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An Image Rendering Pipeline for Focused Plenoptic

Cameras
Matthieu Hog, Neus Sabater, Benoı̂t Vandame, Valter Drazic

Technicolor Research & Innovation

Abstract—In this paper, we present a complete processing
pipeline for focused plenoptic cameras. In particular, we propose
(i) a new algorithm for microlens center calibration fully in the
Fourier domain, (ii) a novel algorithm for depth map computation
using a stereo focal stack and (iii) a depth-based rendering
algorithm that is able to refocus at a particular depth or to create
all-in-focus images. The proposed algorithms are fast, accurate
and do not need to generate subaperture images or epipolar plane
images which is capital for focused plenoptic cameras. Also, the
resolution of the resulting depth map is the same as the rendered
image. We show results of our pipeline on the Georgiev’s dataset
and real images captured with different Raytrix cameras.

Index Terms—Plenoptic cameras, calibration, depth estima-
tion, refocusing

I. INTRODUCTION

L IGHT FIELDS (LF) offer new applications compared

to conventional images. For example, it is possible to

modify the virtual focus plane after the shot (digital refocusing

[1], [2]) or to render images with a greater depth of field

compared to the main lens optics capabilities [3]. Besides, a LF

contains both angular and spatial information of the incoming

light rays, allowing to estimate the depth of the captured scene,

which is one major benefit of the LF technology.

Plenoptic cameras have become popular because they are

able to capture a LF thanks to a microlens array (MLA) placed

between the main lens and the sensor. Depending on the MLA

position, plenoptic cameras are divided into type 1 [1] such as

the Lytro cameras [4], and type 2 or focused [5] such as the

Raytrix cameras [6]. Fig. 1 illustrates the two camera designs.

In the type 1, the main lens is focused on the microlenses and

the microlenses are focused at infinity. With this design, each

pixel images only one part of the main lens corresponding

to one light ray direction. In the type 2, the MLA is placed

such that 1

a
+ 1

b
= 1

f
, so each pixel images an area of the

entrance pupil, integrating light rays with different directions.

Also, type 2 cameras have a better spatial resolution but less

angular resolution compared to type 1 cameras. Depending on

the application, one type of camera or the other would be more

advantageous.

Another difference due to the distinct plenoptic designs

concerns the Subaperture Images (SAIs) and Epipolar Plane

Images (EPIs) computation. Considering the two plane

parametrization to represent a 4D Light Field L(x, y, u, v)
as in [7] [8], SAIs and EPIs are nothing else than slices of

L(x, y, u, v). Each SAI is an image of the same scene for a

fixed viewing angle (u, v) and each EPI is an image obtained

fixing (y, v). By construction, SAIs are easily generated for

type 1 plenoptic cameras but not for type 2. Indeed, for

f

a
bf

Fig. 1: Plenoptic camera designs: type 1 (left) and type 2 or

focused (right).

type 1 cameras, each SAI is created taking all pixels at the

same relative position in the microlens with respect to the

microlens center [1]. On the contrary, generating SAIs without

strong artifacts on type 2 cameras requires to first estimate the

depth [9], [10]. Besides, generating SAIs also causes aliasing

artifacts, as pointed out by [11].

In this paper, we propose a complete pipeline for focused

plenoptic cameras including microlens calibration, depth esti-

mation and rendering. First, we have designed a calibration

algorithm, entirely in the Fourier domain, that has proved

to be fast, insensitive to noise and robust to different MLA

configurations (different microlens radius, offset, rotation etc.).

Furthermore, even if it is not the scope of the paper, we also

give some hints on how our calibration could be used on

natural images and more complex MLA geometries.

While our calibration is independent of the type of plenop-

tic camera, the method we propose for depth estimation is

specialized for type 2 cameras. Indeed, the main asset of our

approach is that SAIs or EPIs are not computed. Instead, the

data captured in the sensor plane is directly projected into the

rendering plane, in which depth estimation is performed.

Finally, we show how the generated depth maps in the image

domain can be used during the rendering step. In particular,

we show how to render all-in-focus images and how to correct

angular aliasing.

To sum up, our contributions are (see Fig. 2):

1) A calibration algorithm in the Fourier domain for fast

and accurate microlens images center estimation.

2) A novel depth estimation algorithm operating in the

refocused image domain that exploits the relationship

between the focus planes and the disparities on each

slice of what we define as a stereo focal stack.

3) A depth-based rendering algorithm that is able to pro-
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Fig. 2: Proposed pipeline to process a raw LF captured with a focused plenoptic camera. Microlens centers are first estimated.

Then a stereo focal stack is computed projecting directly the data from the sensor. The stereo focal stack allows to estimate a

focus map, which is used in the final rendering step.

duce accurate results for image refocusing and all-in-

focus imaging.

II. RELATED WORK

Regarding plenoptic camera calibration several solutions

have already been explored either in the spatial domain [12],

or using a combination of Fourier and spatial analysis [13],

[14]. However our algorithm estimates all parameters on the

frequency domain which has the advantage of being fast and

accurate.

In the literature, plenoptic depth estimation has aroused

great interest and many research works have been published.

We classify them in four different approaches depending on

the image type they consider as input: SAIs, microlens images,

EPIs or refocused images.

First, SAI-based depth estimation methods rely on the fact

that computed SAIs from plenoptic cameras are well rectified

images with constant baseline. Among these techniques, we

can find local block-matching [15]–[17] and global matching

methods [18]–[20]. Then, microlens-based depth estimation

methods consider each microlens image as separated camera

images with a very small baseline. For this type of methods

local and global approaches are also adapted to the plenoptic

framework. In [21]–[23] a block-matching algorithm for mi-

crolens images is used, and [24]–[26] formalize the problem

as an energy minimization task in which cost volumes are

computed for each microlens.

Another type of method for plenoptic depth-estimation uses

EPIs [27]–[31]. Indeed, the slope of the line composed of

corresponding pixel in an EPI is proportional to the depth of

the pixel [32].

Finally, other approaches use refocused images or images in

a focal stack to perform depth computation [33], [34]. How-

ever, when defocus cues are used they are usually combined

with other measures [18], [29] because of their poor accuracy.

Among plenoptic depth estimation methods we would like

to highlight some recent approaches that explicitly estimate

occlusions and seem to give the best results. Occlusions can be

detected by studying the variance of the pixel re-projections on

several views as in [35] or an occlusion coefficient can be used

in a regularisation framework. For instance, [36] statistically

computes the probability of a pixel to be in an occlusion

boundary, [37] uses the log likelihood of the probability of the

Fig. 3: SAI from a focused plenoptic camera estimated with

the approach in [9]. Note the microlens artifacts on the two

zoom-ins that may be detrimental to depth estimation (please

see on the electronic version). Unlike type 1, rendering SAIs

without errors in a type 2 plenoptic cameras requires to know

the depth. Our approach circumvents this problem estimating

depth without SAIs.

pixel color to appear in the projected views and [38] compares

depth and variance of occluding candidates normalized by the

region mean (to handle uniform areas). It is also possible to

learn occlusion and depth simultaneously as in [39].

While plenty of contributions on plenoptic depth estimation

significantly improving the state-of-the-art have been pub-

lished the last years, few papers address the problem for

the type 2 plenoptic setup. This may be due to the fact

that most of the available data come from Lytro (type 1)

cameras. Moreover, the proposed approaches almost all rely

on re-sampling the captured LF to a traditional SAI-based

representation. Yet, SAIs or EPIs are not well adapted to type

2 plenoptic cameras [21], [40]. Indeed, it has been proved [11]

that SAIs suffer from strong aliasing artifacts (even with anti-

aliasing filters) which affects depth estimation. But above all,

as mentioned in the introduction, estimating SAIs or EPIs for

type 2 plenoptic cameras is prone to errors. In [9], the authors

point out that depth needs to be know for computing SAIs on

type 2 cameras while depth estimation methods are based on



2333-9403 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCI.2017.2710906, IEEE

Transactions on Computational Imaging

IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. XX, NO. X, MONTH YEAR 3

SAIs (chicken-egg problem). So, in [9] it is proposed to stitch

hexagonal patches of different diameters to form the SAIs.

Since depth is unknown, the diameter is computed such that

the gradient at the patch borders is minimized. This processing

is not without errors, especially in the out of focus areas and

objects edges (see Fig. 3).

Microlens-based methods [21] can be a good alternative for

focused plenoptic cameras provided the size of the microlens

are big enough as it happens to be with the Georgiev’s

prototype, but this is not always the case.

In this context, our motivation is to provide a depth esti-

mation method that works with arbitrarily sized microlenses

and operates in the refocusing image domain without the need

of SAIs or EPIs. This approach has the advantage of creating

depth maps of the resolution of the final rendered image and

that are not affected by SAI rendering artifacts.

Concerning plenoptic image rendering, many algorithms

have been proposed since the pioneer work of [1] using the

Fourier Slice Theorem. On the one hand, there are approaches

using SAIs (shift and add) [14], [41] and on the other hand,

the approaches using the projection rendering algorithm [13],

[42] which are the closer works to ours.

III. PLENOPTIC IMAGE CALIBRATION

In this work, plenoptic calibration refers to estimating the

microlens image centers (see [43] for a complete plenoptic

camera calibration method). More precisely, in our calibration,

we compute the microlens image diameter D, the translation

offset o = (ox, oy) and the rotation α with respect to the

coordinate system given by the sensor array (see Fig. 4).

So, the microlens image center coordinates (cx, cy) in the

pixel coordinates are computed as:
[

cx
cy

]

=

[

ox
oy

]

+
D√
3

[

1 1/2

0
√
3/2

] [

cos(α) −sin(α)
sin(α) cos(α)

] [

x
y

]

,

(1)

where (x, y) ∈ Z
2 are the elements of an integer grid.

Our approach leans on the observation that a white plenoptic

image Iw can be modeled as a sum of three 2D cosines (see

Fig. 5), oscillating at different angles:

Iw(x, y) =
1

3

2
∑

d=0

cos
(2π

D
cd(x, y)

)

, (2)

cd(x, y) = cos
(dπ

3
+α

)

(x−ox) + sin
(dπ

3
+α

)

(y−oy).

Consequently, its Fourier transform F (Iw) is a Dirac comb

function. In this work we propose to estimate all calibration

parameters α, D and o directly from F (Iw).
Let Fm and F p be the magnitude and phase of F (Iw).

Let ξ0i ∈ Z
2 be the pixel coordinates of the i-th peak (local

maxima) of Fm obtained by thresholding. In practice our

threshold is fixed to 100 ·Variance(Fm). Note however, that

the peaks of the Dirac comb in the frequency domain need to

be evaluated with great accuracy (much below the pixel size)

in order to obtain precise microlens image centers. Inspired

by [44], the final peak locations ξi = ξ0i + ∆ξ0i ∈ R
2 are

estimated with sub-pixel accuracy.

D

ox

oy

α

Sensor Array

Microlens Array

Fig. 4: Microlens images (of diameter D) are arranged in a

hexagonal grid and pixels in a squared grid. Microlens images

are misaligned with respect to the pixel grid. There is a rotation

of angle α and a translation offset (ox, oy) between the origins

of both grids placed at the most top-left pixel and microlens

image respectively.

+ + =

Fig. 5: An ideal white plenoptic image is a sum of three 2D

cosine images. The intersection of the lines along which the

3 cosines oscillate defines the offset o of the white image.

Fig. 6: Comparison of a white image synthesized with our

model (right) versus a real white Raytrix image (left). The two

images are visually similar (top) but the important similarity

lies in the Fourier (log) frequency spectrum (bottom). The

Fourier transform of an ideal white image is a perfect Dirac

comb with 6 peaks at a constant frequency radius. On real

white image many replicas appear. Our algorithm selects the

six concentric peaks with highest energy.
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More precisely, each component of ∆ξ0 = (∆ξ0u,∆ξ0v) is

computed as

sign
(

Fm(ξ−)− Fm(ξ+)
) M

M + Fm(ξ0)
,

where M = max
{

Fm(ξ+), Fm(ξ−)
}

) , (3)

and ξ+ = (ξ0u+1, ξ0v), ξ
− = (ξ0u−1, ξ0v) when estimating ∆ξ0u

and ξ+ = (ξ0u, ξ
0
v+1), ξ− = (ξ0u, ξ

0
v−1) when estimating ∆ξ0v .

The number of peaks, card(i), is equal to six in the ideal

case of the white image being a sum of pure cosines (Eq.

2) but many replicas appear on real images. In that case, we

select the six peak locations with most energy and at the same

distance from the center (Fig 6).

The microlens images diameter and the rotation are then

computed as

D =
N

1

6

∑6

i=1
ρi

, (4)

α =
1

6

6
∑

i=1

mod
(

θi,
π

3

)

, (5)

where θi and ρi are the polar coordinates of ξi, N is the size

of the white input image and mod is the modulo function.

Finally, the lines along which the three cosines oscillate

(color lines in Fig. 5), intersect at the offset phase o. Consid-

ering only three peaks among the six not being symmetric, we

define the oscillation lines as

Li=1,2,3(x) :=

x sin
(

θi +
π

2

)

− y cos
(

θi +
π

2

)

+
F p(ξi)

2π
= 0 , (6)

where x = (x, y). We write the three line equations as Ax =
B and its solution o = (ATA)−1ATB is estimated by least

squares.

Note that our model is not a perfect fit of a real white image

but in the Fourier domain it reproduces with high accuracy the

behaviour of real white images. (Fig. 6)

For the comparison of our method with existing techniques,

Fig. 7 show two crops of our result and the result of [12] using

a white image captured with our Raytrix R5 in an integration

sphere. The distance between the the calibrated centers is of

the order of 0.1 pixels.

In the absence of ground-truth for plenoptic calibration,

we have tested our algorithm with synthetic white plenoptic

images, generated using Eq. 2. We have verified its robustness

with many parameter values for o, α and D simulating

different plenoptic camera configurations. We have also added

Gaussian noise of variance V and simulated different camera

apertures by Gamma-correcting the white image by a factor

Γ. For the sake of comparison, we have also estimated in all

of our tested synthetic images the microlens images centers

with the method of [12], a full spatial calibration method.

Tab. I shows the average Euclidean distance between the real

and estimated centers with the two methods. The error has

been computed for different MLA configurations, amount of

noise and the simulated apertures. In average, both methods

are comparable but we have observed a larger robustness in

our solution (smaller variance) when changing the parameters.

TABLE I: Errors (Euclidian distances) of our approach and

the method in [12] with several parameter variations.

Parameters Mean Error

D α ox, oy Γ V (10−2 ) Ours [12]

10.1 0.03 -5 0 1.7 0.01 0.0821 0.0365

10.2 // // // // 0.1357 0.3741

10.5 // // // // 0.3139 0.3150

10.8 // // // // 0.1886 0.0209

10 0.01 -5 0 1.7 0.01 0.0887 0.0817

// 0.04 // // // 0.0923 0.0355

// 0.05 // // // 0.0929 0.3288

// 0.1 // // // 0.0937 0.0349

10 0.03 -5.1 0 1.7 0.01 0.0911 0.0280

// // -5.5 0 // // 0.0982 0.3165

// // -5 0.1 // // 0.0905 0.0379

// // -5 0.5 // // 0.1168 0.3489

10 0.03 -5 0 2 0.01 0.0882 0.0590

// // // 1.5 // 0.0916 0.3580

// // // 1 // 0.0954 0.4166

// // // 0.7 // 0.0972 Fail

10 0.03 -5 0 1.7 0.015 0.0900 0.0410

// // // // 0.03 0.0893 0.0776

// // // // 1 0.0905 0.3749

// // // // 10 0.0904 Fail

Fig. 7: Comparison of the calibration in [12] (green) and ours

(blue) for two microlenses near the image center (left) and

the image border (right), which has a cat-eye shape due to

vignetting.

Fig. 8: Calibration on a natural raw plenoptic image (right)

and a zoom on the microlenses calibration (left).

Also the algorithm in [12] has failed in two cases. While this

error distances allow to measure the robustness of the proposed

method, a calibration ground-truth would be required to assert

the superiority of a calibration method over another.
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Our model assumes D to be constant which is sound given

that microlens manufacturing accuracy is of the order of

0.01 pixels (our calibration being accurate at ∼ 0.1 pixels).

However, the sensor plane might be slightly tilted with respect

to the MLA. We have not included this aspect in our imple-

mentation but it could be modeled knowing that such a tilt

would make the 6 peaks to be around an ellipse. In that case

the major and minor axis ratio would provide the angle tilt.

We have also noticed that the proposed method is extremely

robust and does not require the images to be demosaicked.

Also, we have observed that it would also work on natural

images provided a bright uniform area appears in the scene

(Fig. 8). In the case of video, it would be sufficient to integrate

and clip the radiance of the raw image.

IV. PROPOSED DEPTH ESTIMATION METHOD

In this section we present our method for depth estimation.

Unlike other methods we compute a focus map which gives

the in-focus value of each pixel without using defocus cues

but stereo matching. The novelty of our method is that we first

compute a so-called stereo focal stack, then stereo matching

is performed for each of the pairs of images of the stereo

focal stack and, finally, the obtained disparities are combined

to obtain a focus map.

A. Stereo Focal Stack Computation

A focal stack is a collection of photographs focused at

different depths. In order to render each image (slice) Ig of

the focal stack, refocused at the focal value g, we use the

projection algorithm as in [13], [42]. This is, each pixel (x, y)
of the raw LF Rlf belonging to the microlens with center

coordinates (cx, cy), is projected at position

(X,Y ) =
(

s(g(x− cx) + cx), s(g(y − cy) + cy)
)

, (7)

where s controls the size of the rendered image. Formally, the

refocused image is computed as

Ig(m,n) =
1

W (m,n)

∑

x,y

K(X −m,Y − n)Rlf (x, y) ,

where W (m,n) =
∑

x,y

K(X −m,Y − n) ,

and K(u, v) =

{

1

u2+v2 , if ||(u, v)|| < 0.5

0 , otherwise.
(8)

K being a fixed kernel with a very small support (4 closest

pixels from the projected coordinates).

Now, a stereo focal stack is rendered using Eq. 7 and Eq.

8 but separately for pixels (x, y) belonging to the left part

and the right part of the microlens images (see Fig. 9). This

strategy creates a stereo pair of images Igl and Igr for each

focus value g.

The size s depends on the desired image size. A too large s
leads to a low density in the refocusing plane of the projected

points (X,Y ), requiring interpolation to fill the areas with no

splatted pixels. In contrast, if s is too small, small details will

be lost. Also, given a fixed size s, the spatial resolution on the

Rlf

M
ic

ro
le

n
s

cu
t

Ig2l

. . .

Ig2r

. . .

R
ef

o
cu

si
n
g

g1 g2

Ig1l

Ig1r

Fig. 9: Stereo focal stack computation. Points in the raw LF

are projected separately depending on their positions on the

microlens. Points belonging to the left (resp. right) side of the

microlens are projected into Igl (resp. Igr ). For each g, Igl and

Igr is a rectified pair of stereo images such that points at the

focus plane g appear sharp.

refocus plane depends on the depth of the scene as pointed

out in [42].

In practice, s is chosen to be a good compromise for the

range of depth values in the scene and the range of g is picked

manually depending on the scene content. Besides, after fixing

s, the projected points (X,Y ) falling outside the refocus image

plane are not considered, so all slices on the focal stack have

the same size. Also inspired by [42], demosaicking is done

during the rendering step, so the color channels separately are

projected with Eq. 7.

B. Focus Map Estimation from the Stereo Focal Stack

In the following the pixels coordinates will be omitted but

note that images, and focus and disparity maps are defined for

each pixel (m,n).

Proposition 1. Let gf be the value for which a certain point

on the scene is in-focus. Then, for any focus value g, the

difference between g and gf is proportional to the disparity

∆g of this point in the stereo pair of images Igl and Igr . Also,

a point appears in-focus in the refocused images Igl and Igr
(i.e. g = gf ) if and only if its corresponding disparity is null

(∆g = 0).

Proof. Let us consider a point in the scene that is seen by two

microlenses (Fig. 10). The same reasoning is valid for more

microlenses but we consider only two for the sake of clarity.

Let x1 and x2 be the x-coordinates in Rlf of this point and

δ the distance between them. Using Eq. 7 we know that for

each g, the disparity ∆g of the corresponding points in Igl and

Igr is

∆g = X2 −X1 = s(g(x2−c2)+c2)− s(g(x1−c1)+c1)

= s(g(δ −D) +D) .
(9)

Now ∆g = 0 if and only if

g =
D

D − δ
, (10)
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which turns out to be the the value gf for which a point is

in-focus (i.e. image points of a same scene point are projected

at the same position).

From Eq. 9 and 10 we get the relationship between the

refocusing parameter g used for rendering and gf the value at

which the point is in-focus

g =
1

s(δ −D)
∆g + gf . (11)

From the previous proposition we know that there is a linear

relationship between g and ∆g and estimating the focus gf
is equivalent to estimating the value g such that ∆g = 0.

In practice, gf is estimated as the root of the line passing

through two points (g1,∆
g
1) and (g2,∆

g
2) for two particular

focus values g1 and g2. Precisely,

gf = ∆g
2 − g2

∆g
1 −∆g

2

g1 − g2
. (12)

In order to compute Eq. 12, it is sufficient to render two

pairs of stereo images at g1 and g2 and to estimate the

corresponding disparities ∆g1 and ∆g2 . Notice, however, that

it is possible to estimate the corresponding disparity ∆g for

each slice of the focal stack. In that case gf is the root of the

regression line of all (g,∆g). This solution produces slightly

more accurate results at the expense of greatly increasing the

computational cost. This is why in our algorithm the focus

map at each point is estimated using Eq. 12 which is a good

trade-off between accuracy and complexity.

Note that, our algorithm does not compute SAIs but projects

the information into the refocusing plane. Also, our focus map

has the same size than the rendered images (same s value).

Besides, it is interesting to point out that since the projection

is done in a stereo focal stack it creates a parallax at each

slice g. Thanks to this parallax, any binocular stereo algorithm

can be exploited for evaluating ∆g . Depending on the desired

accuracy and complexity any algorithm robust to blur can be

used. In this work we have used the algorithm presented in

[45] because it is multi-scale (thus robust to blur) real-time

and accurate.

V. RENDERING USING A FOCUS MAP

A. Adaptive Splatting for Refocusing

Inspired by [11], [13] we define a splatting kernel K ′ to be

used instead of K in Eq. 8. K ′ adaptively changes for each

point of the scene. In particular, we exploit the focus map

obtained previously to define a Gaussian splatting kernel

K ′(u, v) = exp
(

−
√

(X − u)2 + (Y − v)2

λ |gf (u, v)− g|+ ε

)

, (13)

where ε is a very small value to avoid dividing by zero and λ
controls the ratio among the spatial distance to (X,Y ) and the

g focus difference. The Gaussian kernel K ′ aims to penalize

distant points from (X,Y ) while its standard deviation results

from the difference in absolute value between the refocusing

value g and the in-focus value of the point gf (u, v).

c1

x1

c2

x2δ

D

(a) Raw LF

X1 = X2

(b) Point in-focus in the
refocused image (g =

gf )

X1 X2
∆g

(c) Point out-of-focus in the refocused
image g 6= gf . The left (green) and
right (orange) parts of the microlenses
form the left and right slices of the
focal stack respectively.

Fig. 10: Projection of a scene point visible on two microlens

images. Both points are projected at the same position (∆g =
0) when the point is in-focus (g = gf ) and there is a shift

∆g 6= 0 when the point is not in-focus.

The idea behind the weighting is that the kernel K ′ has a

small support when the point is in-focus (i.e. g = gf (u, v)). On

the contrary, the farther g is from gf , the bigger the support of

K ′ which increases blurriness at that particular point. Besides,

the splatting strategy also helps to densify the rendered image.

Indeed, we know that in particular cases several values of

(x, y) are projected to the same point (X,Y ) or different

values of (X,Y ) but very close from each other creating areas

with few, or no pixel contributions [42].

One problem that rises, when using splatting is the spread-

ing of background out-of-focus pixels intensities on fore-

ground pixels, creating unwanted artifacts around edges of

foreground objects. To overcome this issue we use a bilat-

eral filtering strategy. We alter the kernel in such way that

background pixel values are not propagated on the kernel area

where the depth is inferior to the depth of the splatted pixel.

The depth reshaped kernel is defined as K ′′ = K ′ ◦ S where

S(u, v) =

{

1 , if gf ([X], [Y ]) > gf (u, v),

0 , otherwise.
(14)

Thus, S is not null when the point (u, v) is behind ([X], [Y ]).
The refocusing is performed as in Eq. 8, replacing K with

K ′′.

B. Gathering for All-in-Focus Rendering

Splatting can also be seen backwards. Instead of spreading

the ray values around the splatting coordinates, it is possible

for a pixel (m,n) in the refocused image, knowing gf , to

compute the corresponding set of coordinates (x, y) of pixels

in the raw LF that see (m,n):

(x, y) =

( u
s
− cx

gf (u, v)
+ cx ,

v
s
− cy

gf (u, v)
+ cy

)

. (15)

We call this approach gathering, in the sense that we aim at

integrating ray-pixels from the raw LF rather than projecting
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them into a refocused image. Doing so, we integrate only the

pixel describing the same scene point, creating an image that

is sharp everywhere. This is similar to the approach proposed

in [22], but in our case, the depth information is contained

directly in the refocused image domain, not in the raw LF

domain. Formally, the all in-focus image is computed as

I(m,n) =
1

W (m,n)

∑

cx,cy

Kcx,cy (m,n)Rlf ([x], [y])

where W (m,n) =
∑

cx,cy

Kcx,cy (m,n) and

Kcx,cy (m,n)=

{

1

{x}2+{y}2 , if ||(x, y)−(cx, cy)||< D
2
,

0, otherwise

(16)

where {a} is the decimal part of a and K checks if the

back-projected pixel is visible on a microlens image of center

(cx, cy) (i.e. it is null if the back-projected pixel coordinates

(x, y) is outside of the microlens image) and otherwise,

weights the pixel contribution according to its distance from

the (non-integer) back-projected image coordinates. Carrying

the microlens image visibility test for all microlens images

can be extremely heavy. However, a pixel (m,n) can only be

seen within a small radius around (m/s, n/s) in the raw LF.

That is why, in practice, the search for the microlens images

can be bounded to few microlenses.

Note that depending on its depth, one pixel may receive

incomplete color channel information. In that case, we inter-

polate with the neighbourhood pixels in the raw LF.

VI. EXPERIMENTAL RESULTS

In this section we show the results of our depth estimation

and rendering algorithms. We show experiments on Raytrix

R5 data we have captured, on a Raytrix R11 dataset1 and on

the Georgiev’s dataset2 for comparison purposes. As far as we

know these are the only available type 2 plenoptic datasets

providing raw data which is the input of our pipeline.

For the Raytrix datasets we use the calibration described in

Sec. III on the white images we captured or the given white

images from Raytrix. For the Georgiev dataset, the whites

images not being available, we have manually calibrated them

(squared big microlenses).

In our experiments we divide the raw LF by its correspond-

ing white image to correct vignetting, and we fix s = 0.5. Our

focus map is neither filtered nor regularized.

Fig. 11a shows the focus map of one of the images of the

Raytrix R5 dataset. The two focus slices are rendered at g =
2.5 and g = 5.5. The corresponding all-in-focus image in Fig.

11b is entirely sharp, demonstrating the validity of the focus

map. Fig. 11c and Fig. 11d compare two images refocused

using adaptive splatting, refocused on the background and the

donkey flank respectively.

We notice that adapting the kernel allows to recover the

details of the objects in-focus while showing a uniform blur

in the out-of-focus areas.

1Available online: https://www.raytrix.de
2Available online: http://www.tgeorgiev.net

(a) Focus map (b) All-in-focus image

(c) Image refocused at g = 2.6 (d) Image refocused at g = 4

Fig. 11: Donkey experiment. Data captured with a Raytrix R5

camera. We invite the reader to zoom-in to see details. Sup-

plementary material includes more results of our R5 dataset.

Supplementary material includes the raw data and cali-

bration, as well as more examples of depth estimation and

rendering of our R5 dataset.

Fig. 12 compares the obtained focus maps with the man-

ufacturer depth map for a Raytrix R11 camera (most likely

obtained with the microlens-based approach in [22]). We

notice that the errors introduced by our method are essentially

different than Raytrix’s.

Indeed our algorithm performs better in uniform areas (e.g.

region between the arm and head of the pilot). However our

algorithm is more sensitive to the reflexion halos (e.g. spec-

ularities into the ship’s wheel). Also, our algorithm generally

has a better edge preservation while Raytrix depth maps suffer

from fattening (e.g. branches of the forest). Fig.14 compares an

all-in-focus image provided by Raytrix with ours. In general,

our refocused images are comparable to Raytrix quality (more

images can be found in the supplementary material).

On Fig. 13, we compare our depth maps with the results

in [28], [40]. We can see that our method allows to recover

more depth planes than the two microlens-bases approaches

[28], [40]. This is due to the fact that our depth measurement

is done on the image domain, with a bigger baseline than

in the microlens domain. The depth maps for the rest of the

Georgiev’s dataset are available in the supplementary material.

Regarding the refocusing, Fig. 15 shows how adaptive

splatting compensates for angular aliasing and the sparse

image sampling (pixels with no contribution are visible as

0 channel values) that arises when using a fixed splatting

(Fig. 15a). The images on Fig. 15b to 15d show the effect

of changing the blur parameter λ.
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Fig. 12: Comparison of our depth maps with R11 test images provided by Raytrix. In general, our method deals better with

objects borders and poor textured region but it provides erroneous disparities in specular regions.
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Reference Image [40] [28] Ours

Fig. 13: Comparison of our depth maps with [40] and [28] using the Georgiev’s dataset. Our approach is able to discern more

depths and is more accurate. See the level of detail in the backgournd of Zhengyun1 or the faces in Sergio.
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Discussion :

Our microlens centers calibration algorithm has been tested

with real white images and natural images captured with a

Raytrix camera in addition to our simulated white images.

We have observed that both estimations provide very close

microlens image center positions for the great majority of

the scenes we captured. Besides, our calibration method is

fast (less than 0.2 seconds for Raytrix R5 images in our

Matlab implementation) and could be used to monitor the

microlens image center positions dynamically on a plenoptic

video. These two features are of major interest if the plenoptic

camera has a zoom lens or interchangeable lenses. In that

situation, calibration could be done ”on the fly” from the

captured sequence which is not possible with existing methods.

Usually, the resolution of the final depth map is substantially

smaller than the size of the raw LF for most of the state-

of-the-art methods. In fact, the resolution depends on the

considered image type for depth estimation (SAIs, microlens

images, EPIs or refocused images). For instance, the size of

each Lytro SAI is 328 × 328 pixels which produces rather

small depth maps (without super-resolution algorithms). In that

sense, depth estimation on the refocused image plane provides

the best resolution. In our approach, the resolution of the depth

map and the rendered image are tuned with parameter s. The

interesting point is that the depth map perfectly matches in

terms of spatial resolution the rendered image which is a real

advantage for depth-based editing tasks or in the rendering

process itself as we have seen in Sec. V.

About the limitations of our approach, as for all the depth-

based rendering approaches, errors during the depth estimation

produce artifacts in the final images. When this occurs in

uniform areas (which is often the case because of the stereo

matching algorithm), it has few consequences on the rendering.

However, for errors on textured zones, artifacts may be visible.

Fortunately, stereo algorithms are usually robust in textured

areas.

Also, even if the presented pipeline is particularly adapted

for Raytrix cameras, we have not taken into account the tri-

focal property of the microlens array. Taking it in consideration

during the splatting process will surely improve the rendering

image quality.

Note that different disparity estimation algorithms could be

used in our framework [46]. However, the goal of this paper

is not to compare such methods but to show that the depth

estimation problem in a plenoptic camera can be treated as a

stereo problem via a stereo focal stack and without estimating

SAIs. In fact, our depth estimation strategy could also be

applied to type 1 data but it would not be optimal. In that

case, our half-apertures would not capture all the angular

information as all the SAIs do in a type 1. We believe however

that this is a good alternative for focused plenoptic cameras

for which SAIs are not available without errors.

Moreover, it is interesting to point out that the proposed

approach is somehow related to coded apertures [47]. Indeed,

cutting the microlens images in half is equivalent to mask

half of the aperture of a conventional camera. In particular,

[48] compares the use of stereo aperture masks and depth

from defocus using several masks and show that the second

(a) Raytrix (b) Ours

Fig. 14: R11 all-in-focus rendering on test image Andrea.

The fine details on the eyelashes are well recovered using

our technique. Note that Raytrix uses a color and contrast

correction and potentially a sharpening filter on their output

images.

(a) Projection without splatting (b) λ = 2

(c) λ = 3 (d) λ = 5

Fig. 15: Refocusing via point projection without splatting

using Eq. 8 (a) and adaptive splatting for different λ (b-d)

on a region of the test image R11 Pilot. We can see that the

adaptive strategy compensates for angular aliasing and that

blur intensity can be controlled by the parameter λ.

provides a better depth discrimination. As the study focused on

the setup where the focus depth is fixed, it would be interesting

to see how this conclusion hold in our case, since the scene

depth is triangulated using several artificial focus depths.

Finally, regarding the complexity, we believe our algorithm
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is significantly lighter than other methods. Our Matlab im-

plementation for generating the two slices of the focal stack

runs in approximately 2.5 and 7 seconds per stereo slice for

Raytrix R5 and R11 images respectively. We believe that a

GPU implementation of our depth estimation and rendering

can be done in real-time provided the used stereo algorithm

is real-time.

VII. CONCLUSION

We have introduced a novel pipeline for processing focused

plenoptic camera images. First we have presented a detailed

description of our calibration algorithm that fully estimates

all parameters in the Fourier domain allowing a fast and

robust microlens images center estimation on white and

natural images. Then, we have proposed a new algorithm for

depth estimation from a stereo focal stack. Our algorithm

does not require estimating SAIs or EPIs but can bring into

play any stereo algorithm. Moreover, it provides a depth

map in the refocused image domain, and does not require

any knowledge about the camera parameters (except the

microlens images centers, estimated at the beginning of our

pipeline). Finally, our image rendering is guided by the

estimated scene depth and allows to refocus the images or

render all-in-focus images. We have tested our algorithm on

images captured with a Raytrix camera but our modelling

is not restricted to it and could be applied to other focused

plenoptic cameras. Further work will include combining the

defocus cues introduced by the stereo focal stack in order to

improve the depth measurement, especially in the specular

areas and occlusions.
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