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AN IMAGE ENHANCEMENT TECHNIQUE FOR
ELECTRICAL IMPEDANCE TOMOGRAPHY*

DAVID C. DOBSON! AND FADIL SANTOSA!}

Abstract. In this paper, we propose an idea for reconstructing “blocky” conductivity profiles
in electrical impedance tomography. By “blocky” profiles, we mean functions that are piecewise
constant, and hence have sharply defined edges. The method is based on selecting a conductivity
distribution that has the least total variation from all conductivities that are consistent with the
measured data. We provide some motivation for this approach and formulate a computationally
feasible problem for the linearized version of the impedance tomography problem. A simple gradient
descent-type minimization algorithm, closely related to recent work on noise removal in image pro-
cessing via nonlinear diffusion is described. The potential of the method is demonstrated in several
numerical experiments.

Key Words. elliptic inverse problem, electrical impedance tomography, conductivity imaging,
image enhancement, edge detection, minimal total variation

AMS(MOS) subject classifications. 35R30

1. Introduction. The goal in electrical impedance tomography is to find a spa-
tially varying conductivity distribution inside a given domain, given electrostatic mea-
surements collected at the boundary. This problem has numerous practical applica-
tions, for example in medical imaging [3].

The idealized model problem can be stated as follows. Given some domain £ C
IR?, p = 2 or 3, the problem is to find the conductivity distribution in the interior
of Q from electrostatic measurements on the boundary J2. A spatially distributed
current flux density pattern f which satisfies f(m f = 0is applied to Q. The voltage
potential u inside € then satisfies

(1a) V- (eVu)=0 in§,
where ¢ is the conductivity of the medium, with the Neumann boundary condition

(1b) og—z =f on 0Q.
With the additional normalization constraint [,,u = 0, and the assumption that o
is uniformly bounded away from zero, equations (1) uniquely determine the voltage
potential u in appropriate function spaces.

For every “current pattern” f, we measure the corresponding voltage potential
u on the boundary 0€2. Hence, the data in the problem can be viewed as the so-
called Neumann-to-Dirichlet map F(o; f) which takes current patterns to voltage
measurements, defined by F(o; f) = u|sq, where u satisfies (1). Note that F is linear
in the second variable but nonlinear in the first variable.

In practice, one is limited to performing only a finite set of experiments, generally
carried out with f in some finite-dimensional space such as that spanned by a given
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number of electrodes in fixed positions. In addition, of course, it is infeasible in
practice to measure all of u|aq; one is left with samples of v at a finite number of
points on the boundary d€2. Obviously, given a finite amount of data, the practical
problem of determining o (which in principle has an infinite number of unknowns)
is impossible. In fact, even after approximating ¢ in a finite dimensional space of
reasonably small dimension, experience and analysis indicate that one is generally
left with an extremely unstable problem. This is to be expected since the underlying
inverse problem is ill-posed.

The instability of the inverse problem renders the practical task of reconstructing
conductivity profiles very difficult. This instability has been characterized in various
ways by studying the linearized problem [1, 6, 8]. The main difficulty is that the
measured data are very insensitive to certain features in the conductivity profile. For
instance, two profiles that differ primarily in the high-frequency Fourier components
may yield boundary data that are nearly indistinguishable. Such behaviors are man-
ifestations of the information content of the data: information about abrupt changes
in the conductivity profile is not contained in the measured data. Therefore any re-
construction procedure will be unstable to data errors unless the problem is properly
regularized. The main consequence of regularization is that conductivity images are
often smeared, blurred, or distorted in the reconstruction.

The central idea in this paper is that we incorporate a prior: information about
the unknown conductivity. The a priori information is roughly the knowledge that
the unknown conductivity is “blocky” in nature. By “blocky” we mean that the
conductivity is a piecewise constant function, and thus has sharp edges. We show
that the “blockiness” attribute can be characterized by the total variation of the
conductivity. Thus, our approach can be described as the problem of finding the
minimal total variation conductivity, which we formulate as an optimization problem.
Our optimization strategy generates a sequence of conductivities with decreasing total
variation, all of which satisfy the constraints imposed by the measured data.

Measuring the total variation has long been recognized as an effective way to
quantify the “simplicity” of a given signal or function. It has the advantage that it
measures the “oscillations” of a given function, but it does not unduly punish discon-
tinuities. The strategy of finding minimal total variation reconstructions and, more
generally, the “nonlinear diffusion approach”, has proved successful in applications
such as image processing [14, 13, 2, 4], optimal design [7], and seismic inverse prob-
lems [15, 16].

In [14], Rudin, Osher, and Fatemi describe a method for image recovery from noisy
data. Our method is essentially based on the ideas presented in [14]. In order to apply
it to our problem, we had to devise a way to handle the unstable constraints imposed
by the underlying inverse problem. We assume that the conductivity is a piecewise
constant function on a square array of square pixels, which allows us to compute its
total variation ezactly. We also introduce a mollification of the objective functional
in order to implement a step-length selection procedure in the minimization. The
strategy in some sense solves an underlying nonlinear elliptic boundary value problem
which appears as the Euler-Lagrange equations for the constrained minimization. The
minimization procedure we adopt can be viewed as the time evolution of a function
whose steady state i1s described by the nonlinear elliptic boundary value problem. It
is interesting to note that the method is closely related to the problem of evolving
surfaces by their mean curvature.

The paper is organized into 7 sections. We motivate our approach in Section 2,



wherein we also describe the optimization problem we must consider. This is followed
by a demonstration that the problem, formulated as a constrained optimization, ad-
mits a solution. In Section 4 we propose a strategy for stabilizing the constraints
imposed by the data. Section 5 is devoted to the minimization method. In Sec-
tion 6, we show an implementation of our method and demonstrate its potential in
several numerical examples. A final section contains a discussion on future research
directions.

2. The linearized problem and the minimal total variation approach.
For the sake of definiteness, let us henceforth assume that the domain € is the unit
disk in IR?. We emphasize that our techniques are still valid in more complicated
geometries. In polar coordinates, we set Q = {(r,0) : 7 < 1}, and 0Q = {(r,0) : 7 =
1}. Furthermore, we make the practical assumption that the current patterns f are
generated by a finite number n of fixed electrodes. Thus, we write f in the form

(2) (6) = _Zfix(e,az-),

where y is the characteristic function

N 1/h for |0 — 6] <h/2,
x(0,0;) = { 0 otherwise,

h is the electrode width, and {6;}?, are the electrode centers. We identify the
current pattern “function” f with the n-vector (f;)2_;. Finally, we assume that our
measurements are taken as voltage drops between adjacent electrodes. That is, let
u; be the voltage potential at electrode ¢, then the data, corresponding to a current
pattern f, is the IR" vector

g:(gla.QZ"";gn)T

b

where g; = u;y1 — u; (and electrode n + 1 is identified with electrode 1). The for-
ward map F(o, f) is viewed as taking a current pattern f € IR" and a conductivity
distribution o to an IR" vector; the ith component of the map is

(F(U7 f))z = u(1,95+1) - u(l’ﬁi)'

If we make n measurements, that is, we apply n different current patterns

f(l)’f(Q)’ A ',f(n)7
and measure the corresponding voltage drops

ORI

gy s

then the (nonlinear) inverse problem is to determine o such that
F(a;f(j)) =49 i=1,...n

A common technique to simplify the analysis of the problem, which we adopt in
this work, is to linearize F' by assuming that the conductivity is some small pertur-
bation about a constant background. Thus, we let

c=1+4éc
3



where the function o is “small”, and assume that the voltage potential is
u="U + bu.

By considering terms of the same order in (1a), we see that the background potential
U satisfies

(3a) AU =0 inQ,
ou
(3b) 5 = f on 09,

where f is given in (2). We still impose the normalization condition [, U = 0. The
perturbational voltage potential éu satisfies

(4a) Abu= -V -6cVU inQ,

(4b) %6—: =0 on 89,
where we again enforce the normalization [, 6u = 0. Since U depends linearly on
the current pattern f, we see that du is also linearly dependent on f.

For a given current pattern f, the linearized forward map DF takes a conduc-
tivity perturbation éo to perturbational measurements on the boundary. The i-th
component of this map is

(5) (DF(f)bo); := 6u(1,6;41) — du(1,6;).
Assuming that §o is supported in Q' = {r < ' < 1}, we can view the map as
(6) DF(f): LY(®) — R".

Defining appropriate generalized solutions of problem (4a) and using elliptic regularity
(see e.g. [10]), it is easy to show that DF(f) is well-defined and bounded over L}(Q').
We shall extend the domain of DF to L'(f2) by cutting off perturbations whose
support lies outside of (¥, i.e.

(7) DF(f) : L}{Q) — R"

is defined by DF(f)éo := DF(f)(xa:é0) where xq is the characteristic function on
Q.

In the linearized inverse problem, the goal is to find éo from knowledge of the
differences between the measured voltage drops and the background voltage drops
U(1,0;41) — U(1,6;) for a set of current patterns fU) j = 1,--- n. Let us denote
the background voltage due to current pattern fU) by UU). The linearized inverse
problem is to determine 6o in the equation

(8) DF(fse = ¢ —TU@ = 5D for j=1,-.n,

where TUU) is the IR™-vector whose components are (UU)(1,0;,,) — UG)(1,6;)). To

simplify notation, let us assume that the current patterns f(1) ... f(®) have been
2

chosen and are henceforth fized. Forming the IR™ data vector

bg = (6g(l)T, A 6g(")T)T
4



and the corresponding operator

DF = (DF(fM)T,..., DF(f™)T)T,
we can then state the linearized inverse problem
(9) DF 6o = ég.

Again, 8o is clearly not determined because of lack of data. Moreover, as stated in
the Introduction, even if we discretize the problem to a finite number of unknowns
in 6o, the conductivity perturbation é¢ is generally not well-determined by the data
due to lack of continuity of the conductivity-to-data relation [1, 6, 8]. In particular,
information corresponding to high frequency components of éo is lost in the data.
Qur approach to increase resolution is to incorporate a prior: information about
the conductivity perturbation éo in the problem. We assume that the unknown é¢
is “blocky”; i.e., it is piecewise constant. Therefore the assumption that the true
conductivity perturbation can be described as a sum of characteristic functions:

N

(10) bo(z) =Y anx(u)(z)

k=1

is justified. Here N is unknown but finite, the coefficients a; are unknown, the
subdomains Q; CC Q are unknown, and x(£2;) denotes the characteristic function on
Q). For convenience, assume that each Q; has a C? boundary 8Q. Equation (10)
represents a very wide variety of conductivity profiles which may be encountered in
applications ranging from medical imaging to non-destructive testing.

Let Véo denote the gradient of §o in the sense of distributions; Véo is a vector
valued Radon measure and

(11) L|V60|

is the total variation of éo. We denote by BV () the space of functions of bounded
variation in §2, equipped with the norm

160 ll3v () = 180l + /n Vo]

(see for example [11]). We observe that do defined by (10) is in BV ().

Now suppose that we are trying to reconstruct é¢, but due to the ill-posedness of
the problem, we are only able to obtain an approximation 60, and b0 = b0 +n, where
7 is some unknown “error” component. In practice, 60 is often a blurred version of
bo. We assert that if 9 is relatively well-behaved, then

/|V(6o+n)|2/ Vsol,
e) 0

which suggests that in order to recover §o', we must find 5 such that 8¢ has the least
total variation.

In fact, we can make the following statement.

PROPOSITION 2.1. Suppose that 6c is given by (10) and n € WH1(Q). Then

(12) /ﬂ V(80 + )] = ] V60| + /Q V1,
5



where the derivatives are interpreted in the sense of distributions.

Proof. Let ¢. be a smooth mollifier function supported in a ball of radius ¢;
denote the convolution 6o, = 60 * ¢.. Then Véo, is a smooth function supported in
an e-neighborhood B, of the set B = uszlan and

/ V(60 + )] = / V6o, + V| + / v
0 B. Q—B.

From the estimate

/ Vo] - / 1Vl < / Véo. + Vn| < / Véod + / 1)
o Be B, Y] B,

and the Lebesgue Dominated Convergence Theorem, we see that

1im/ |[V(boe+n)| = lim/ |V605|+/ [V7|.
e—0 Q e—0 Q Q

The equality (12) then follows from elementary properties of convergence in BV (Q2)
(see [11]). O

We mention that Proposition 2.1 can be generalized to include slightly larger
classes of 60 and 7. However, since our intention here is only to try to motivate our
approach, we will keep this simple version.

Proposition 2.1 suggests that if the “error” component of the reconstructed con-
ductivity perturbation éo is relatively smooth, then we can, in general, recover é¢
simply by looking for n which makes o have the least total variation. This can be
posed as an optimization problem

(13a) min/ |Véo|,
boeA Jo
(13b) subject to: DFéo = &g,

where A is some admissible class of conductivity perturbations. The constraint en-
sures that all feasible conductivity perturbations match the observed data.

It is difficult to estimate a priori that the error  committed in the reconstruc-
tion must belong to W11(Q); otherwise we could guarantee exact reconstructions
of conductivities in the form (10) by finding the minimal total variation reconstruc-
tion. Nevertheless, experience indicates that reconstruction errors often have a large
“smooth” component and this provides some motivation for our approach.

Proposition 2.1 is similar in spirit to an estimate made by Santosa and Symes
[15, 16] in the discrete one-dimensional case. Their work was in the context of inverting
band-limited reflection seismograms. Donoho [9] has carried out extensive analysis
on the closely related problem of “superresolving” discrete signals from band-limited
data.

3. Existence of a minimizer. The minimal total variation reconstruction prob-
lem (13) can be written

(14a) iy J(bo) = /n |Véo|,
(14b) subject to DF éo = 6y,



where X = {60 € BV () : bo|sa = 0}. Since J is a convex functional and the
constraints are linear, any local minimizer of problem (14) must be a global minimizer.
However, since J is not strictly convex, uniqueness of solutions is doubtful.

Since DF is well-defined and bounded over L}(2), we can define the set

Y = {60 € BV(Q):b0lsa =0, DF b0 =bg}.
The minimization problem (14) can then be equivalently written

(15) Join J(é0).

THEOREM 3.1. Given any data veclor ég € R in the range of DF, the problem
(15) admats at least one solution 6o € BV (Q).

To prove the theorem, we use the following fundamental compactness result. See
[11] for a proof.

LEMMA 3.2. Given K < oo, the set

{60 € BV(Q) : l5ollpvea < K)
is compact in L}(Q). Furthermore, if §ox — b0 in L*(2) then

J(6o) < likm inf J(6or),

i.e., the functional J(8c) is lower semicontinuous over L(Q).

Proof. of Theorem 3.1. The proof follows the well-known direct method in the
calculus of variations. Let {60} C Y be a minimizing sequence for the functional J.
We may assume that each o is supported in the subdomain Q', for otherwise the
function yqéoy still satisfies the constraint and we have J(xq/éok) < J(éok). Then
by the Sobolev-type inequality

60l < C / Vo],
¢)

(see [11]), we can bound |[|60+||pv () < K for some constant K. It follows from Lemma
3.2 that there exists a subsequence (still denoted {60}), and a function do € L*()
such that 6oy — 6o in LY(). Clearly supp 60 C @/, so éc|sn = 0. Since DF is
continuous over L!(£2), we must have 6o € Y. Finally, by the lower semicontinuity of
J, we conclude that éc is in fact a minimizer of J. 0O

4. Stabilizing the constraints. There are two difficulties associated with the
constraint DF' 60 = 6g. For the present time, let us view DF as an operator over
L?(2), and consider the following “near-null” subspace associated with DF:

Viear-null = {v:ive LZ(Q)’ [|DF v|| < 6},

for some small §. The first difficulty is that if a measured data vector ¢ is not in
the range of DF, we would never be able to satisfy the constraints. The second
difficulty is that even if 8¢ is in the range of DF, it is still possible for ég to have
a component in the set {(DF v) where v € Vcornun}- When this happens, small

changes in 8¢ could lead to large changes in the subspace defined by the constraints
{60 : DF éc0 = bg}.



We can take care of both difficulties by stabilizing the problem in the following
way. Let 6 be the “noise level” in the data. Consider the singular value decomposition
(SVD):

DF =UxVT,

where U is an n? x n? orthogonal matrix, V is an orthogonal operator mapping

L%(Q) — L%(R), and T is a “diagonal” operator with diagonal {s1,...,s,2}, where
s1 > s3> ... > s,2. The diagonal entries of T are called the singular values of DF.
Given any discrete approximation to L%(Q), the corresponding SVD of DF can be
calculated numerically by standard methods, see [12]. A slightly different approach is
needed if we choose not to discretize. Such an approach is outlined in [8].

Let s, be the smallest singular value greater than é. Form the new operators

Y = diag{s1,...5p},

U' = (uy,...,up),
and
V' =(vi,...,vp),

where u; denotes the jth column of U, and similarly for v;. Now we can form the
“reduced rank” operator

M=xVT,

The range space of M is p-dimensional, and M has a well-defined pseudo-inverse M1
whose norm is less than or equal to 1/8. The “stabilized” linear inverse problem can
then be posed as

Méo =UTsg =: 84"

The effect of this manipulation is that g has been projected onto the subspace
spanned by range vectors of DF whose singular values are greater than 6, thus elim-
inating both difficulties described above. Notice that the null space of the “reduced”
operator M is exactly Vo, nui- The constraint Méo = &g’ defines a subspace of
conductivity perturbations which are consistent with the observed data to within the
noise level §.

5. A minimization method. We can now formulate the minimal total varia-
tion reconstruction problem with stabilized linear constraints:

(16a) nin J(é0) :/Q|V6¢r|,
(16b) subject to Méo = &g’

where M : L?(Q) — IRP is the linear operator constructed in the last section, and
X = {6c € BV(2) : bc|sa = 0}. In the two-dimensional case we consider here,
BV () imbeds in L?(Q), so the constraint makes sense, i.e., Méc is well-defined for
bo € BV(Q).

While it is possible to proceed from this point and attempt to solve problem (16)
directly, the fact that the cost functional is not “smooth” creates certain complications

8



from both practical and theoretical standpoints. For this reason, our approach is
to “mollify” the cost functional J with a small smoothing parameter and solve the
resulting problem by straightforward methods. In principle the smoothing parameter
can be taken arbitrarily small so that in the limit one should obtain a solution to
problem (16). The problem we try to solve can be written

(17a) nin Je(60) = /ﬂhe(|V60|),
(17b) subject to Méo = 6¢’,
where

s if s>e,
h =
(s) {2—+§ if s<e

Thus h, is C! for € > 0. The effect of h, is to “round off” the corner in the absolute
value function.

The following derivation is patterned after the approach taken by Rudin, Osher,
and Fatemi in [14]. The Euler-Lagrange equations for problem (17) are formally given
by

(18a) V- (q(|Véo|)Véo) = MTA = 0, inQ,
(18b) bc = 0, on0f,
(18¢) Mése = &g,

where A € IRP, MT denotes the L? adjoint of M, and the function g, is defined by

hi(s) { 1/s if s>e¢,

ge(s) = s 1/e if s<e.

In [14] the approach to solving the Euler-Lagrange equations is to use time as an
evolution (iteration) parameter. Applying this idea to our problem, we would solve

(19a) b0 = V-(q(|Vé0|)Va) — MTA, in Q x (0,00),
(19b) o = 0, on 90 x (0,00),
(19¢) So(z,0) = bog(z), z€L,

where d0q is a solution of Méog = bg’, given, say, by the pseudo-inverse solution
Sog = M1ésg'.

To solve the initial boundary value problem in (19), one could apply an explicit
time-stepping scheme, that is, starting with the initial step éo¢, apply the iteration

(20) §0ip1 = b0i + 7 |V - (¢e(|V80:|) Vo) — MTAD |

where 7 is the “step length”. To solve for the Lagrange multiplier approximation A(®),
let b; € L?(2) be a solution of
Mbj:ej, jzl,...,p,

where ¢; denotes the standard unit basis vectors for IRP. Assuming that the SVD has
already been calculated as in the last section, we can set b; = v;/s;, where v; is the
J-th column of the orthogonal operator V. We see that if (18a) is satisfied then

[ v+ vaenveo - [ (a7ap; =0,
193 O

9



and hence

(21) \ = ty) = |

(MTA)b; :/v-(qf(|v5a|)v(sa)bj.
Q Q

One can calculate A(¥) directly from §a; and the vectors b; using equation (21). This
procedure can be viewed as projecting the L? “gradient”

(22) DsoJe = ~V - (4:(|V60)V60)

of the cost functional J, onto the linear subspace {éc : Méo = 0}. Thus, as pointed
out in [14], the entire scheme can be viewed as a “projected gradient method”.

Taking the viewpoint that the iteration scheme (20) is simply the projected gra-
dient method, define the ncgative “projected gradient”

Gi = —DsgJ(60;) — MTAD,

Our minimization procedure can be stated as follows.
1. Choose an initial steplength 79, a parameter € > 0, and an initial iterate dog
satisfying the constraint (16b).

2. Fori=1,..., convergence do
3. If J(60; + 1:G;) < Je(60;) then
b0ip1 = b0 + TG
Tit+l = T
else
T = Ti/2

If 73||G;|| is too small then stop
otherwise go to step 3
end do

We note that our algorithm only has a provision for reducing the step size ;. A
more complicated backtracking strategy that allows an increase as well as a decrease
in the step size can be implemented. An earlier version of our code indeed uses such
a strategy. We found that we almost never increase a step size during the iterations.
While this is the case for our problem, it may not be true in general, and therefore, if
one is to apply the method described here for other problems, it may be worthwhile
to modify the algorithm to include the possibility of increasing the step size.

The computation of the projected gradient G; above depends upon how we dis-
cretize the conductivity distribution §o and how we choose to approximate the partial
differential operators. Rudin, et al [14] discretized their version of problem (19) di-
rectly (with € = 0), and used a rather sophisticated finite difference scheme to solve
the evolution equation. Their time-stepping scheme, in the context of the projected
gradient algorithm described above, is a fixed step-size version of our algorithm with
a finite-difference approximation to the gradient Ds,J. Their scheme does not check
that the value of the “cost functional” is decreased at each step—the step size is
restricted by a CFL condition.

Our approach to discretization is to begin by making the simplifying assumption
that 6o is a piecewise constant function over a square array of pixels. In this case,
we can calculate the cost functional J.(6c) in closed form. This leads to the further
simplification that the gradient of J.(60) with respect to do can be calculated ex-
actly. This approach avoids the difficulty in choosing an appropriate finite difference
approximation of the partial derivatives in G;. An added bonus is that we have an

10



exact formula for the cost function J.(é0;) which we need in choosing the step size ;.
Had a different discretization of §o been used, we may not have been able to compute
Je(60) exactly, which would have lead to an added difficulty in testing the decrease
in the value of J, at each iteration. A complete description of our implementation is
presented in the next section.

In practice, we generally observed faster convergence for larger €, but even so, the
discretized scheme seems to converge even for very small positive values of e.

To summarize the difference between our approach and that of Rudin et al, we
might say that we view the problem primarily as an optimization problem, while
Rudin, et al, view it primarily as a nonlinear diffusion problem. The advantages of
our approach are: first, by standard theory we are guaranteed convergence for the
discretized problem, and second, the step-length parameter 7 is selected essentially
automatically. Perhaps the main disadvantage to our approach is that we are not
solving exactly the minimal total variation problem.

6. Implementation and numerical examples. Extending the domain Q to
the square

Q= (_lv 1) x (_17 1)>

we discretize the conductivity perturbation éo to lie the space of piecewise constant
functions on a uniform square grid with N x N cells. In this case h.(|Véo]|) is a
measure supported on the lines of the grid. Thus if we denote the value of éo on the
(7, 7)-th cell by é0; ; then
e
/Qhe(lwffl) =N > hell60ig1,5 — 804 1) + he(|601 501 — 805 51]).

ih,j=1
Also discretizing the domain of the operator DF', the stabilized constraint operator
. 2
M becomes a p x N2 matrix. From now on we denote the IR vector (6os ; )Zszl by
bc. Problem (17) can then be written
1 N-1

(23a) mnin I (60) = N ']Z—:1 he(|80i41, — 603 5]) + he(|60: 541 — 603 51),
(23b) subject to Méo = é¢’,

where X is the subset of IRY" with zero “boundary values”, that is,
X = {50’ € 1RN2 : 50’1,13 = 50’N,k = 50’}3’1 = 60’k,N =0, k= 1,...)N}.

We can easily calculate the derivative of the functional J(8c). Since 8o is really

an IRNz—vector, this derivative i1s a gradient which is also in RN Proceeding with
the calculation, for 1 < k,I < N, we find that

oIy
860’}9,1

(24) qe(|bor1 — bok—1,1]) (00K — bok_1)

qe(|60k41,1 — 80k ,1) 60k 41,0 — b0k )
+ g0k — b0k 1-1])(60k,1 — bo,1-1)

— qc(|60k,141 — 6011))(b0k 141 — bok 1) -
11
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With the convention that 8J~ /860y ; = 0 for k or [ equal to 1 or N, these partial
derivatives are the elements of the gradient of JN (6a) over X:

asN \"
N _ €
grads,J,;' = (—660k,1>

With this formula, we can easily compute the projected gradient G; appearing in
our minimization algorithm. We now have all the necessary ingredients to solve the
problem (23).

In all of the following experiments we use a 32 x 32 grid. We further assume that
the electrodes are point electrodes; i.e., the characteristic function y in (2) is now a
delta function. Moreover, we choose “dipole” current patterns so that f is a rotation
of the vector (1,—1,0,--+,0)7. The number of electrodes is fixed at 20 and we make
20 measurements, so the data vector é¢g consists of 400 data points. We remark that
the method is certainly feasible for finer discretizations; most of the computational
work in the problem is expended computing DF and its singular value decomposition.
The data error tolerance is set at § = 0.0001, which resulted in 150 “usable” singular
values in the SVD of DF. Thus the constraint operator M is a 150 x 1024 matrix
and the reduced data vector 8g’ has 150 elements. We took the smoothing parameter
e = 0.001 for all experiments.

In the first experiment we attempt to recover the separated block profile pictured
in Figure 1. The pseudo-inverse solution §ag = M g’ was taken as the “initial guess”
in the minimization procedure. The value of the cost functional J(6c;) versus the
number of iterations 7 is shown in Figure 2. Figure 3 compares the initial iterate doy
with the final approximate minimizer. As the figure indicates, we obtain a near-exact
reconstruction. It is interesting that the reconstruction not only sharpens the edges
of the image, but also recovers nearly exactly the true values of the image on the
“blocks”.

Unfortunately it is not always possible to recover images as accurately as in
the previous example. Roughly, since the reconstruction procedure favors “simple”
images, if the original image is “complicated” (has large total variation), and most

k=1
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of the information about the variations of the image is lost in the measured data,
then one should expect to obtain a reconstruction with less total variation than the
original image. When this occurs the method has very little chance of success. This
is illustrated in the following example. Figure 4 shows the true image consisting of a
thin curved line. Figure 5 shows the comparison between the pseudo-inverse solution
and the minimal total variation reconstruction. As it turns out, in this example the
reconstruction has much lower total variation than the original image: approximately
half as much. In fact, even the pseudo-inverse has less total variation than the original
image in this example. Our impression after trying several such experiments is that
the method generally has trouble recovering features such as thin lines. Presumably
this is because (1) the line has large total variation compared to its “mass”, and (2)
too much information about the line is lost in the measured data. On the other hand,
we observed that the method generally recovered quite accurately “blobs” such as
those shown in the first example.

The preceding two examples were designed to illustrate the extremes one can
observe in the accuracy of the reconstructions. For the last example, we will try
to indicate the behavior of the method in a somewhat more realistic situation. A
caricature of a cross-section of the human torso is pictured in Figure 6. The large
light-colored areas on the right and left indicate the lungs, the slightly darker area
between the lungs represents muscle and other tissue, and the two dark areas in the
lower center represent heart chambers filled with blood. Many details have been
omitted from the image, of course. Since we are solving the linearized problem, one
might think of Figure 6 as the d¢fference between the true image and some background
conductivity.

As can be seen from Figure 7, the reconstruction recovers some features not
visible in the pseudo-inverse, most noticeably the lungs and the tissue between the
lungs. In this example as in the previous example, the reconstruction had lower total
variation than the original image (approximately 50 vs. 66), however in this case the
pseudo-inverse had higher total variation (approximately 76).

We have also investigated the effects of noise in the data on the reconstruction.
The stabilization procedure outlined in Section 4 can be adjusted to the noise level

14
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by changing the value of 6. Noise was added by taking a “clean” data set and adding
random numbers of less than a prescribed value. We found that noise has little effect
on problems for which the method works well; e.g., Examples 1 and 3. The effect of
noise did not worsen the reconstructions on problems that the method had difficulty
with, such as Example 2. While these simulations gave us some confidence that the
method has a hope of performing well on real data, we feel that we need to gain more
experience with the method, especially for the full nonlinear problem, before using it
to invert experimental data.

7. Directions for future research. From the preliminary results we have pre-
sented so far, we believe that the idea of using image enhancing techniques in electrical
impedance tomography is quite promising. In addition, the problem poses some in-
teresting questions that require further investigation.

In the work presented here, we have considered the linearized problem. Of course,
the real problem we need to solve is nonlinear. Applying the image enhancement
strategy for the full nonlinear problem would require the solution of the following
minimization

2 1 bo) = vé
(250) min J(60) = [ |Véa].
(25b) subject to F(o, f0) = ¢®) i=1...n.

Please refer to Section 2 for a description of F(o, f(i)) and ¢, The notable difference
in the problem above is that the constraint is nonlinear, and the feasible set will be, as
in the linear case, sensitive to data errors. A natural approach is to put the constraints
as a penalty term. Such an approach has been considered in different contexts in [16]
and [7].

Another problem that requires attention is the method for minimization. The
approach taken here, which is related to a projected gradient method, is clearly inef-
ficient. This can be seen by the decrease of the cost function as a function of iteration
in Figure 2. The main difficulty in doing the minimization stems from the fact that
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the original cost function is not everywhere differentiable. There are, however, opti-
mization methods that are designed to tackle just such cost functions [5]. We plan to
look into applying such methods to our minimization problem.

Using the discretization of the conductivity in Section 6, we arrive at a problem
of determining a function which is pilecewise constant on an array of square pixels,
that 1s “blocky”. It seems that the “blockiness” attribute can be described efficiently
using the Haar basis. This claim is based on the observation that “blocky” functions
have separated scales. It is quite possible that by using the Haar basis to represent
the unknown conductivity, an efficient minimization can be constructed.

A last, and perhaps most difficult problem, has to do with the development of an
uncertainty principle for this problem. That is, given that the conductivity we wish
to reconstruct 1s “blocky” and has a given BV-norm, how much data are required
to uniquely reconstruct it using the minimal variation approach? A discrete version
of such a principle seems possible. For convolution problems in 1-D, discrete and
continuous, facts like this have been established [9, 15].
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