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An Image Morphing Technique Based
on Optimal Mass Preserving Mapping

Lei Zhu, Yan Yang, Steven Haker, and Allen Tannenbaum

Abstract—Image morphing, or image interpolation in the time
domain, deals with the metamorphosis of one image into another.
In this paper, a new class of image morphing algorithms is pro-
posed based on the theory of optimal mass transport. The 2 mass
moving energy functional is modified by adding an intensity penal-
izing term, in order to reduce the undesired double exposure ef-
fect. It is an intensity-based approach and, thus, is parameter free.
The optimal warping function is computed using an iterative gra-
dient descent approach. This proposed morphing method is also
extended to doubly connected domains using a harmonic parame-
terization technique, along with finite-element methods.

Index Terms—Image interpolation, image morphing, image
warping, mass preserving mapping, Monge–Kantorovich flow,
optimal transport.

I. INTRODUCTION

I
MAGE morphing, sometimes referred to as “image interpo-

lation in the time domain,” deals with the metamorphosis of

one image to another [21]. It is a technique widely used in tele-

vision commercials, music videos and motion pictures. Image

morphing has also been used for facial recognition [37]. Given a

pair of images, the goal of image morphing is to find a sequence

of intermediate images, such that the first image in the sequence

is equal to the first given image (starting image) and the last

image is equal to the second given image (ending image). The

process begins with finding a reasonable warping function be-

tween the two images, and this warping function is then used

to interpolate the position of pixels through the in-between se-

quence. Finally, intensity or color interpolation (i.e., cross dis-

solving) is performed to generate the intermediate images.

There have been many algorithms proposed for image mor-

phing. Some of the most popular approaches are mesh warping,
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field warping, and energy-based warping. In mesh warping [35],

features are specified by a nonuniform control mesh, and the

warping function is usually generated by a spline interpolation.

This class of mesh warping algorithm usually shows good dis-

tortion behavior, but it has a critical drawback in specifying fea-

tures since the features on the control mesh may have an ar-

bitrary structure. It is also time consuming to define the fea-

ture correspondence via a user interface. In field morphing [2],

a pair of corresponding lines is specified. The mapping of a

point in the vicinity of a line can be determined by its distance

from the line. In the case of multiple line pairs, the warping of a

given point is calculated by a weighted sum of mappings of all

line pairs. This method is easy to use to specify corresponding

features. However, sometimes a part of the image may appear

in unrelated regions in the in-between images (often referred

to as “ghosts”). Energy minimization-based warpings usually

guarantee the one-to-one mapping property, which prevents the

warped image from folding back upon itself. For example, in

Lee et al.’s work [21], points, polylines, and curves are sam-

pled and reduced to a collection of points. These points are then

used to generate the warping function by minimizing an energy

functional. A similar method has been applied to facial mor-

phing based on Navier elastic body spline [15]. All of the above

approaches fall into the landmark-based category and require

user inputs of the corresponding features.

The approach proposed in the present work is intensity based.

Here, one uses only information given by the images such as

pixel intensities to perform the warping. A successful inten-

sity-based algorithm can achieve automatic morphing without

user inputs or prior assumptions on special shapes or features of

the objects in the image. See [31] for a review of the literature

and an extensive list of references on this subject. We should

also mention the nice work of Iwanowski [17] in which an image

morphing approach is proposed that combines morphological

interpolation and linear filtering and does not require control

points or landmarks. In this paper, we present an automatic mor-

phing algorithm using a completely different approach which is

based on the theory of optimal mass transport. It is important to

note that we do not claim that our method is optimal in any sense

for morphing, but does throw some new light on the morphing

problem, and seems reasonable for certain types of images in

which there is an elastic deformation as demonstrated in some

of our experiments given below.

Optimal mass transport problem was first formulated by

Gaspar Monge in 1781. It concerned finding an optimal way,

in the sense of minimal transportation cost, of moving a pile of

soil from one site to another. This problem was given a modern

formulation by Kantorovich in 1948 [19], and is also known
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as the Monge–Kantorovich problem (MKP). The optimal mass

transport problem has been extensively studied in the fields of

econometrics, fluid dynamics, automatic control, transporta-

tion, statistical physics, shape optimization, expert systems,

and meteorology [26]. Recently, this problem has been studied

within the context of content-based image retrieval [22], [27],

[28]. Pixels in an image are divided into several bins according

to their color and spatial locations. The Earth Mover’s distance

(EMD) is then calculated between the bins of two images and

used for image retrieval.

Our interest in MKP arose from our visualization work in

medical applications. For example, a flattened representation of

colon surface is helpful for the detection of colon polys [13]

and a flattened representation of vessel surface is useful for

the study of the correlation between wall shear stress and the

development of atherosclerosis [39]. Among various flattening

techniques, a mapping that preserves the area is of special in-

terests. In this approach, an angle preserving flattening is first

constructed through harmonic analysis, and then the optimal

mass preserving mapping is applied in order to correct area dis-

tortions. The resulting mapping is an area preserving mapping

with minimal distortion. We have also proposed an MKP-based

image registration algorithm [14], in which a pseudo-mass (in-

tensity-weighted area) is preserved. Our algorithm can handle

area preserving registration [12] naturally by simply assigning

the pseudo mass density to unity on the entire domain of the

image. Other approaches to using various classes of diffeomor-

phisms for registration and warping may be found for example

in [25], [31], [32], and the references therein.

In this paper, we present an improved approach for image

morphing, with special efforts taken to reduce the double expo-

sure effect (also referred to as the “fade-in and fade-out” effect).

An improved three-step gradient descent approach (as opposed

to the two-step approach used in [14] and [40]) is employed here

for rectangular domains. We also explain how to extend this ap-

proach to irregular multiconnected domains.

We now outline the contents of this paper. In Section II, we

give a brief review of the optimal mass transport problem. In

Section III, we present our approach for image morphing be-

tween two rectangular images, using the improved gradient de-

scent method. Two types of comparison terms are studied in this

section. In Section IV, we extend our morphing algorithm to

doubly connected domains, based on a harmonic parameteriza-

tion technique. In Section V, we illustrate the proposed algo-

rithms using real images as examples. Finally, in Section VI,

we summarize the contributions of this paper and discuss pos-

sible future directions. An Appendix is provided at the end of

the paper to give more mathematical details of our methods.

II. MONGE–KANTOROVICH PROBLEM

We now give a modern formulation of the MKP. Assume that

and are two domains in with smooth boundaries,

each with a positive density, and , respectively. Further,

we assume that both domains contain same total amount of mass

(1)

A mapping is called mass preserving (MP), if

satisfies

(2)

We denote this as . Equation (2) is called the Jacobian

equation, where denotes the determinant of the Jacobian of

, and denotes the composition of two functions. Equation (2)

implies, for example, that if a small region in is mapped onto

a larger region in , there must be a corresponding decrease in

density in order for the mass to be preserved.

There exist infinite number of such mappings. A criterion, or

a metric, must be defined in order to obtain an optimal map-

ping. In this work, we employ the Kantorovich–Wasserstein

metric defined as follows:

(3)

This metric places a penalty on the mass weighted distance

of each bit of material moved by mapping .

In this paper, we take . One can show that in this case

one gets a unique minimizer given by the gradient of a convex

function; see [3], [11], [20], and the references therein. Note

that the Kantorovich–Wasserstein metric defines the distance

between two mass densities, by seeking the “cheapest” way to

transport the mass from one domain to another with respect to

the metric (3). The optimal MP mapping thus defined is sym-

metric, the optimal mapping from to being the inverse of

the optimal mapping from to .

III. IMAGE MORPHING ON RECTANGULAR REGIONS

In the context of image morphing, we can assume that the

mass density is the image intensity and directly apply the

optimal mass transport algorithm on two related images to

generate a deformed grid. The in-between image sequence

can be obtained using cross dissolving. However, a mapping

that maps a small high intensity region to a large low intensity

region is not desirable since it will cause double exposure effect

in the in-between images. The Kantorovich–Wasserstein

metric imposes a penalty only on the work spent on moving

mass from one shape to another, but not on the change of mass

densities or image intensities. Hence, we add a comparison

term to the distance metric (3) to penalize the change of inten-

sity in the image. In this section, we only consider the image

morphing problem between two rectangular domains, and leave

the discussion of more general domains to Section IV.

The idea is to minimize a functional of the following form

over an MP mappings

(4)

where is a fixed positive number. The first term controls

the “goodness of fit” between the intensity images

and , and when and are identical,

this term reaches its minimum. The second Monge–Kantorovich

term controls the warping of the map. The function is the

mass density defined on , which could be the same as or a

smoothed version of . could also be any scalar field that is

appropriate for the underlying physical model. Similarly, is
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the mass density defined on . By adjusting , we control the

tradeoff between minimal mass transport and minimal intensity

change. It must be pointed out that by adding the comparison

term , the energy functional (4) may have multiple

local minima, and the resulting optimal mapping is no longer a

curl-free field as in the classical MKP.

We note that the comparison term may be taken

to be any metric that measures the similarity between the trans-

formed source image and the target image, e.g., the sum of

squared difference (SSD), likelihood measurement, correlation

ratio, normalized correlation, or mutual information (MI) [34].

In this paper, SSD and MI are adopted as the similarity mea-

sures, based on the characteristics of our testing images.

If SSD is used as the similarity measure [14], we are mini-

mizing the following energy functional:

(5)

and if MI is used as the similarity measure [16], the energy func-

tional has the form

(6)

Note that there is a minus sign before the MI term, since the

more similar the two images are, the larger the MI measure is.

It should also be pointed out that the first integral is taken over

the domain of , where and are intensity levels in

the histograms of the two images. The probability density func-

tions and can be estimated by the 1-D non-

parametric Parzen–Rozenblatt density model [9]

(7)

and

(8)

where is a 1-D Gaussian window, whose standard deviation

can be chosen to be 10% of the standard deviation of and

for (7) and (8), respectively. is the area of , or the number

of pixels inside for the discrete case. From another point of

view, this Parzen-window method is equivalent to smoothing the

image histogram using a Gaussian filter.

In a similar way, can be estimated using a 2-D

nonparametric Parzen–Rozenblatt density model as follows:

(9)

where is a 2-D Gaussian window, whose covariance is de-

cided by the covariance matrix of the paired random variables

. For simplicity, we write as in the remaining part

of this paper.

There have been a number of algorithms considered for the

computation of an optimal transport map. For example, methods

have been proposed based on Lagrangian mechanics that are

closely related to the ideas in fluid dynamics [3], and geometric

methods have also been employed as in Culler-Purser [7]. Per-

haps the most common approach is to reduce the optimal

transport problem to a linear programming problem [26]. How-

ever, a fundamental difficulty of linear programming is the com-

putational complexity [18].

We propose to use a different approach to solve the modi-

fied optimal mass transport problem (4). The basic idea is to

start from an initial MP mapping from to , and based

on the fact that the composition of two MP mappings is still

an MP mapping, the second step is to update the mapping it-

eratively in a gradient descent way using MP mapping that

maps onto itself and satisfies the MP property to decrease the

pure MKP energy functional without the comparison term.

It can be proved that the curl of the mapping is also decreasing

in this process [1]. The resulting MP mapping is a curl-free

field. Finally, we start from this curl-free field and use a sim-

ilar gradient descent approach to minimize the modified energy

functional (4). As we mentioned earlier, the functional (4) may

have multiple local minima. Starting with a curl-free MP map-

ping will make the final MP mapping look more natural

by putting most curl into the dark region of the images, as shown

in the results described in Section V.

A. The Initial MP Mapping

For arbitrary domains, the initial mapping can be solved using

the method proposed by Dacorogna and Moser [8]. Since we are

working on more regular domains (specifically, two rectangular

domains in 2-D or two cubical domains in 3-D), a simpler al-

gorithm is implemented here. To further simplify the problem,

we assume we are working in with , the

generalization to higher dimensions being straightforward. The

idea of the proposed method is that we solve a 1-D mass trans-

port problem in one direction and then solve a family of 1-D

mass transport problems in the other direction. In 1-D, the op-

timal transport map can then be found by simple quadrature.

We can let the mass first be transported along the lines parallel

to the axis, and then transported along the lines parallel to

the axis. Accordingly, we assume that the initial MP mapping

has the form , where function is

defined by equation

(10)

By differentiating (10) with respect to , we have

(11)

We may now define function by equation

(12)
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Since , , by differentiating

(12) with respect to , we get

(13)

which is the MP condition. In practice, and can

be found using numerical integration techniques. Given our as-

sumption that and are positive everywhere, is a

monotonically increasing function. is also monotoni-

cally increasing with respect to from (12), given that is

always positive. Hence, there is no space folding problem with

the initial mapping .

B. Curl-free MP Mapping

Once an initial MP mapping is found, we need to dis-

cover the curl-free MP mapping by finding the polar fac-

torization [11], [23] of . Rather than finding directly, we

solve an energy minimizing problem iteratively via a gradient

descent method. If the energy functional is defined by the

Kantorovich–Wasserstein metric, this process is equivalent to

finding the polar factorization and is guaranteed to converge to

a global optimum [1]. We give the key steps of this method in

this section, and more mathematical details can be found in [1],

[14], and in the Appendix.

Assume that is updated by an MP mapping from to

itself, i.e., . Based on the facts that the inverse of an

MP mapping is an MP mapping and the composition of two MP

mappings is an MP mapping, is also an MP mapping from

to . We take to be a function of “time” (i.e., gradient descent

parameter), initially being the identity map. In order to maintain

the MP property, the update of should have the following form:

(14)

for some vector field on , with and

on , being the normal to the boundary of . Accordingly,

should satisfy

(15)

In the gradient descent approach, we take the derivative of the

pure MKP energy functional with respect to . It can be

proved that in 2-D, should satisfy , where rep-

resents a rotation by counter clockwise and is given by

(16)

Here, indicates an identity mapping. Considering (15) and

, the updating equation for is given by

(17)

where stands for the solution to the Poisson equation (16).

When the algorithm converges, we have a curl-free vector field

, which will serve as the initial mapping for the next step.

C. inimizer

We use a similar gradient descent approach to find a mini-

mizer to the functional (4). As above, the idea is to modify

an initial mapping by an MP mapping from to itself in

order to decrease the energy (4).

More specifically, the updating equation is given by

(18)

If SSD is used as the comparison term, has the form of

(19)

and if MI is used as the comparison term, is given by

(20)

where stands for 2-D convolution, and is the derivative of

with respect to its first variable.

Once the algorithm converges, we have the final warping

function . Then a cross-dissolving method is performed

to generate a sequence of in-between images , such that

and . It is assumed that when time varies

from 0 to 1, the starting image continuously changes to the

ending image . We further require that the same transition

rate is applied to all points on the in-between images [21].

Hence, the image warping map at any time is

simply given by

(21)

and the corresponding cross-dissolved image at time is given

by

(22)

and can also be color images and (22) can be applied

to three color components individually. The warping function

(21) guarantees the continuous transformation from the source

image to the target image, being the transition rate. One can

also guarantee that the intermediate frames are mass preserving

simply by shading the pixels in the in-between images according

to .

D. Implementation

As a summary, our proposed algorithm takes the following

steps.

1) Construct an initial MP mapping using (10) and (12).
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2) Starting with , update the MP mapping iteratively

using (17) and obtain .

3) Starting with , update the MP mapping iteratively

using (18).

4) Calculate in-between images using the cross-dissolving

method by (21) and (22).

An upwinding scheme is used when computing in (17),

and all other spacial derivatives (including and div) are com-

puted using standard central differences. Matlab solver poicalc

is used to solve the Poisson equation (16). The time step can

be chosen to be less than

for the nonlocal flow, where stands for the component of the

vector. The curl-free mapping is obtained as . In

practice, the procedure iterates until the mean absolute curl is

sufficiently small. More details about the implementation of

Monge–Kantorovich flows may be found in [14].

The numerical implementation of (18) is exactly the same as

that for solving using (17), except is substituted by

. The iteration stops when the energy functional (4) decreases

sufficiently slowly. The optimal mapping is obtained when

the iteration stops.

IV. IMAGE MORPHING ON DOUBLY CONNECTED REGIONS

In the previous section, we presented an MP morphing algo-

rithm between two simply connected domains, or more specif-

ically, two rectangular regions. It is assumed that mass is pre-

served over the entire domain. In some images, however, the

MP condition is valid only between parts of the two images

rather than the entire domain. For example, if we are given a

sequence of magnetic resonance (MR) images of a human heart

taken at different times in the cardiac cycle at the same spatial

location, the MP condition is only valid in the myocardium re-

gion, but invalid in the heart ventricles since the volume of the

blood varies from time to time. A natural approach would be to

perform image segmentation first to separate the myocardium

and the ventricles, and then perform image morphing only on

the myocardial region of interest.

In this section, we extend the MP mapping algorithm to

doubly connected domains [41]. The main difficulty comes

from the construction of the initial MP mapping. We propose

an algorithm that finds by using harmonic parameteriza-

tion. In this approach, the two domains are first harmonically

parameterized, and then can be obtained in the harmonic

coordinate system. A finite-element method (FEM) is applied

in conjunction with the gradient descent method to account for

the irregularity of the domains.

A. Harmonic Parameterization

We first show how to construct an analytic function

for the harmonic parameterization of a doubly con-

nected domain (here denotes a square root of 1). Similar

techniques have been applied for colon surface visualization

Fig. 1. Dubly onnected domain�with inner boundary � and outter boundary
� .

[13], tissue thickness measurement [36], and defining orthog-

onal curves for template matching [30].

Assume we have a doubly connected domain , which has

two boundaries: the inner boundary and the outer boundary

, as shown in Fig. 1.

The real component of is given by

with and (23)

A cut is then defined from to starting from an arbitrary

point on along the negative gradient direction of and

meet the inner boundary at . Cut , and form a new

closed and oriented boundary of domain

with the constraint that is on the left hand side of . The

boundary condition of the imaginary component on is

given by

(24)

according to the Cauchy–Riemann equations. is any given

point on that satisfies .

Finally, another Laplace equation

(25)

is solved to give the value of inside domain .

Numerically, we are working on a triangulated domain and

the Laplace equations are solved by a standard FEM technique

as we used for colon visualization [13]. Once the analytic func-

tion is obtained, a curvilinear harmonic polar coordinate

system can be defined by taking as one coordinate and as

another. can be thought of as a curvilinear “radius” and as

the “angle”. By scaling and using a constant, we can make

run from 0 to . Thus, the annulus domain is mapped

onto a rectangular region in an angle preserving manner. Fig. 11

shows such a parameterization on a MR heart image with the

ventricle area excluded.
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B. Optimal Mapping Between Doubly Connected Domains

We follow exactly the same steps as we used for rectangular

domains to find the optimal mapping. The first step is to con-

struct an initial MP mapping . By applying harmonic param-

eterization, is mapped onto a rectangle region

via conformal mapping in an angle-preserving

manner. If we define as

(26)

the mapping from to is a MP mapping. Similarly, domain

is mapped onto another rectangular region

via , where is

(27)

Since and are both rectangular regions after the harmonic

parameterization, it is easy to define an MP mapping be-

tween them using the method presented in Section III-A.

The whole process can be illustrated by the diagram in the

equation shown at the bottom of the page.

The resulting initial mapping between and is a com-

position of , and , such that

(28)

Obviously, is an MP mapping since , and are

all MP mappings.

Next, we evolve according to (17) and then (18) to find

the optimal mapping . Due to the irregularity of the domains,

an FEM method is used to solve the Poisson equation (16) on

a triangulated surface. An upwind scheme is applied for com-

puting . For all other derivatives, we use a least mean squares

(LMS) method to numerically calculate the first-order spatial

derivatives. For example, assume that a given point has

neighbors , and a function is defined

such that for , it is easy to see that

the derivatives of should satisfy

(29)

where is the position difference matrix given by

(30)

When applying harmonic parameterization, different selec-

tion of cutting point may lead to different initial mapping

. However, the gradient descent method allows every point

on the boundary to move along the boundary. Each point will

Fig. 2. Two given flame images. (a) Starting image; (b) ending image.

arrive at its optimal position eventually no matter how it is po-

sitioned initially.

V. RESULTS

In this section, we show the results of applying the proposed

methods to various types of imagery. We first test the modified

MP morphing with SSD and MI as the comparison terms on

images of fire flames. The second example is an ocean wave

video. By selecting several key frames from the video, we in-

terpolate the in-between frames using our proposed method and

generate a continuous video. Our method seems well-suited to

these applications because the images lack obvious landmarks,

require nonrigid mappings for good registration. Further, the in-

tensity-based mass-preservation constraint is reasonable as it re-

flects physical reality. Registration and interpolation of smoke,

clouds, flames and fluids is an active area of research in the com-

puter graphics and image processing community. See [10], [24],

and [33], for example, for related methods.

This can serve as an image compression method by storing

the selected frames and generating the omitted frames on-the-fly

when the video is played. Our extension of the MP morphing

algorithm to doubly connected domains is tested over two MR

heart images acquired at the systolic and diastolic phases of

the cardiac cycle. By applying the proposed method to the

images with heart ventricle regions excluded, we are able to

generate a natural heart beat through the cardiac cycle using

only two given images. The results as images are listed in this

paper, and the results as videos can be found on our webpage at
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Fig. 3. Morphing sequence of the flame imagery without comparison terms.

Fig. 4. Morphing sequence of the flame imagery using SSD as the comparison term.

http://www.bme.gatech.edu/groups/minerva/publications/pa-

pers/zhu-extra-index.html.

We now explain the results in more detail. The first example

is image morphing between two flame images. The starting

image [Fig. 2(a)] and the ending image [Fig. 2(b)] are from

a flame video sequence in the Artbeats Digital Film Library

(http://www.artbeats.com). The two images are the 24th and

the 29th frames in the video. Fig. 3 shows the result of applying

pure MKP without a comparison term. Figs. 4 and 5 are

the results of using SSD and MI as the comparison term,

respectively. Fig. 6 compares the results generated by the

three different methods at time (the starting frame

is at and the ending frame is at ). In the pure

MKP result [Fig. 6(a)], the double exposure effect is

obvious. By adding SSD and MI as the comparison term,

the double exposure effect has been reduced effectively as

shown in Fig. 6(b) and (c). The results of SSD and MI are

very similar, however, since both of the image frames come

from the same imaging modality. MI has greater flexibility

in handling the case where the two image frames come from

different imaging modalities, such as PET and MRI in medical

imaging, but a better function is needed to be defined to

relate the image pixel intensity with the mass in each of the

modalities, which is beyond the scope of this paper.

As we have mentioned earlier, adding a comparison term in

the energy functional leads to the presence of curl in the final

deformed grids. Although SSD is able to reduce the double ex-

posure effect slightly better than MI, it causes broken effects at

some edges between the bright and the dark regions due to the

high value of curl remaining in these regions. Hence, there is

a tradeoff between reducing the double exposure effect and re-

ducing curl. In our previous two-step approach [14], [40], we

evolved directly from according to energy functional (4).

As a result, the remaining curl is mostly in the “bright” region of

the image and it causes unnatural effects as a result. In this work,

by starting with a curl-free mapping , the algorithm makes

corrections mainly close to the edges of high intensity regions

and low intensity regions. Since less energy is required to move

pixels within low density regions, the remaining curl is mostly

in the “dark” region of the image and it is almost unnoticeable.

These effects are more obvious when observed dynamically in

videos. Fig. 7 shows the deformed grids for these three cases.

In the second example, a few frames are selected from an

ocean wave video, with about 300-ms intervals between two

consecutive frames. These frames are used as key frames for

image morphing. Our algorithm is applied to two consecutive

key frames to interpolate the motion of the wave. In this ex-

ample, SSD is used as the comparison term. The images in the
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Fig. 5. Morphing sequence of the flame imagery using MI as the comparison term.

Fig. 6. Comparing results generated by pure L MKP, SSD, and MI at t = 0:5. (a) Pure L MKP; (b) SSD; (c) MI.

leftmost column of Fig. 8 are the key frames selected from the

original video sequence, and an image other then those in the

leftmost column comes from the morphing result between the

first image in its row and the first image in the next row. The

last key frame is omitted and not shown here.

The third example illustrates image morphing over two

doubly connected domains. Two 256 256 MR images of a

human’s heart were acquired using a GE MRI scanner at the

diastolic [Fig. 9(a)] and the systolic [Fig. 9(b)] phases of the

cardiac cycle. Dark regions in Fig. 10(a) and (b) are two doubly

connected domains, corresponding to the myocardium and

other tissues other than the heart ventricle. We also use image

intensity as the mass density in this case, given the fact that MR

image intensity is a function of photon density and, thus, related

to tissue mass density. The dark regions in Fig. 10 are chosen as

natural candidates to apply MP morphing to (in contrast to the

heart ventricle region in which the change in mass is too drastic

to satisfy the MP condition). Harmonic parameterization is

first performed over each of the two doubly connected domains

(Fig. 11 shows the parameterization over the distolic phase

image), and an FEM-based MKP is solved between the

two domains to find the correspondence. In this example, pure

MKP without comparison terms is adopted. Fig. 12 shows

the final deformed grids. The in-between images can then be

generated by cross dissolving over the entire domain, where

the deformation inside the heart ventricle is obtained by 2-D

spatial interpolation. Fig. 13 shows selected frames from the

morphing result.

VI. CONCLUSIONS AND DISCUSSION

In this paper, we applied a modified Monge–Kantorovich

flow to the problem of image morphing by adding a com-

parison term to the optimal mass transport energy functional.

Other than the morphing examples presented in this paper,

this technique can also be used for the problem of medical

image registration, if the underlying physics model satisfies the

mass preserving condition. We are currently using the image

intensity or a smoothed version of image intensity as the mass
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Fig. 7. Comparing deformed grids generated by pure L MKP, SSD, and MI. (a) Pure L MKP; (b) SSD; (c) MI.

density, which is the simplest mapping function from intensity

to mass. This requires the initial and end image to be similar

in the sense that they have the same amount of mass in order

to satisfy the mass-preserving condition. For images with only

certain regions that satisfy this condition, we perform image

segmentation first and apply the morphing method only on the

mass-preserving regions. This can be done through solving the

MKP between two doubly connected domains. If the inner

boundary is small enough, it can be regarded as a landmark,

and, hence, we have solved the problem of MP morphing with

a single landmark. This technique can be extended to mul-

ticonnected domains (corresponding to multiple landmarks),

simply by dividing each domain into several doubly connected

domains to build the initial mapping [38].

The mass moving penalty studied in this paper may be

sometimes too severe. It tends to favor changes in density over

moving the mass around. In fact, this is the main reason that

causes the double exposure effects commonly seen in image

morphing applications. type mass moving penalty is much

less severe for large movement, but it may produce nonsmooth

results. To solve this problem, we are considering the use of

penalty in our future research, with being a value be-

tween 0 and 1.

The MP constraint can also be combined with the concept of

harmonic mapping to provide a new approach of MP diffeomor-

phisms, i.e. to consider the minimization of the Dirichlet integral

over all MP maps

(31)

The underlying physical assumption of MP mapping is

exactly the same as that of extended optical flow constraint

(EOFC) [4]. Developing new optical flow algorithms within the

framework of optimal mass preserving mapping can also be an

interesting future direction.

APPENDIX

In this Appendix, we give mathematical details omitted in the

main sections of this paper. We will mainly focus on the proof

of MP mapping properties and the derivation of our improved

gradient descent method.

A. Properties of Mass Preserving (MP) Mappings

We have stated in Section III-B that in order to preserve the

MP condition, the evolution of and must satisfy

(32)

(33)

for some vector field on , with and

on , being the normal to the boundary of . Now we

give the proof to this statement. Since is an MP mapping from

to itself, according to the Jacobian constraint we have

. By differentiating it with respect to time , we

get

(34)
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Fig. 8. Morphing sequence of a wave imagery. Leftmost column: selected key frames. Others: Interpolated images. SSD used as the comparison term.

Hence, must have the following form:

(35)

for some vector field on , with and

on , being the normal to the boundary of . Since and

satisfy

(36)

by taking the derivative of (36) with respect to , we have

From (35), we get

(37)

B. Gradient Descent Methods for Pure MKP

In the following discussion, we intend to minimize a more

general form of the energy functional

(38)

where is a non-negative function. When ,

it is exactly the Kantorovich–Wasserstein functional. The

first step is to find an initial MP mapping as stated in Sec-

tion III-A. The second step is to minimize the energy functional
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Fig. 9. Two MR heart images. (a) Diastolic phase; (b) systolic phase.

Fig. 10. Segmentation results of the heart images in Fig. 9. (a) Diastolic phase;
(b) systolic phase.

over by varying over MP mappings from to

, starting with equal to the identity map.

A change of variable is applied here by substituting in (38)

with . Due to the MP property of and , the

following is obvious:

(39)

and also . Hence, functional (38) equals

(40)

By taking the derivative of (40) with respect to , we get

(41)

Then we do another change of variable by substituting back

with and get

(42)

Clearly, were it not for the constraint , we

could take to decrease energy.

However, considering this MP constraint, should be

a divergence-free vector field. Hence, we define

(43)

can be decomposed into a curl-free part and a

divergence-free part (Helmholtz decomposition [29]), i.e.,

(44)

Fig. 11. Harmonic parameterization of the heart image in the diastolic phase.

Fig. 12. Deformed grids over the heart image in the systolic phase.

where and on . Then, (42) can be

rewritten as

(45)

where is chosen to be , and can be found through the

Helmholtz decomposition.

Now we give the evolving equation for in the general

case, as well as in the 2-D case which has a simpler expression

and will be used in our algorithm.

1) Gradient Descent in : By taking the divergence of (44)

on both sides, it is easy to see that is a solution of the following

Neumann-type boundary problem

on (46)
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Fig. 13. Morphing sequence of the heart imagery using two given images in Fig. 9.

and we can set . It is then easily

seen that satisfies the MP constraints. This PDE can be solved

using a number of available methods, such as the finite-volume

method. Thus, by (37), we have the following evolution equation

for :

(47)

which is a first-order nonlocal scheme for , if we count

as minus 2 derivatives.

If has the form of , which is the

MKP, (47) has the form of

(48)

2) Gradient Descent in : The situation is simpler in the

case, due to the fact that a divergence free vector field

can be written as for a scalar function , where

represents rotation by counter clockwise, so that

. In this case, (45) becomes

(49)

where the decomposition of is

, and we can let equal . Hence

(50)

Considering

(51)

function can be solved by the following Dirichlet-type

boundary problem

on (52)

which gives us the evolution equation

(53)

In the MKP, (53) can be rewritten as

(54)

where is an identity map.

C. Gradient Descent Methods for Energy Functionals With a

Comparison Term

We now rewrite the energy functional as the sum of two terms

(55)

with being the comparison term penalizing the change

in intensity. The second term of the energy functional

is exactly the MKP, which

has been discussed above. We focus on the first term , and

discuss the cases of SSD and MI, respectively.

1) SSD as the Comparison Term: If SSD is employed as the

comparison, then

(56)

Before taking the derivative, we multiply by and divide

by , i.e.,

(57)

By setting and considering (39):

, we get

Then we take the derivative of with respect to and find that

(58)

By changing back to , we see that

(59)
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Adding the derivative of the term, is defined as

(60)

which is (19) in Section III.

2) MI as the Comparison Term: If MI is used as the compar-

ison term

(61)

Now we take the derivative of (61) respect to as in [16]

(62)

Considering

(63)

it is easy to see that the last term equals zero; hence, (62) can be

written as the following:

(64)

where , , and can be computed using (7), (8),

and (9), respectively. can be computed as

follows. First, (9) can be rewritten as

(65)

where the same method of multiplying and dividing has been

applied. Then by setting ( is an MP mapping

from onto itself) and noticing , we get

(66)

The derivative of is given as

(67)

where is the partial derivative of with respect to its first

component. Now, we do the change of variable again by substi-

tuting with and derive

(68)

Hence, the derivative of with respect to is given by (69),

shown at the bottom of the page. Equation (69) is a quadruple

integral, which could be rewritten in a concise form by using

convolution

(70)

(69)
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Now it has the form of a double integral on domain, and can

be combined with the derivative from the term. Thus, is

(71)

which is (20).

It is easy to deduce the evolution equation for , using the

same approach for pure MKP. In the case, we find a

scalar function to be the solution of the following Neumann-

type boundary problem

on (72)

and we can set . The evolution equation for is

given by

(73)

with being either or .

In the case, function can be solved by the following

Dirichlet-type boundary problem

on (74)

and the evolution equation for is given by

(75)
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