ and high D), intermediate grade (high ρ and
low D or low ρ and high D) and low grade (low ρ and low D). Here, we will
also be interested in the corresponding mass-effect exerted by the growing tumor.
To have such an effect we use a low D and a (relatively) high ρ combination,
which is likely to produce steeper gradients ∂c

∂x in the force term of the elasticity
equation (29).

• In the 1D case, there is no actual need to employ a fictitious domain approach, but
we use it here in order to test the proposed approach on model problems.

• The numerical scheme is first-order accurate in space–time (O(
x,
t)). This
was confirmed in a series of numerical experiments. A set of results can be found
in the Appendix.8

Test-cases for the overall optimization framework. In all the test-cases presented
here, the following have been commonly used, unless otherwise specified: the physical
spatial domain [2, 8] is embedded on the larger fictitious domain (see Appendix)
[0, 10]; a uniform spatial discretization with 
x = 10/64 and a contrast factor ε =
(
x)2 (see below material properties); a time span from [0, T ], where T = 360, with
a time-step 
t = 0.5; an inhomogeneous material with

(D, µe)(x, t = 0) =
⎧

⎨

⎩

(Dw,µew), x ∈ [3.5, 6.5]
(Dg, µeg), x ∈ [2, 3.5) ∪ (6.5, 8)
(εDg, µeg/ε), x ∈ [0, 2) ∪ (8, 10),

7 Typically, values of µe for the actual brain tissue are of the order of thousands Pa, which leads to
corresponding values of the parameter p1 in the same range to produce some mass-effect.
8 When the advection equations (14) are solved with piecewise constant initial data, the order of accuracy
can drop to O(

√

(x, t)) [38], even though the numerical method is formally first order accurate.
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Here we have set Dw = 0.0001, Dg = 0.00005, µew = 1, µeg = 1.2.9 Our
implementation is done in MATLAB; we used an in-house optimizer and MATLAB’s
Optimization Toolbox. Our goals are to test and evaluate the performance of an adjoint-
based optimization method within the proposed framework, in terms of correctness,
number of optimization iterations, and scalability with respect to the number of inver-
sion variables.

We have set bounds on the inversion parameters to avoid non-physical values during
the course of the optimization iterations. We first optimize using a direct search method,
which is a version of the MATLAB simplex-based function ‘fminsearch’, modified
to allow bounds. The corresponding run-time for the direct search method is used
as benchmark. Our main interest lies in a gradient-based optimization, with the gra-
dient computed via the adjoints. For comparison purposes, we also optimize using a
gradient-based method with the gradient computed via finite differences (FD). In both
gradient-based optimizations, we use the ‘fmincon’ function inMATLAB, with lower
and upper bounds imposed. In our test we only retrieve local minima. The target tumor
densities have been chosen either by selecting g and solving for a model-generated
density, or by a-priori choosing an “arbitrary” density distribution.

The default value of the regularization parameter for the cases with finite (low)-
dimensional optimization parameter was a = 0; however, in the experiments where
convergence was observed to be slow or failed to occur after the specified maxi-
mum number of iterations, we found a ‘good’ value 0 < a ≤ 0.1 by trial-and-error
(bisection-like method), on a case-by-case basis. Here by a ‘good’ value, we unders-
tand a value for which the convergence was observed experimentally to improve (in
terms of the number of iterations to convergence). For the one infinite-dimensional
case we consider (test-case 5 below, where we invert for the initial tumor density
regarded as a space-dependent function), the default regularization parameter a needs
to be a positive number (also determined by trial-and-error) to result in a well-posed
problem [39].

The termination tolerances given in the experiments discussed below correspond
to the Matlab built-in options: the termination tolerance on the optimization variable
refers to the Matlab option ‘TolX’, while the termination tolerance on the function
value to the Matlab option ‘TolFun’. These termination tolerances were varied in
all our experiments; however, below the tolerances reported in the text, no significant
changes in the optimization results were observed, at the expense of increasing the
number of iterations.

• Test-case 1: three parameter (ρ, p1, p2) optimization, arbitrary target tumor den-
sity. Consider first the case of a Gaussian tumor distribution given by

c∗(x, t) = t

T
e−(x−5)2 , x ∈ [2, 8], t ∈ [0, T ], (31)

9 Our choice is consistent with the assumption that tumor diffusion is faster in the white matter, while the
grey matter can be regarded about 1.2 times stiffer than the white matter [17,20].

123



Image-driven parameter estimation problem 807

Table 1 Test-case 1: optimization results summary

ρ p1 p2 Relative run time

Direct search 0.0926 0.214 0.00002 1

FD gradient-based 0.093 0.207 0.0 0.36

Adjoint gradient-based 0.093 0.203 0.0 0.43

Three optimization parameters: (ρ, p1, p2). The problem is solved in three different ways. The run time
for the direct search method used as benchmark. The corresponding converged solution ρ,p1,p2 is shown
for each method. The two gradient-based methods exhibit similar performance, about 2.5 times faster than
the direct search method. The number of iterations to convergence is 100 for the direct search, 12 for the
FD gradient-based and 15 for the adjoint gradient-based run

with T = 180. The initial tumor density is prescribed as

c(x, t = 0) =
{

0.0001, x ∈ [4.75, 5.25],
0, otherwise.

The objective functional in this case is of the form (22):

J1 = 1

2

T
∫

0

∫

ω

(c(x, t)− c∗(x, t))2dx dt + a

2
(ρ2 + p2

1 + p2
2).

Here a ≥ 0 is just a regularization parameter; in certain cases, a ‘small’ positive
value of a helps convergence—its value is decided by trial-and-error. We want
to find the set of model parameters g = (ρ, p1, p2) leading to a tumor density
c(x, t) that best matches the target tumor density c∗(x, t). The results of the
optimization procedure are summarized in Table 1. The initial guess was set to
g0 = (0.001, 0.001, 0.001), and the following lower and upper bounds were
imposed: gmin = (0, 0, 0), gmax = (0.5, 1.5, 0.5). The stopping criteria that have
been used in all three methods are: termination tolerance on the optimization
variable (g) set to 10−4 and the termination tolerance on the function value set
to 10−4. The regularization parameter here was a = 0. The final value of the
objective functional was around 9.51 in all three cases, and the ‘match’ at the final
moment of time t = T is shown in Fig. 2.

• Test-case 2: three parameter (ρ, p1, p2) optimization, model-generated target
tumor density. Consider now an optimization problem similar to the one in test-
case 1, but this time with a target tumor density c∗(x, t) generated via the for-
ward problem, for a choice of the three model parameters g = (ρ, p1, p2) =
(0.05, 1.2, 0.1). The model-generated target tumor density is shown in Fig. 3,
marked with circles. The initial tumor density and objective functional are similar
to those in the test-case 1 above. This is a typical test case, where the inverse
problem is solved to investigate if/how close the original values of the parame-
ters (ρ, p1, p2) can be retrieved. The answer is not obvious, since the solution
of the inverse problem might not be unique, on the one hand, and since we
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Fig. 2 Test-case 1: the model-predicted tumor density corresponding to the optimized set of parameters
(ρ, p1, p2) and the (a priori unattainable) target tumor density c∗(x, T ) given by Eq. (31) at the final
moment of time t = T . This is the closest the tumor density generated by model can get to the prescribed
Gaussian profile

are only able to find local minima here, on the other. The results of the opti-
mization procedure for this case are summarized in Table 2. The initial guess
was g0=(0.001, 0.001, 0.001), with lower and upper bounds gmin = (0, 0, 0),
gmax = (0.5, 1.5, 0.5). The stopping criteria that have been used in all three
methods for this case are: termination tolerance on the optimization variable (g)
set to 10−6 and the termination tolerance on the function value set to 10−6. The
regularization parameter here was a = 0 as well. The original parameter values
(ρ, p1, p2) = (0.05, 1.2, 0.1) were very closely retrieved by all three optimiza-
tion methods, with final values of the objective functional of the order of 10−7.
As we will see in the test-case 3. following, this is not always the case.

• Test-case 3: three parameter (ρ, p1, p2) optimization, model-generated target
landmarks. The target landmarks are generated via the forward problem, for a
choice of the three model parameters (ρ, p1, p2) = (0.05, 1.2, 0.1). For simpli-
city, we only consider the target landmarks at the final time t = T . We considered
a set of eight landmarks. The initial landmark position is given by: {Xl}l=1,2,...,8 =
[3, 4, 4.5, 4.75, 5.25, 5.5, 6, 7] and the corresponding (target) position at t = T ,
estimated via the forward problem, is {xl} j=1,2,...,8 = [2.6955, 3.6963, 4.374,
4.7044, 5.3397, 5.6849, 6.3385, 7.2632]. They are shown in Fig. 4. The maxi-
mum landmark displacement is 0.3386 (cm). The objective functional we consider
in this case is of the form (23):

J2 = 1

2

8
∑

l=1

∫

ω

δ(x − xl)(ψ(x, t)− Xl)
2dx + a

2
(ρ2 + p2

1 + p2
2).
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Fig. 3 Test-case 2: the model-generated tumor density at final time t = T , corresponding to the prescribed
model parameters (ρ, p1, p2) = (0.05, 1.2, 0.1), by varying the mesh size and the time-step. We illustrate
the stable behavior of the forward problem numerical solution with mesh/time-step refinement

Table 2 Test-case 2: optimization results summary

ρ p1 p2 Relative run time

Direct search 0.0500 1.1999 0.0999 1

FD gradient-based 0.0499 1.1980 0.0994 0.41

Adjoint gradient-based 0.0500 1.2018 0.1004 0.43

Three optimization parameters: (ρ, p1, p2). The optimization problem is solved in three different ways, with
the corresponding converged solution shown. The original parameter values (ρ, p1, p2) = (0.05, 1.2, 0.1)
very closely retrieved. As in test-case 1 before, the two gradient-based methods here show similar perfor-
mance, about 2.5 times faster than a direct search

As in the test-case 2, here we solve the inverse problem to investigate if the original
values of the parameters (ρ, p1, p2), used in the forward problem to generate the
target data, can be retrieved. As discussed in Sect. 3, in this case an additional
advection equation (see Eq. (25)) for the variableψ must be solved in the forward
problem and correspondingly in the adjoint problem (see Eq. (A-9) in Appendix).
The results of the optimization are summarized in Table 3. The initial guess in
this case was g0 = (0.1, 0.1, 0.1), with lower and upper bounds gmin = (0, 0, 0),
gmax = (0.5, 1.5, 1.0). The stopping criteria used in all three methods are: 10−4

for the termination tolerance on the optimization variable and 10−4 for the ter-
mination tolerance on the function value. A good regularization parameter to
speed-up convergence here was found (trial-and-error) to be a = 0.001. As it
can be seen from Table 3, in this case two of the three original parameter values
(p1, p2) = (1.2, 0.1) were not too closely retrieved by any of the three optimi-
zation methods, which did converge with the specified tolerance, yielding final
values of the objective functional around 0.03. Strengthening the convergence
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Fig. 4 Test-case 3: the initial landmark position (top) and the corresponding model-generated target land-
marks (bottom) at final time t = T for (ρ, p1, p2) = (0.05, 1.2, 0.1). Initial landmarks picked to sample
different spatial areas of interest: close to the initial tumor boundary, close to the ’brain’ boundary, and
in-between

criteria did not produce significant changes, except increasing the number of ite-
rations. In Fig. 5, the landmark position at time t = T calculated for the values
of the parameters (ρ, p1, p2) shown in Table 3 is illustrated. The match with
the actual target landmarks is very good, with the following maximum (abso-
lute) errors: 0.0157 (cm) for the direct search solution, 0.0194 (cm) for the FD
gradient-based solution and 0.0210 (cm) for the adjoint gradient-based solution.
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Table 3 Optimization results for test-case 3, with the objective functional based on landmarks

ρ p1 p2 Relative run time

Direct search 0.0481 0.938 0.0191 1

FD gradient-based 0.0480 0.8913 0.0106 0.2

Adjoint gradient-based 0.0478 0.9133 0.0232 0.5

Three optimization parameters: (ρ, p1, p2). Optimization problem solved in three different ways, with the
corresponding converged solution shown. The original parameter value ρ = 0.05 very closely retrieved,
while the other two parameters (p1, p2) not so closely matched. In this particular case, for the adjoint
gradient-based method, a trust-region search performed better than a line-search in terms of recovering the
target landmarks within the specified tolerance, but slower

In this case, the solution of the inverse problem is not unique; in terms of the
underlying model physics, the interplay between the elastic force parameters p1
and p2 in Eq. (10) can lead to relatively similar elastic deformations for different
sets (p1, p2). Unless a global optimizer is employed, one can only guarantee
to find local minima. Additional information about the tumor itself, whenever
available (e.g., appearance, grade, etc.) should be used to constrain the problem
toward sorting out the solution that is most plausible physiologically.

• Test-case 4: six parameter (ρ, p1, p2, c1, c2, c3) optimization, model-generated
target tumor density. In test-cases 1-3, the initial tumor density was assumed given.
Suppose now that in addition to the three parameters (ρ, p1, p2)we have optimized
for so far, we also want to optimize for the initial tumor seed. In practical medical
applications such as registration of tumor-bearing brain images, estimation of the
initial tumor seed is of importance [27]. In this experiment, the tumor seed is
parameterized as

c0(x) = c(x, t = 0) = c1e
−(x−c2)

2

2c3 , ∀x, (32)

where (c1, c2, c3) are three a priori unknown parameters, with c1, c3 > 0. These
three parameters define the initial ‘tumor seed’: c2 defines the center, c3 an initial
‘radius’, while c1 is simply a magnitude scaling factor. This parameterization is a
modeling assumption since tumors do have Gaussian distributions in reality.
As in test-case 2 before, consider again the case of a target tumor density c∗(x, t)
generated via the forward problem, now for a choice of the six model parameters
(ρ, p1, p2, c1, c2, c3) = (0.05, 1.2, 0.1, 0.0004, 5, 0.06). The terminal time in
this case is T = 300. The objective functional is similar to that in the test-
case 2 above, plus an additional regularization term for the three newly introduced
parameters:

J1 = 1

2

T
∫

0

∫

ω

(c(x, t)− c∗(x, t))2dxdt + a

2
(ρ2 + p2

1 + p2
2 + c2

1 + c2
2 + c2

3).

Accordingly, the inversion equation (A-6) in the Appendix must be augmented
with three additional inversion equations, corresponding to the newly introduced
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Fig. 5 Test-case 3. (Top) landmark position; the initial and target landmark position marked with circles.
Landmarks displacement illustrates the nonlinear coupling between tumor growth and subsequent mecha-
nical deformations (mass-effect) in our model. (Bottom) the final (time t = T ) tumor density profile

parameters (c1, c2, c3):

ac1 −
∫

ω

α(x, t = 0)
∂c0

∂c1
dx = 0

ac2 −
∫

ω

α(x, t = 0)
∂c0

∂c2
dx = 0

ac3 −
∫

ω

α(x, t = 0)
∂c0

∂c3
dx = 0
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Table 4 Optimization results for test-case 4. Six optimization parameters: (ρ, p1, p2, c1, c2, c3)

ρ p1 p2 c1 c2 c3 Relative
run time

Direct search 0.0535 0.9819 0.006 0.00053 4.9994 0.0132 1

FD gradient-based 0.0500 1.1700 0.0920 0.000398 4.9997 0.0596 0.52

Adjoint gradient-based 0.0498 1.1689 0.0903 0.000412 4.9998 0.0593 0.21

Optimization problem solved in three different ways, with the corresponding converged solution shown.
The original parameter values (ρ, p1, p2, c1, c2, c3) = (0.05, 1.2, 0.1, 0.0004, 5, 0.06) closely retrieved
by the gradient-based methods, not so well by the direct search. The adjoint-based method exhibits best
scalability with respect to the number of inversion variables (see also Table 5). Number of iterations: 486
for the direct search, 67 for the FD gradient-based and 57 for the adjoint gradient-based

Table 5 Optimization results for test-case 4, with only three optimization parameters: (ρ, p1, p2);
(c1, c2, c3) = (0.0004, 5, 0.06) kept fixed

ρ p1 p2 Relative run time

Direct search 0.0499 1.1670 0.0916 1

FD gradient-based 0.0499 1.1441 0.0854 0.37

Adjoint gradient-based 0.0499 1.1015 0.0744 0.25

Optimization problem solved in three different ways, with the corresponding converged solution shown.
The original parameter values (ρ, p1, p2) = (0.05, 1.2, 0.1) reasonably retrieved by all three methods

We solved the inverse problem to investigate if/how close the original values
(0.05, 1.2, 0.1, 0.0004, 5, 0.06) of the six parameters (ρ, p1, p2, c1, c2, c3) can
be retrieved. The results are summarized in Table 4. The initial guess was g0 =
(0.001, 0.001, 0.001, 0, 4, 0.001), with lower and upper bounds (0, 0, 0, 0, 4, 0),
(0.2, 0.5, 1.5, 0.001, 6, 0.1). The stopping criteria in all three methods were: 10−6

for the termination tolerance on the optimization variable and 10−6 for the termina-
tion tolerance on the function value. A good value of the regularization parameter
for the gradient-based optimization in this case was found (trial-and-error) to be
a = 0.005.
The original parameter values (ρ, p1, p2, c1, c2, c3) = (0.05, 1.2, 0.1, 0.0004,
5, 0.06) were closely retrieved by the gradient-based methods, with exit values
of the objective functional around 0.06. The direct search method in this case
performed poorly.
For a better assessment of scalability, we repeated the above test, this time keeping
the three initial tumor parameters (c1, c2, c3) fixed, with values (0.0004, 5, 0.06),
while optimizing for the remaining three: (ρ, p1, p2). The initial guess ((0.001,
0.001, 0.001)), the lower/upper bounds ((0, 0, 0) and (0.2, 0.5, 1.5)) and the stop-
ping criteria were kept the same as above. The optimization results are summarized
in Table 5: Comparing the run times in Tables 4 and 5, it is apparent that the adjoint-
based method scales best with the number of inversion variables. By “scales”, we
mean that the cost of the gradient evaluation is equal to one forward and one adjoint
solve, but the cost of the gradient evaluation for the finite-difference requires as
many forward solves as the size of the inversion parameters.

123



814 C. Hogea et al.

Fig. 6 Test-case 4. (Top) the initial tumor ’seed’, assumed of the form (32); in this optimization experiment,
c1, c2, c3 (location and size of the seed) are part of the inversion parameter set. (Bottom) corresponding
spatial tumor evolution at later times. Close match is retrieved via the adjoint-based optimization

• Test-case 5: 18 inversion variables, model-generated target tumor density. We use
the same target density as in the test-case 2. In this test, we invert for the initial
tumor profile c(x, t = 0) = c0(x) everywhere in the actual physical domain.
The target tumor density is computed using the forward solver in a coarser spa-
tial mesh: 
x = 10/32, corresponding to 33 nodes in the larger embedding
domain [0, 10], from which only 18 are actually inside [2, 8].
t = 0.5 as before.
In this case, we want to invert for the 18 corresponding nodal values of c0(x).
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Fig. 7 Optimization results for test-case 5. Initial target density closely recaptured

The objective functional is:

J1 = 1

2

T
∫

0

∫

ω

(c(x, t)− c∗(x, t))2dxdt + a

2

∫

ω

c0(x)
2dx,

(a regularization parameter), with the inversion parameters expressed in terms of
the adjoints [31] as

ac0(x)− α(x, t = T ) = 0, ∀x . (33)

We started with an initial guess of c0(x) = 0,∀x ; the lower bounds were set
equal to 0 everywhere, while the upper bounds were set to 1 inside the actual
physical domain [2, 8] and 0 outside, in the fictitious domain. The regularization
parameter here was a = 0.1 and the stopping criteria 10−8 for the termination
tolerance on both the optimization variable and the function value. The inverse
problem in this case has been solved using only gradient-based methods, with the
gradient estimated via finite-differences and adjoints, respectively. The following
run times were recorded: 100 s for the adjoint-based method and 1,700 s for the
FD-based method. The corresponding converged solutions are shown in Fig. 7.

6 Illustration of simulations on real brain tumor patient MR images

We include this last section here for the purpose of highlighting the potential of the
proposed model to capture well real brain patient data. Applying the overall methodo-
logy proposed in this paper to real brain tumor patient MR images is on-going work
[22].
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Fig. 8 Illustration of Landmark Registration. Illustration of the landmark placement/registration in two
serial scans of a human subject with progressive low grade glioma that are approximately 2.5 years apart.
From left to right: the first column displays two landmarks manually placed by an expert in the early scan;
the second column shows the two landmarks manually tracked by the same expert in the later scan. Finally,
the third column shows the corresponding model-generated landmarks, for a given choice of the model
parameters

The simulations illustrated here are for a human brain tumor patient, with low-grade
glioma progressing into higher malignancy. Two T1 MRI scans with approximately
2.5 years in-between were available. Twenty one pairs of corresponding landmark
points were manually identified by an expert human rater in the starting (original
scan, when patient first diagnosed with low-grade glioma) and target (correspondingly
aligned scan 2.5 years later) 3D MR images. Segmentation of the images in this
case included only white matter and ventricles, for which we assumed fixed elastic
properties (stiffness and compressibility, respectively) Ewhite = 2.1K Pa, Eventricles =
500Pa, νwhite = 0.45, νventricles = 0.1 [17,22].

Given model-generated landmarks and manually-tracked landmarks, we seek to
find a deformation that minimizes the mismatch between the predicted and the actual
deformation (see Fig. 8).

We estimated an approximate initial tumor location (center and size) from the early
scan and inverted for four parameters only: initial tumor density magnitude, tumor
cell diffusivity in white matter, tumor growth rate and tumor mass-effect strength
(parameter p1 in Eq. 10). The results, illustrating the behavior of our model with
optimized parameters, are depicted in Fig. 9. Guided by the deformation of only 21
pairs of landmarks, the model appears able to capture reasonably the tumor behavior
in the actual patient. This is particularly visible in the axial slice (Fig. 9, top), in the
ventricle compression—relatively similar in the actual patient image and the model-
generated image. In the sagittal view (Fig. 9, bottom), the deformation of the corpus
calosum produced by the growing tumor in the actual patient image is visibly similar
to the model-generated one.
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Fig. 9 Real brain tumor images, human subject Left to right: starting scan, T1 MR; target scan, T1 MR;
simulated tumor growth and mass effect via our model: tumor color maps overlaid on the model-deformed
image, with corresponding color bar attached. Reasonable visual agreement observed between the actual
patient target image (second column) and the simulated one (third column, right), guided by only 21 pairs
of corresponding landmarks manually placed by a human rater in the early scan and the late (target) scan,
respectively. Note that in this case, the brain was segmented into white matter and ventricles only, which
explains the quasi-uniform tumor growth pattern

For such preliminary assessment of the model behavior on real brain tumor patient
data, we have used APPSPACK, an optimization library from the Sandia National
Laboratories [40–42]. The forward problem in this case was numerically solved using
a spatial discretization with 653 nodes and five equal time steps.

The optimization variables should lie within a physiological range. Their precise
range, however, is unknown. For example, the reaction term in our tumor model is a
crude approximation of tumor growth. Second, even if the model were correct, there
would be significant inter-individual variability. We used guiding values from existing
literature for the tumor cell diffusivity in white and grey matter [10], but we had to
use numerical experiments to determine reasonable ranges for ρ and p1.

The results of our optimization experiments support an optimization method with
the gradient of the objective functional estimated in terms of the adjoint variables,
which is efficient and scales well with the number of inversion variables (design para-
meters), unlike a direct search method. Regarding an optimization method with the
approximation of the gradient via finite differences (FD), it is generally comparable
with an adjoint-based method for a relatively small number of design parameters (e.g.,
one to three/four parameters to be estimated)10 However, when the number of design
variables is increased (e.g., to six or more), an adjoint-based optimization method

10 In some of these cases, the FD gradient-based method might work somewhat faster than the adjoint-based method,
since the numerical errors in the solution of the forward problem are further propagating in the adjoint equations.
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remains most efficient. Within our proposed framework, it is of fundamental impor-
tance to design an optimization procedure that allows flexibility in introducing addi-
tional unknown parameters to be estimated (e.g., material properties, more complex
tumor growth models).

7 Discussion and conclusions

A variety of mathematical models for the spatio-temporal evolution of solid tumors
have been developed over the past three decades [7]. These models involve a number
of unknown parameters that are typically very difficult to estimate in-vivo via existing
experimental and imaging set-ups. One way around this problem is inverse estimation,
i.e., based on data from a patient, find the best set of parameters of a tumor growth model
that fits the patient’s data (e.g. images). Complex models, however, involve a large
number of unknown parameters. This makes complex models difficult to calibrate in
clinical setting due to limited number of images that capture the tumor time evolution.11

In this article we focused on models with a number of parameters that could be
realistically determined and validated from existing data, via inverse estimation. The
key aspects that we are interested in capturing are: spatio-temporal spread of gliomas
and mechanical deformations from tumor growth.

We proposed an Eulerian framework for modeling gliomas growth and the sub-
sequent mechanical impact on the surrounding brain tissue (mass-effect), with esti-
mation of unknown parameters via PDE-constrained optimization. To our knowledge,
this is the first attempt to introduce an adjoint-based, PDE-constrained optimization
formulation in the context of modeling spatio-temporal tumor evolution. We introdu-
ced numerical schemes for the solution of the systems of nonlinear PDEs governing
the forward, adjoint, and inverse problems. The numerical solution procedure is being
successfully applied on 3D images of brain tumor subjects. The criteria in designing
the numerical schemes, were computational cost and robustness.

Through a series of 1D experiments, which are better suited for analysis, comparison
and proof-of-concept, we showed the advantage of estimating the gradient of the
objective functional in terms of the adjoints for solving the optimization problems.
Evaluating the gradient through adjoints requires one solve of the adjoint system (per
optimization iteration) regardless of the number of inversion variables. This provides
excellent scalability with respect to the number of control variables.

Effects of treatment (chemotherapy, radiotherapy) and recurrence of gliomas after
resection [23], can be incorporated in the current framework. Tumor model parameter
estimation via PDE-constrained optimization, is general and not necessarily restric-
ted to medical imaging data. Imaging data contains readily available patient-specific
information that has not been exploited so far for calibrating and validating mathe-
matical models of tumor growth. The present paper was dedicated to formulation and
methods. Numerical experiments have been presented, for a preliminary evaluation
of the overall formulation/methodology. The benefits of the adjoint-based optimiza-
tion methods in terms of scalability with the number of control variables have been

11 When a glioma if found it is typically, immediately treated.
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highlighted through a series of test-cases. We are currently working on the full 3D
MRI-based simulations [22].

Appendix A: The Karush–Kuhn–Tucker optimality conditions

The first-order necessary optimality conditions for optimality, or KKT conditions, may
be derived by introducing an associated Lagrangian functional

L1(φ1, ζ 1, g1) = J1 + a

2
(ρ2 + p2

1 + p2
2)+

∫

U

α(
∂c

∂t
− ∇ · (D∇c)

+ ∇ · (cv)− ρc(1 − c))] dx dt

+
∫

U

β · (∇ · ((λ∇ · u)+ µ(∇u + ∇uT ))

−p1e− p2
cs e− p2

(2−c)s ∇c)dx dt

+
∫

U

ξ · (v − ∂u
∂t
)dx dt +

∫

U

γD(
∂D

∂t
+ ∇D · v)dx dt

+
∫

U

γλ(
∂λ

∂t
+ ∇λ · v)dx dt +

∫

U

γµ(
∂µ

∂t
+ ∇µ · v)dx dt,

(A-1)

where the variables ζ 1 = (α,β, ξ , γD, γλ, γµ) represent the adjoint (dual) variables
of the corresponding state variables φ1 = (c,u, v, D, λ, µ) and g1 = (ρ, p1, p2) are
the inversion variables.

By requiring stationarity of the Lagrangian functional with respect to the adjoint
variables, to the states, and to the inversion parameters respectively, the KKT optimality
conditions in this case are obtained, consisting of the forward problem defined by
Eqs. (11)–(21). The adjoint equations

−∂α
∂t

− ∇ · (D∇α)− v · ∇α − αρ(1 − 2c)+ f (c, p1, p2)∇ · β

+
N

∑

k=1

δ(t − tk)(c − c∗
k ) = 0 in U

(A-2)
α(x, t = T ) = 0 in ω

∂α

∂n
= 0 on ∂ω × (0, T ).
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∇ · ((λ∇ · β)+ µ(∇β + ∇βT ))+ ∂ξ

∂t
= 0 in U

β = 0 on ∂ω × (0, T )
(A-3)

ξ(x, t = T ) = 0 in ω

β(x, t = T ) = 0 in ω.

−c∇α + γD∇D + γλ∇λ+ γµ∇µ+ ξ = 0 in U . (A-4)

− ∂γD

∂t
− ∇ · (γDv)+ ∇c · ∇α = 0 in U

−∂γλ
∂t

− ∇ · (γλv)− (∇ · u)I · ∇β = 0 in U

−∂γµ
∂t

− ∇ · (γµv)− (∇u + ∇uT ) · ∇β = 0 in U (A-5)

γD(x, t = T ) = 0 in ω

γλ(x, t = T ) = 0 in ω

γµ(x, t = T ) = 0 in ω.

And the inversion equations:

aρ −
∫

U

αc(1 − c) dxdt = 0

ap1 +
∫

U

β ·
(

∂ f

∂p1

)

∇c dxdt = 0 (A-6)

ap2 +
∫

U

β ·
(

∂ f

∂p2

)

∇c dxdt = 0.

In the case of a landmark-based functional we only have a few changes: The forward
problem consists of (11)–(21) plus Eq. (25); The adjoint equations consist of (A-4),
(A-5), and the following reduced version of (A-2);

−∂α
∂t

− ∇ · (D∇α)− v · ∇α − αρ(1 − 2c)+ f (c, p1, p2)∇ · β = 0 in U

α(x, t = T ) = 0 in ω (A-7)
∂α

∂n
= 0 on ∂ω × (0, T ),

an augmented version of (A-4) given by

−c∇α + γD∇D + γλ∇λ+ γµ∇µ+ γψ∇ψ + ξ = 0 in U , (A-8)
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plus an additional equation for the newly introduced adjoint variable γψ

−∂γψ
∂t

− ∇ · (γψv)+
N

∑

k=1

L
∑

l=1

δ(t − tk)δ(x − xk
l )(ψ(x, t)− xl) = 0 in U

(A-9)
γψ(x, t = T ) = 0 in ω;

the inversion equations remain the same.

Appendix B: The fictitious domain method

In the fictitious domain method, the target domain ω is embedded on a larger compu-
tational rectangular domain (box)—let it be denoted by � from here on. The PDEs
originally defined on ω must be appropriately extended to�, such that the true boun-
dary conditions prescribed on ∂ω are approximated [17]. In our case, both in the
forward problem (Eqs. (11)–(21)) and the adjoint one (e.g. Eqs. (A-2)–(A-5)), we
only have to deal with homogeneous Neumann/Dirichlet boundary conditions on ∂ω,
which makes extension to � straight-forward. Thus, let us introduce the following
definitions:

Dε =
{

D, in ω

εD, in �\ω (B-1)

(λ, µ)ε =
{

(λ, µ), in ω
1
ε
(λ, µ), in �\ω (B-2)

where ε > 0 is a ‘small’ positive number, regarded as a penalty parameter. Then the
forward diffusion equation (11) on ω is being replaced by its extension to �, with D
replaced by Dε and v = 0, ρ = 0 in �\ω. The zero flux boundary condition (16) is
now imposed on ∂�. The forward elasticity equation (12) on ω is being replaced by
its extension to �, with (λ, µ) replaced by (λ, µ)ε and f ≡ 0 in � \ ω. The zero
displacement boundary condition (17) is re-imposed on ∂�. Similar extensions can be
employed for the adjoint equations (e.g. Eqs. (A-2)–(A-5) in Appendix). In the end,
both the forward problem and the adjoint problem can be equivalently replaced by
their extensions on the regular domain � (where the actual numerical discretization
in space shall be performed). It is expected [43] that a weak solution exists to each
problem, which is smooth onω and�\ω respectively, and satisfies the actual boundary
conditions on ∂ω in the limit ε → 0. The expected order of convergence is at least
O(

√
ε) (in H1) [44].

Appendix C: Numerical solution procedure for the adjoint equations

The adjoint problem is given by (A-2)–(A-5) with ζ = (c,u, v, D, λ, µ) known.
Let ζ ad j = (α,β, ξ , γD, γλ, γµ) denote the vector of adjoint variables. By change

of variables τ = T − t , ∂
∂t = − ∂

∂τ
, 0 ≤ τ ≤ T and the terminal conditions at
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t = T become initial conditions. If ζ n
ad j = (α,β, ξ , γD, γλ, γµ) is the solution at

time τ = τn , then a simple way to update the solution ζ n+1
ad j at the next time step

τn+1 = τn +
t is as follows:

I. Solve the adjoint diffusion Eq. (A-2) using a fractional step method:
1. Solve ∂α

∂t = A2(α, v) over time 
t with data (αn, vn), using an explicit
upwind scheme, to obtain α∗;

2. Solve ∂α
∂t = 
(α, D) over time
t with data (α∗, Dn+1), using an implicit

scheme, to obtain α∗∗;
3. Solve ∂α

∂t = R1(α)+ R2(β, c) over time 
t with data α∗∗ to obtain αn+1.
The reaction term R1(α) = αρ(1 − 2c) is treated implicitly in time, while
the term containing β is treated explicitly.

II. Solve the adjoint material advection Eqs. (A-5) using an explicit conservative
upwind scheme over time 
t to obtain (γ n+1

D , γ n+1
λ , γ n+1

µ ).
III. Solve the velocity adjoint Eq. (A-4) - algebraic equation in the adjoint unknown

ξ - to update ξn+1.
IV. Solve the adjoint elasticity Eq. (A-3) with data (ξn+1, λn+1, µn+1) to obtain

βn+1.

Appendix D: A convergence study against synthetic closed-form solutions

Consider the simplified case of a homogeneous material: Dw = Dg = D and mw =
mg = m.

For the 1D forward problem, let us introduce the following expressions:

can(x, t) = t

T
+ e−A2 Dt c0(cos(Ax + B)+ 1), x ∈ [x1, x2] , t ∈ [0, T ] (D-1)

uan(x, t) = 1

L

(

t

T

)2

(x − x1)(x − x2)sin(Ax + B), x ∈ [x1, x2] , t ∈ [0, T ]
(D-2)

van(x, t) = 2
1

L

t

T 2 (x − x1)(x − x2)sin(Ax + B), x ∈ [x1, x2] , t ∈ [0, T ],
(D-3)

where A = π
x2−x1

and B = − πx1
x2−x1

are constants such that can , uan and van satisfy
the prescribed initial and boundary conditions (16)–(20). L is a length scaling factor,
e.g., the length of the space interval and c0 is a positive constant. We refer to these as
’synthetic closed-form solutions’ for the 1D forward problem. If we plug these expres-
sions into the 1D version of Eq. (11) and Eq. (29), we obtain the corresponding PDEs
for can and uan , similar to the original equations with properly modified source/force
terms.
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Table 6 Convergence study, no fictitious domain

‖can‖rel∞ ‖uan‖rel∞ ‖αan‖rel∞ ‖βan‖rel∞


x = 8/64,
t = 0.01 0.001148 0.003600 0.005842 0.030570


x = 8/128,
t = 0.005 0.000556 0.001543 0.002995 0.015267


x = 8/256,
t = 0.0025 0.000275 0.000706 0.001516 0.007629


x = 8/512,
t = 0.000625 0.000137 0.000336 0.000763 0.003813

The relative ‖‖∞ error of the numerical solution with respect to the synthetic closed-form solution at time
t = T

2 shown

Similarly, for the 1D adjoint problem, we introduce

αan(x, t) =
(

e−A2 Dt − e−A2 DT

1 − e−A2 DT

)

α0cos(Ax + B), x ∈ [x1, x2] , t ∈ [0, T ]
(D-4)

βan(x, t) =
(

t − T

T

)2

β0sin2(Ax + B), x ∈ [x1, x2] , t ∈ [0, T ], (D-5)

ξan = can(x, t)
∂αan

∂x
, x ∈ [x1, x2] , t ∈ [0, T ], (D-6)

where α0 and β0 are corresponding scaling factors. Note that the above expressions for
αan and βan do satisfy both the boundary and terminal conditions at t = T prescribed
in the adjoint problem for the adjoint variablesα andβ. Also ξan satisfies the prescribed
terminal condition at t = T for the adjoint variable ξ . As before, these are referred
to as ‘synthetic closed-form solutions’ for the 1D adjoint problem. If we plug these
expressions into the 1D versions of Eqs. (A-2)–(A-3), we obtain the corresponding
PDEs for αan and βan .

We applied the proposed numerical solution procedure for both the forward and
the adjoint problems and compared the errors of the numerical solutions against the
synthetic closed-form solutions during mesh refinement. Results are summarized in
Tables 6 and 7: no fictitious domain and a fictitious domain approach, respectively.
In both cases, the results shown here correspond to the following choice of parameter
values: x1 = 2, x2 = 8, T = 1; D = 0.0001, ρ = 0.01,m = 1, p1 = 1, p2 =
0.1; c0 = 0.05, L = 6, α0 = 1, β0 = 1. In the first case, with no fictitious domain, the
physical spatial domain [2, 8] is discretized using an uniform mesh, of size 
x . The
time interval [0, T ] is also discretized uniformly, with time-step
t . The corresponding

relative ‖‖∞ errors (‖solan‖rel∞ =
∥

∥solnumeric
an −solan

∥

∥∞‖solan‖∞ ) with respect to the synthetic

closed-form solutions at time t = T
2 are shown in Table 6. The results verify the

first-order convergence rate. In the second case, we test a fictitious domain approach,
where the physical spatial domain [2, 8] is embedded on a larger (fictitious) domain—
here chosen [0, 10]. This whole larger domain is now discretized using an uniform
mesh, of size
x . A contrast factor ε = (
x)2 is used between the material properties
inside the real domain [2, 8] and outside, in the fictitious domain [0, 2) ∪ (8, 10].
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Table 7 Convergence study for a fictitious domain approach

‖can‖rel∞ ‖uan‖rel∞ ‖αan‖rel∞ ‖βan‖rel∞


x = 10/64,
t = 0.01 0.003651 0.003651 0.007040 0.018795


x = 10/128,
t = 0.005 0.000708 0.001818 0.003540 0.009070


x = 10/256,
t = 0.0025 0.000344 0.000951 0.001771 0.005512


x = 10/512,
t = 0.000625 0.000168 0.000407 0.000899 0.002404

The relative ‖‖∞ error of the numerical solution with respect to the synthetic closed-form solution at time
t = T

2 shown

The time interval [0, T ] is discretized uniformly, as before, with time-step 
t . The
corresponding relative ‖‖∞ errors with respect to the synthetic closed-form solutions
at time t = T

2 are shown in Table 7. Our fictitious domain implementation in this case
retains the overall first-order accuracy, with errors comparable to the implementation
without fictitious domain.
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