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ABSTRACT

Image restoration including deconvolution techniques offers a powerful tool to improve resolution in images
and to extract information on the multiscale structure stored in astronomical observations. We present a new
method for statistical deconvolution, which we call expectation through Markov Chain Monte Carlo (EMC2).
This method is designed to remedy several shortfalls of currently used deconvolution and restoration techniques
for Poisson data. We use a wavelet-like multiscale representation of the true image to achieve smoothing at all
scales of resolution simultaneously, thus capturing detailed features in the image at the same time as larger scale
extended features. Thus, this method smooths the image, while maintaining the ability to effectively reconstruct
point sources and sharp features in the image. We use a principled, fully Bayesian model–based analysis, which
produces extensive information about the uncertainty in the fitted smooth image, allowing assessment of the
errors in the resulting reconstruction. Our method also includes automatic fitting of the multiscale smoothing
parameters. We show several examples of application of EMC2 to both simulated data and a real astronomical
X-ray source.

Subject headinggs: methods: data analysis — techniques: high angular resolution

1. INTRODUCTION

Recent high angular resolution ground- and space-based
observations have produced unprecedented views of various
astronomical objects at wavelengths ranging from �-rays to
radio waves. These observations contain many complex com-
ponents with different spatial scales and a wide range of contrast
levels. Spatial characterization of these components is ex-
tremely important for understanding the physical character-
istics of these sources. The multiscale structures in the images
of astronomical sources, however, often cannot readily be
studied directly, because of either the limited resolution and
noise in the images or the low contrast of the small-scale
structures when compared to the large-scale features. Even the
most spectacular high angular resolution images are blurred by
the atmosphere, the point-spread function (PSF) of the tele-
scope, or by instrumental effects including the limited sizes of
detector pixels.

Early techniques implicitly assumed known, constant,
Gaussian white noise—from Wiener filters, which often
overblurred locally sharp features, to autocorrelation-based
techniques and CLEAN algorithms (Kaaresen 1997), which
worked for point sources. More robust maximum-likelihood,
maximum-entropy, and general probabilistic-based techniques
such as Richardson-Lucy (Richardson 1972; Lucy 1974) and
the EM algorithm (Dempster et al. 1977) still often assumed a
single uniform scale (usually the pixel size) for features in the

‘‘true’’ image. These techniques tend to sharpen pointlike
sources but produce grainy restoration of extended features.
Even with a prior or regularizer added, as in maximum entropy
method (MEM; Frieden 1972; Gull & Skilling 1991) and
MEMSYS (Skilling & Bryan 1984), the result can be unreal-
istically grainy (but see Knödelseder et al. 1996).

More recently, there has been a rush to use wavelets and
other multiscale methods that could reconstruct both sharp and
broad features across an image. First efforts to adapt them to
Poisson statistics either did not include the instrument re-
sponses (Kolaczyk 1999; Timmermann & Nowak 1999;
Kolaczyk & Dixon 2000) or very cleverly and exhaustively
approximated the effects of Poisson statistics on thresholds
(Murtaugh et al. 1995). However, these algorithms lacked the
elegance of ‘‘orthogonal factorization’’ that made wavelets so
key in the Gaussian regime. (See Starck & Murtagh 2002 for
a nice review.)

One final shortcoming of most of the previous commonly
used deconvolution techniques is that they do not produce re-
liable convergence (the ‘‘stopping’’ problem) and uncertainty
information. Thus, the user cannot easily evaluate the accuracy
of the results. This is a serious shortcoming, especially in the
case of images characterized by low count statistics.

Statistical modeling and estimation provide the perfect
framework for solving these problems and for quantifying the
errors in the solution, especially in low-count imaging sit-
uations. We present a new method for statistically accounting
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for a PSF by deconvolving a blurred source image. The tech-
nique can be thought of as an extension of two previous
deconvolution techniques: the Richardson-Lucy/EM technique
and a Nowak-Kolaczyk multiscale technique explicitly for
Poisson data that is similar to the Haar wavelet. Our method
is ideally suited for restoration of images of sources containing
multiscale structures including extended emission. The statis-
tical model contains smoothing parameters that are assigned a
common hyperprior distribution and fit with the rest of the
model parameters. Although these parameters are automati-
cally fit by the model, the range over which they are fitted is
regulated by this hyperprior distribution. One sets this range
from calibrations prior to the analysis, rather than during res-
toration. We call this method expectation through Markov
chain Monte Carlo (EMC2). It includes regularization and is
based on a fully Bayesian formulation that allows for a con-
sistent top-to-bottom approach to model construction, model
fitting, and error estimation. As a result, the output includes
error information that can be used to construct confidence
statements.

The article is organized into the following sections. In x 2
we summarize the main elements of the statistical Bayesian
formulation, as well as our multiscale representation of the
data. The EMC2 technique, our Markov chain Monte Carlo–
based method for fitting intensities to data and mapping out
uncertainties, is described in x 3. Examples of both simulated
and real data are in x 4, and conclusions are given in x 5.

2. STATISTICAL BACKGROUND

2.1. Bayesian Statistical Models

Statistical analysis of an astronomical image composed of
pixel counts begins with a ‘‘statistical model’’ that is a sum-
mary of both a ‘‘source’’ or ‘‘astrophysical’’ model for the
image and the stochastic processes involved in data collection
and recording. The source model describes the spatial struc-
ture in the relative intensities of photon emission in the source;
this model is of principle scientific interest. In addition to the
source model, the statistical model describes such instrumental
effects as the PSF and other processes that effect the observed
data, such as variability in the observed source counts (e.g.,
Poisson variability), the exposure map, and background con-
tamination of the counts.

The statistical model is expressed in terms of a set of un-
known parameters, which are of scientific interest since they
directly describe the image. The variability in the observed
data is represented by a probability distribution, p(Xj�), where
X represents the array of pixel counts and � represents the
astrophysical model or image; � is the array of relative pixel
intensities of the source emission across the image and is
scaled to preserve the total expected counts. Statisticians refer
to � as a ‘‘model parameter.’’

A standard mode of statistical inference ‘‘restores’’ the
image by computing the value � that maximizes p(Xj�) as
a function of � with X fixed at the values of the observed
counts. This estimate of � is known as the maximum likeli-
hood estimate (MLE) and

L(�jX) ¼ p(Xj�) ð1Þ

is called the ‘‘likelihood function.’’ [Although the likelihood
function and p(Xj�) are equal, the likelihood is viewed as
a function of the parameter given the observed data, while

p(Xj�) is viewed as a function of the data for a given value of
the parameter.] Note that the MLE is the value of � that
maximizes L(�jX).
A Bayesian statistical analysis is based not only on the

likelihood function, but also on a second component known as
the ‘‘prior distribution.’’ The prior distribution quantifies in-
formation or knowledge about the likely values of the model
parameter, or structures in the model parameter, that are known
prior to data collection. Such prior information may include an
expectation that the true image is smooth, i.e., the image in-
tensities in nearby or adjacent regions of the image should be
similar. This information is quantified through a (prior) prob-
ability function that we denote p(�). In the methods that we
describe in xx 3.2 and 3.3 p(�) primarily quantifies smoothness
constraints rather than information as to the actual parameter
values. We illustrate such prior distributions below, with
details given in x 3.2. The prior distributions themselves are
often parametrized with a number of parameters; the values of
these parameters may substantially affect the resulting model
fit or image restoration. In such cases we may wish to fit these
parameters rather than fix them at a set of arbitrary values. We
can achieve this by assigning another prior distribution to these
parameters. This second prior distribution is then known as
a ‘‘hyperprior’’ distribution, and the parameters in the prior
distribution on which the hyperprior distribution is imposed
are called ‘‘hyperparameters.’’ For this application, two hyper-
parameters govern the total intensity of the restored image, and
the rest govern the degree of smoothing in the final restoration;
thus, we refer to the latter subset of hyperparameters as
‘‘smoothing parameters.’’
Inference in Bayesian statistics is based on the ‘‘posterior

distribution,’’ which is the distribution of the unknown model
parameters of interest, given the observed data. The posterior
distribution is calculated using Bayes theorem and is propor-
tional to the product of the likelihood, prior distribution, and
perhaps hyperprior distribution:

p(�jX ) ¼
p(Xj�)p(�)

p(X )
/ p(Xj�)p(�); ð2Þ

or

p(�; AjX )¼
p(Xj�)p(�jA)p(A)

p(X )
/ p(Xj�)p(�jA)p(A);

ð3Þ

where A ¼ f�1; : : : ; �Kg represents the smoothing param-
eters. In practice, we need only calculate the posterior distri-
bution up to a proportionality constant, since many model
fitting routines do not require normalized distributions. From a
Bayesian perspective p(�jX ) is a complete summary of the
information for � available in the data and in the prior dis-
tribution. When hyperparameters are included in the model,
p(�jX ) can be computed via

R
p(�; AjX ) dA. Since p(�jX )

is a probability function, its mean and its mode are natural
summaries and candidates for the reconstructed image. The
mode is called the ‘‘maximum a posteriori’’ (MAP) estimate
and denoted d�MAP; the posterior mean (or posterior expecta-
tion) is denoted E(�jX ). In low-count images the shape of
p(�jX ) is often skewed toward zero for many of the pixel
intensities (see Fig. 1). In this case the mode of the distribution
may be zero and a less desirable summary of the distribution
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than the mean. Thus, our methods use E(�jX ) to summarize
p(�jX ); this is our reconstructed image. The uncertainty in
the reconstructed image can be computed by quantifying the
variability of p(�jX ). This is how our method computes error
bars or error maps.

Computing p(�jX ) ¼
R
p(�; AjX ) dA, E(�jX ), and the

variability of p(�jX ) are all computationally challenging tasks.
A useful strategy is to simulate a Monte Carlo sample from
p(�; AjX ). In this way we obtain many simulated values of �
and A from p(�; AjX ). These simulated values can be used to
summarize p(�; AjX ). For example, we can compute E(�jX )
by averaging the simulated values of �. This is an example of
Monte Carlo integration. A similar technique can be used to
quantify the variability of p(�jX ) when computing error bars
and error maps.

In order to simulate values from p(�; AjX ) we employ the
method of Markov chain Monte Carlo (or MCMC; Metropolis
et al. 1953; Hastings 1970). This method constructs a Markov
chain with stationary distribution equal to p(�; AjX ). For
example, starting with an initial value of A ¼ A(0), in prin-
ciple we might simulate �(1) from p(�jA(0); X ) and then
update the smoothing parameters by simulating A(1) from
p(Aj�(1); X ). Iterating between these two steps, we would
obtain the Markov chain f(�(t); A(t); t ¼ 1; 2; : : :g. This is
an example of the so-called Gibbs sampler. We use a more
involved Gibbs sampler to construct a Markov chain with
stationary distribution equal to p(�; AjX ) in x 3. Basic Markov
chain theory states that after a suitable burn-in period the
chain will deliver simulated values from p(�; AjX ). Unfor-
tunately, the simulated values obtained are correlated with
adjacent values in the chain, and great care must be taken to be
sure the burn-in period is adequate. Such practical issues are
discussed in a detailed introduction to MCMC methods in
astrophysics that is given in van Dyk et al. (2001). They
provide an overview of Bayesian methods and computation in
astrophysics and develop an MCMC sampler for spectral
analysis of astronomical sources (see also van Dyk et al.
2003). Because the reconstructed image is the posterior ex-
pectation that is computed using a Monte Carlo sample
obtained via MCMC, we refer to our method as expectation
through MCMC, or EMC2.

2.2. Multiscale Imagge Representation

Normally we use a pixel-based representation of the image,
i.e., the set of pixel intensities � ¼ f�i; i ¼ 1; : : : ;Ng, which

are stored in an array. The EMC2 procedure also uses a
second representation of �, i.e., a transformation of �. This
transformed multiscale representation, rather than storing
each pixel intensity, stores the total of all pixel intensities, and
a series of ‘‘four-way split proportions’’ that, when multi-
plied together in the correct sequence, give back the pixel
intensities.

The elegance of this multiscale representation lies in that it
imposes structure on the image by assigning prior distributions
to each split proportion, or to groups of split proportions. This
allows us to achieve regularization or smoothing at multiple
scales in the image. We express the multiscale representation
of the 2k ; 2k array, � as

�i ¼ G
YK

k¼1

Dk; l
k(i);mk(i)

; ð4Þ

where G is the overall intensity and Dk;l
k(i);mk(i)

Dk; l
k(i);mk(i)

is the split
proportion at scale k corresponding to the group of pixels
containing pixel i. The first subscript of Dk; l

k(i);mk(i)
Dk; l

k(i);mk(i)
represents

the scale, the second indexes which four-way split is being
referenced, and the third subscript indexes the quadrants of
this split. Thus, for an 8 ; 8 image, k varies from 1 to 3; each
�i is the product of G and three split probabilities. For k ¼ 1
there is a single vector of length four of split probabilities, so
for k ¼ 1, l

k(i) ¼ 1lk(i) ¼ 1 for all i and m
k(i)mk(i) runs from 1 to 4 indexing

the quadrants of the image. For k ¼ 2, there are four vectors of
split probabilities, each of length four, so for k ¼ 2, l

k(i)lk(i) varies
from 1 to 4 and m

k(i)mk(i) again runs from 1 to 4 indexing the
components of each vector of split probabilities, i.e., the
subquadrants of each quadrant of the image. Likewise, for k ¼
3, l

k(i)lk(i) varies from 1 to 16. More generally, l
k(i)lk(i) runs from 1 to

4k�1, and m
k(i)mk(i) runs from 1 to 4 for all i and all k. It is

advantageous to notate the split proportions in this way be-
cause in x 3.2 we assign a probability distribution to the
vectors Dkl � fDklm; m ¼ 1; : : : ; 4g.

Figure 2 shows a schematic view of the multiscale repre-
sentation, in which each layer is shown as a group of pixels,
with 4 times as many pixels as its parent layer, and one-quarter
as many pixels as its child layer. The top layer is 1 pixel for
the entire image, and the lowest layer is the image in its full
resolution. The intensities of 2 pixels in each layer are shown
using the multiscale notation.

This multiscale representation is wavelet-like in nature; it is
quite similar to the two-dimensional Haar wavelet in that it is
square in shape, and each scale partitions its parent scale into
four parts. However, unlike the Haar wavelet, there are no
negative components to the image, and the four parts of each
split are kept separately, as opposed to being kept as north-
south, east-west, northeast-southwest, and northwest-south-
east pairs, as in the two-dimensional Haar wavelet.

Our representation also keeps the entire multiscale repre-
sentation of the image, rather than pruning back the parts of
the multiscale tree for which the data do not provide evidence
of differences in intensities. We do this because we prefer the
restoration to reflect the full resolution of the instrument
across the entire field of view, and we do not have any a priori
reason to prefer higher resolutions in certain parts of the
image. Our statistical model assumes that the image is well
represented by a square pixilation, and for most purposes this
assumption is reasonable. As discussed in x 5, it is possible to
use a grid that has a finer resolution than the data by using a
higher resolution PSF or to use a partition that does not split

Fig. 1.—Skewed distribution. Posterior distributions of the intensity pa-
rameters of low-count Poisson processes can be skewed toward zero. In this case
the MAP estimate is zero and is a questionable summary of the distribution.
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along a grid (e.g., Willett & Nowak 2002). Although both of
these strategies might lead to finer detail in the reconstructed
image, we do not pursue them here. Rather, we focus on de-
veloping methods that provide error maps while requiring as
little user intervention as possible.

3. THE EMC2 RESTORATION TECHNIQUE

The statistical model used by the EMC2 procedure is
comprised of several layers: a likelihood function, a prior
distribution, and a hyperprior distribution, each of which is
discussed in detail in the following sections. In addition to

describing the statistical model, we describe the model fitting
technique, summarize the algorithm, and describe the outputs.

3.1. The Likelihood

To model the relative intensity of photon emission across the
image, we begin by overlaying a grid of pixels on the source
image. The photon counts originating from each of these pixels
cannot actually be observed because of instrumental effects
such as the PSF and other data degradation such as the effects
of the exposure map and of instrumental background con-
tamination. In the statistics literature, such unobservable

Fig. 2.—Multiscale image representation. The top layer is the total intensity, and each subsequent layer splits the blocks of its parent layer into four parts. The
total intensities of the cells indicated with arrows are shown on the left.
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quantities are called ‘‘missing data.’’ We emphasize that the
term ‘‘missing data’’ does not imply that we expected to ob-
serve these data or that they were somehow lost, but rather
the missing data are an elegant statistical construct that helps
clarify model assumptions and simplify statistical computa-
tion. Once we recognize that ‘‘true values’’ of quantities
recorded with measurement error can be treated as ‘‘missing
data’’ a large set of statistical tools designed to handle missing
data can be employed (see, e.g., van Dyk et al. 2001).

Inclusion of the exposure map for the detector area is im-
portant if the area of interest falls on a region over which the
exposure map varies substantially. The exposure map accounts
for the fact that not all parts of the detector have equal capacity
to detect photons; the sections of the chip where detector
arrays are joined are, in particular, unable to detect photons.
The dithering of the telescope axis somewhat compensates for
this effect in that all regions of the sky have nonzero effective
exposure time; however, because of the dark regions of the
detector, some areas of the image have effectively less expo-
sure time than others, and resulting intensities in the image
will be correspondingly less by this well-calibrated known
factor. Since the PSF varies considerably across the image for
larger images, and we have not yet written computer code to
handle variable PSFs, we are limited to smaller images, for
which the exposure map is unlikely to vary significantly. Thus,
we further assume that the exposure map is constant across the
image, and we accordingly suppress the exposure map in the
notation of the statistical model. The exposure map will be
included in the fitting algorithm in future revisions of the
computer code.

We denote the missing pixel counts as X ¼ fXi; i2Ig
where i indexes the set of pixels, I ; we emphasize that Xi are
not contaminated by instrumental background or blurred by
the PSF and are therefore unobservable missing data. We refer
to these missing pixel counts as ‘‘ideal counts.’’ We model the
ideal counts as independent Poisson1 variables,

X d
i�Poisson(�i) ð5Þ

where �i is the expected count in pixel i, and � ¼ f�i; i2Ig
describes the relative intensity of photon emission across the
image. Here � is the quantity of primary interest.

Given that we do not know the ideal counts X, we express
the model in terms of the observed pixel counts, which we
denote as Y ¼ fYi; i2Ig. These observed counts are distorted
by the PSF and contaminated by background counts. In par-
ticular, a photon originating in a region of the source cor-
responding to pixel i has probability Pij of being detected in
pixel j. We use the multinomial2 (Xi; Pi) distribution to model
the pixel counts resulting from an ideal count of Xi convolved
with the PSF, where Pi ¼ fPij; j2Ig is the PSF. HereP

j Pij �1, with equality only if photons originating in pixel i
of the source are recorded somewhere on the detector with
certainty. In modeling the intensity parameters, we also con-
sider instrumental background contamination, which occurs

when a subset of the recorded counts are not due to photons
arriving from the source of interest. By including instrumental
background in the model as a component of the Poisson
intensities, we avoid simply subtracting off the background
and ending up with negative ‘‘background-corrected’’ counts.
Statistically, we may write

YjXd
�

X

i2I

Multinomial(Xi;Pi)þ Poisson(�B); ð6Þ

where Y ¼ fYj; j2Ig is the set of observed pixel counts,
�
B ¼ f�B

i ; i2Ig is the vector component of the intensity due
to background contamination, and Poisson(�B) is an array of
independent Poisson variables with intensities given by �

B.
We may combine equation (6) with equation (5) via

p(Yj�; �
B) ¼

X

X

p(YjX; �; �
B)p(Xj�; �

B)

to obtain

Yjj�;�
Bd
�Poisson

X

i2I

Pij�i

 !
þ �

B
j

" #
: ð7Þ

The model given in equations (5) and (6) is exactly the same
as that given in equation (7), but with an intermediate stage
added, involving the missing data, X. This additional layer in
the model facilitates fitting �.

Equation (7) represents the distribution of the observed data
given the model parameters and, thus, is the building block
of the likelihood function. In particular, since the observed
counts Y are independent, we can write the likelihood function
as

L(�; �
BjY ) � L(�jY ) /

Y

j2I

p(Yjj�); ð8Þ

where p(Yjj�) is the Poisson distribution given in equa-
tion (7); in equation (8) we suppress �

B because we assume
the background intensities are small compared to the source
intensity. Thus, our restored images include background in-
tensities rather than modeling them out.

Inclusion of instrumental background in EMC2 presents
additional challenges. The calibration information for Chandra
instrumental background is an observation of counts, which are
relatively small, and closely follow the shape of the detector
chips. These counts are presumably Poisson observations with
unknown intensities. It is these intensities that must be esti-
mated in order to be used in the model described above. The
primary focus of the work described here has been to include
the smoothing model and uncertainty information on the res-
torations, so the details of inclusion of instrumental back-
ground are left for future work.

3.2. The Prior Distribution

The prior distribution is the second layer of the statistical
model. In this layer we use the multiscale representation for
the image given in equation (4). We specify a gamma3 prior
distribution for the total intensity G. The gamma distribution

1 A random variable X is said to follow a Poisson distribution with pa-
rameter or intensity � if Pr (X ¼ x) ¼ e��

�
x=x!. In this case E(X ) ¼ � and

we often write X d
�Poisson(�) (read as X is distributed as Poisson with in-

tensity �). This representation conditions on the intensity parameter, �, which
in turn may vary.

2 The multinomial distribution is a random vector allocating a fixed
number of counts independently to a series of bins, each with assigned
probabilities. Thus, a multinomial (n; �) random variable will be a vector of
the same length as � of nonnegative integers whose sum is n.

3 The gamma distribution is a continuous probability distribution for posi-
tive real numbers, with probability distribution p(xja; b) ¼ baxa�1e�bx=�(a),
with mean a=b and variance a=b2. Its flexibility makes it useful for modeling
positive quantities.
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is restricted to positive values, as is desirable for Poisson in-
tensities, and is both flexible in terms of shape and mathe-
matically tractable, and thus is an ideal choice for modeling
the total intensity. We use Dirichlet4 prior distributions for
the four-way split proportions Dklm. Variables that follow the
Dirichlet distribution are nonnegative vector quantities, re-
stricted to sum to 1. Dirichlet distributions are also mathe-
matically tractable when used as a prior distribution that is
combined with a multinomial likelihood; conditional on the
other model components, the resulting posterior distribution
for the split proportions is also a Dirichlet distribution.5

Thus, the building blocks of the prior distribution, the
second layer of the statistical model, are

Gd
�gamma(�0; �1); and ð9Þ

Dkl � fDklm; m ¼ 1; : : : ; 4g d
�Dirichlet(� k ; � k ; � k ; � k );

k ¼ 1; : : : ; K; l ¼ 1; : : : ; 4k�1: ð10Þ

The effect of the Dirichlet prior distribution can be expressed
in terms of the resulting posterior distribution. In particular,
the posterior distribution obtained with � j ¼ n, where n is a
positive integer, is the same as the posterior distribution
obtained with � j ¼ 0, and n counts in each quadrant of the
split in the ideal data X. Hence, the prior distribution can be
thought of as adding an equal number of ideal data counts to
all four corners of each split at its given resolution in the
multiscale representation of the image. This has the effect of
regularizing the splits and, together, smoothing the image.

The complete prior distribution is simply the product of the
probability densities corresponding to equation (9) and a copy
of equation (10) for each Dkl in the multiscale image repre-
sentation given in equation (4). A ¼ f� k ; k ¼ 1; : : : ;Kg and
f�0; �1g are the hyperparameters of the statistical model, and
A ¼ f� k ; k ¼ 1; : : : ;Kg are the smoothing parameters. As
discussed in Nowak & Kolaczyk (2000), the settings of
f�0; �1g only affect the total flux of the fitted restoration and
not the pixels’ relative intensities, so we fix these parameters
so that the posterior mean flux of the restoration is equal to the
observed flux, e.g., �0 is set to the total observed counts, and
�1 is set to 1. Thus, total flux will be preserved, on average, by
the statistical model.

Setting the smoothing parameters, A, requires considerably
more care: Different settings affect ratios of pixel intensities
and can produce quite different results. Larger values produce
more smoothing at a given resolution. At each scale we
choose all four parameters of each Dirichlet prior distribution
to be equal, because this in effect shrinks the reconstruction
toward a smooth image. At different levels of resolution we
allow the smoothing parameters to be different. This allows
for differing degrees of smoothing at different scales. This and
other issues related to the smoothing parameters are discussed

in Nowak & Kolaczyk (2000) in detail, and their suggestions
are quite relevant to our procedure as well. Timmermann &
Nowak (1999) discuss a similar model for image restoration,
in which a mixture of beta distributions is used as the prior for
a one-dimensional multiscale analysis similar to ours. This
would correspond to using a mixture of Dirichlet distributions.
In this mixture model, several distributions with varying
sharpnesses of their central peaks are combined to give a
distribution with substantial probability mass near an equal
split, but also with substantial probability mass spread through
the entire range of splits. Such a mixture could be incorporated
into the EMC2 framework and is worth investigating, since it
could have the effect of adapting the splits spatially to better
account for sharp edges or smoother areas in the image.
Our prior distribution has an effect on the restoration

analogous to the ‘‘complexity penalties’’ and ‘‘regularizers’’
used in, e.g., Willett & Nowak (2002), and in many other
image analysis techniques; it also provides a measure of
‘‘shrinkage,’’ in which the fitted pixels intensities are shrunk
toward mean values of groups of pixels.

3.3. The Hyperprior Distribution

The complete model, with components as described in
equations (4), (5), (6), (9), and (10), is dependent on the values
of A, the smoothing parameters. In order to compensate for
our uncertainty about the proper values for the smoothing
parameters A, we add a common hyperprior distribution for
these parameters. The choice of smoothing parameter density
has a somewhat paradoxical effect on the fitted image: In order
to specify a less informative prior distribution on the image
restoration, i.e., to let the data influence the outcome more
with less regularization, we must put a more informative prior
distribution on the smoothing parameters, restricting them
to smaller numerical values. In particular, less informative
Dirichlet prior distributions correspond to smaller values of
� k ; thus, we would like a hyperprior distribution that prefers
smaller values of � k . In fact, without a hyperprior distribution
that sharply tapers off away from zero, the fitted values of the
smoothing parameters are so large as to favor nearly uniformly
smooth reconstructed images.
We have considered several densities for the hyperprior

distribution on the smoothing parameters. The best choices are
a compromise between two opposing forces. We wish for the
image not to be too smooth, in order to retain as much of the
sharp detail as possible. Hence, most of the probability mass
for the hyperprior distribution should be near zero, preferably
encouraging or at least allowing arbitrarily small positive
values for these smoothing parameters. On the other hand,
when there is too much probability near zero in the hyperprior
distribution, we have encountered numerical problems, in
which a sampled value for a smoothing parameter is numeri-
cally zero. When this situation occurs, the Markov chain
enters a persistent state in which the intensity in any cells with
zero counts will be zero. We know this to be wrong, so we
avoid zero-valued draws for the smoothing parameter. This
means choosing a density whose probability is not too con-
centrated near zero. We have had the best empirical results
with the density

p(� k )/ exp (� ��3=3): ð11Þ

Several possible choices for p(� k ) are shown in Figure 3,
including the one in equation (11).

4 The Dirichlet distribution is a continuous probability distribution on a
vector of positive values, such that the vector sums to 1. The probability density
function is given by p(xj� ) ¼ �(�1 þ : : :þ � k )x

� 1�1
1 � � � x� k�1

k =�(�1) � � �
�(� k ). It is a multidimensional generalization of the beta distribution, and is
convenient for modeling a set of probabilities.

5 It has been shown by Morris (1983) that the worst possible error resulting
from using the wrong prior distribution is minimized by choosing the Dirichlet
prior for a multinomial likelihood. Since we do not have any specific infor-
mation here to guide us to a different choice of prior distribution, we reduce
the bias which might be caused by a bad choice of prior distribution by
choosing the Dirichlet distribution.
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We have so far described the components of the statistical
model. We now proceed to fit the model, in order to generate
the restored image, which is represented by the fitted values
of �.

3.4. Fittinggthe Model With Markovv Chain Monte Carlo

Many image restoration techniques compute a value of � to
optimize a particular objective function. Such fitting methods
produce a single restoration, often called the ‘‘best fit,’’ e.g.,
an MLE or a MAP estimate. The best fit may not be a useful
summary of the objective function. Indeed, it is the multi-
modal character of the likelihood function that encourages
users to stop the Richardson-Lucy algorithm before it con-
verges. A single best-fit reconstruction cannot be expected to
adequately summarize the multimodel or highly skewed form
that typical objective functions take in high-dimensional low-
count problems. (A highly skewed objective function is il-
lustrated in Fig. 1.) Standard techniques for computing error
bars for best-fit estimates are also not well suited to such ill-
behaved objective functions. Such techniques generally use
second derivative matrices evaluated at the best fit and are
based on Gaussian approximations to the objective function.

Because of the difficulties inherent in optimization-based
fits, we apply a Monte Carlo technique to explore the entire
posterior distribution, rather than attempting to summarize the
distribution by a mode. Upon convergence, such algorithms
create a chain of draws from the posterior distribution, which
can subsequently be used in various ways to quantify the
uncertainty of the restoration.

3.4.1. Cycle Spinningg

In this section we address issues associated with the multi-
scale representation of the image and the statistical model
that we propose. For example, in the restored image the

multiscale representation has a tendency to produce artifacts in
the form of checkerboard-like patterns. This is because some
of the pixels are closer than others to the edges of the coarser
resolution splits. To remedy this, we shift the multiscale
representation to a different location in the image at each it-
eration. The shifting can be done systematically or randomly.
Since a systematic coverage of a typical image would require
many more iterations than possible in a typical run of EMC2,
we randomly select a new origin at each iteration of the pro-
cedure. The general technique of shifting the multiscale basis
is known as cycle spinning and is described in detail by
Coifman & Donoho (1995). Cycle spinning can be obtained as
a principled fitting algorithm under a minor modification of
the statistical model: for an N by N image there are N 2 pos-
sible prior distributions as described in x 3, each centered at a
different lattice point in the image. The prior distribution that
results in randomly ordered cycle spinning is an equal-
weighted mixture of all of these models. This modification to
the statistical model adds the desirable property of translation
invariance to the image restoration. Thus, cycle spinning is not
simply an ad hoc procedure but a principled model-based
approach to adding translation invariance and reducing visible
artifacts in the image restoration.

3.4.2. Convverggence

Our algorithm constructs a Markov chain with stationary
distribution equal to the posterior distribution of interest. The
Markov chain must be initiated at some starting value and may
require a significant number of iterations before delivering
draws from the posterior distribution. Once such convergence
is achieved, the Markov chain must be run long enough to
obtain a Monte Carlo sample that is sufficiently large for
Monte Carlo evaluation of the posterior distribution. Since
the starting values for the Markov chain are not necessarily a

Fig. 3.—Unnormalized densities for the smoothing hyperprior. The EMC2 procedure currently uses the density proportional to the function in the lower right
corner, for reasons explained in the text. For simpler comparisons, the scale parameter � has been set to unity in all four panels.
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representative sample from the posterior distribution under
the statistical model, we discard some iterations from the be-
ginning of the chain. To minimize the potential for making
inference based on samples that are not from the correct
distribution, we suggest implementing a formal procedure to
assess convergence. One such procedure uses two or more
parallel chains of draws with different starting values. Spe-
cifically, we use R̂ from Gelman & Rubin (1992) to assess
convergence of the chains. This statistic compares the total
variability of the samples from all of the chains to the sum of
the variabilities within each separate chain. The ratio of these
two variabilities is computed for one or more scalar quantities,
e.g., parameters. Since the chains should coincide upon con-
vergence, this ratio should tend toward one as the chains
converge. We thus declare convergence when the R̂ statistics
for all of the quantities of interest are close to 1, e.g., below
1.1, or some other suitable criterion. A more thorough ex-
planation of the use of R̂ to assess convergence of MCMC
samples used in spectral analysis is given in van Dyk et al.
(2001).

Since each step of each chain is relatively expensive, we
compute R̂ using just two chains. We can keep track of the
value of R̂ for all of the smoothing parameters, as well as some
or all of the pixel intensities. We declare convergence when
the maximum R̂ reaches a suitably low value, near 1.0, e.g.,
1.07, a more stringent criterion than the 1.1 recommended
in Gelman & Rubin (1992). We have found it necessary to
require a stronger criterion, because the qualitative features
of the image can still be changing when R̂ is equal to 1.1 for
some pixel intensities. After we declare convergence in the
chains, it remains to run the chains until the Monte Carlo error
has been reduced to a suitably low (user-specified) level.

The examples shown in x 4 were run for 500 burn-in iter-
ations followed by 2000 iterations used for the restorations.
This is conservative and was done to ensure proper conver-
gence and low Monte Carlo error. With properly calibrated
convergence diagnostics as described here, fewer iterations are
required, and thus the restoration could be performed in a
shorter time.

3.5. EMC2 Flow Diaggram and Outputs

A flow diagram of the EMC2 technique is illustrated in
Figure 4. The steps of the algorithm are as follows:

1. We start with the array of the observed counts and
locations, and the PSF obtained from observations of point
sources or using a simulator of the imaging system (e.g., the
telescope and detectors). We form initial values for the inten-
sities either with a uniform image or the raw counts with a
small positive constant added to avoid zero-intensity pixels.
For the purpose of convergence testing, we use both of these
initial values to start two separate Markov chains.
2. For each of the two chains, we recreate the missing image

true counts, according to the following probabilities: If an event
is observed in pixel j, the probability that it originated from
pixel i is �iPij=

P
k �kPk j. This step samples X given Y and �

from its conditional posterior distribution, calculated under the
model given in equations (5) and (6), and is represented by the
first box in the flow diagram in Figure 4.
3. We then convert the two ideal images (i.e., X) to their

multiscale representations. Each of these multiscale repre-
sentations is centered randomly on the image. Then we draw
the smoothing parameters at each scale for each of the two
chains from their conditional posterior distributions, given X

and Y. These are the A ¼ f� k ; k ¼ 1; : : : ;Kg parameters that
appear in the prior distributions in equation (10). The hyperprior,
shown in equation (11), is imposed on these parameters. This
step is represented by the second box in the flow diagram.
4. Then we draw images of intensities � in the same mul-

tiscale representations from their conditional posterior dis-
tributions, given X and A, the smoothing parameters. This step
samples the parameters from the prior distributions shown in
equations (9) and (10). Their conditional posterior distributions
are also gamma and Dirichlet. The parameters for the gamma
posterior distribution are �0 plus the total counts and �1 þ 1;
the parameters of the Dirichlet posterior distributions at the k th

scale are � k plus the corresponding multiscale count totals
from the ideal images. This step is shown in the third box in the
flow diagram.

Fig. 4.—EMC2 flow diagram.
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5. We then test for convergence using a method described in
Gelman & Rubin (1992). Essentially, a formal hypothesis test
is conducted to detect differences in means between the two
chains. If detected, differences signify lack of convergence, since
the two chains should converge to the same distributions and
hence the samemeans. If convergence has not been achieved, we
repeat the cycle (steps 2–4) with the updated intensities. If
convergence has been achieved, we save the intensities in a file
and then check whether we have enough post-convergence
iterations to reduce the Monte Carlo error to a desirably small
level. If so, we stop, and if not, we repeat the cycle (steps 2–4).

The primary output of EMC2, after convergence, is a se-
quence of images of intensities produced in each iteration.
This sequence of images is a representative correlated sample
from the posterior distribution of the true image and thus is the
basis for inference under the statistical model. We can form a
principal estimate of the true image by averaging all of the
images in this sequence. This is a Monte Carlo approximation
of the posterior mean.

To compile a significance map, we calculate the standard
deviation of each pixel intensity and rescale the averaged
image, dividing by the standard deviations of the pixels. In the
resulting significance map, each pixel value is a test statistic
for the hypothesis that the pixel intensities are zero under the
assumption that those intensities are Gaussian; for high pixel
intensities these test statistics make sense. However, because
of the Poisson nature of the observed counts, the test statistics
are less meaningful in low-intensity areas of the image, which
are precisely the areas where questions of significance apply.
A more useful test statistic would measure the probability that
the intensity in the area in question does not arise from in-
strumental background. This probability can be calculated as
the proportion of draws whose intensities are greater than a
background intensity estimate. The background intensity
might also be a sample from a procedure similar to that of
EMC2, but without the PSF, since background files are nor-
mally provided as images of counts and are typically quite
low-count, with many pixels containing zero counts. This area
is currently under research and will be incorporated into
EMC2 at a later date.

The output images can be viewed in a movie, which by
itself provides much information to the researcher about the
restoration. Some pixels in the movie are persistent, whereas
others flicker between very low and moderately low intensi-
ties. The persistent pixels are thus more statistically signifi-
cant, because under the model we are more certain that their
intensities are not near zero, whereas the flickering pixels have
some posterior probability of near-zero intensity under the
statistical model.6

The three-dimensional array of output images can be the
basis for many other types of inference. For any image feature
that can be assigned a quantitative summary we can calculate
a posterior predictive P-value (PPP-value) to assess statistical
significance (Protassov et al. 2002; Gelman et al. 1996).
Regions of the image could be defined and compared with
other regions to extract information regarding observed fea-
tures in the restoration.

Since the model generally conserves total flux, it should be
noted that pairs of pixels in the image generally tend to cor-
relate negatively, especially when they are located nearby.

This can be seen by the splitting mechanism: If intensity is
increased in one pixel, it must be decreased in an adjacent
pixel to preserve the sum. This correlation structure is im-
portant in making principled inferences but is also very dif-
ficult to summarize in a concise and informative manner.

The movie can also be sorted pixel-by-pixel, providing a
useful summary of each pixel’s marginal posterior density.
Sorting pixel intensities in this way ignores the between-pixel
correlation and thus should not be used to make inference
about features. However, it provides a useful summary of each
pixel’s marginal distribution, thus showing areas of the image
in which the posterior distribution of the intensity is concen-
trated on large or small values.

4. EXAMPLES

4.1. Simulation of an Extended Source imagge

Figure 5 shows a simulation from a familiar image of
Abraham Lincoln. The image was first digitized and reduced to
four levels of gray, as shown in Figure 1a. The colors were
coded from zero to three, shown ranging from light to dark
in this figure; each pixel was then considered to contain that
number of counts. Each count was then displaced randomly
from its original location according to aChandra PSF, shown in
Figure 1b, to obtain the simulated data set shown in Figure 1c.
The EMC2 restoration of this image is shown in Figure 1d.
These images are shown on the log scale but with different
color maps to illustrate features in the images. EMC2 does
indeed preserve flux, despite the fact Figure 1a is darker than
the data set in Figure 1c or the restorations in Figures 1d and
1f. The statistical model has been designed to preserve total
flux, and this preservation has been empirically verified. The
restoration is quite good: Much of the signal has been
extracted from the noise, and the smooth areas match those of
the original image fairly well in intensity. The sharp edges of
the ideal image are not well restored. Considering that EMC2
is designed to smooth extended areas of the image, and that
Nyquist-like considerations would lead one to expect a deg-
radation in resolution; however, the results are still very good.
Figure 1e shows the significance map, thresholded at 1 stan-
dard deviation. The signifance map is quite similar in ap-
pearance to the restoration; pixels with higher intensity in the
restoration tend to have larger values in the significance map.
This is characteristic of Poisson distributions, whose standard
deviations are equal to the square roots of their means. In
Figure 1f, we see the Richardson-Lucy restoration of the
simulation, stopped at 100 iterations. The comparison of this
restoration with the EMC2 restoration shows one of the rel-
ative strengths of EMC2—the ability to restore extended
smooth material. The Richardson-Lucy restoration aggregates
the intensity into clumps and the smooth material in the ideal
image shows as grainy material in the restoration. EMC2 does
a better job at restoring the smooth areas, although the
sharpness of the borders is necessarily sacrificed in order to
obtain this smoothness.

Figure 6 shows four different termination points of the
Richardson-Lucy algorithm on the same image and PSF. We
can see that the proper choice of termination point involves a
compromise between smoothing, which is seen somewhat in
Figure 1a at 10 iterations, and resolving features in the image.
Despite the smoothing obtained by stopping the algorithm at
10 iterations, the restoration already has a grainy character and
the features are not yet fully resolved. Later in the algorithm,

6 Several examples of movies are posted at http://davidesch.150m.com/
EMC2movies.html.
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as the procedure nears convergence, the features are well re-
solved, but the extended material is eroded into grainy mate-
rial. In Figures 1b, 1c, and 1d, at 20, 50, and 100 iterations,
there is a steady increase in the resolution of sharp features
and a steady decline in the smoothness of extended material.
Because of this compromise, we feel that the restorations from
all four termination points shown here are inferior to the
EMC2 restoration shown in Figure 5.

Because the Richardson-Lucy algorithm can take advan-
tage of the fast Fourier transform (FFT), each iteration of
Richarson-Lucy is considerably less computationally complex
than an iteration of EMC2. EMC2 would have complexity on
the same order as an implementation of Richardson-Lucy,
which used the sliding-cell convolution method rather than the
FFT. We are currently researching ways to decrease the
complexity of the EMC2 algorithm and improve its speed and
scalability to larger images. It should also be remembered that
iterations have different meanings in the two algorithms. Each
iteration of EMC2 draws another sample from the posterior,
whereas each iteration of Richardson-Lucy moves the resto-
ration one step closer to the MLE.

4.2. Restoration of Chandra Imagges

In this section we present several examples of applying the
EMC2 technique to low-count statistics astronomical images.
We first show an example of a simulated Chandra observation

of a binary source and then an example of a more complex
extended source containing multiscale structures.
Chandra produces sharper images than any other X-ray

telescope to date (FWHM�0B3 on axis). This high-spatial
resolution results from the innovative design of this observa-
tory, in particular the high-resolution mirror assembly (Van
Speybroeck et al. 1997), but also including the guidance
systems and the focal plane detectors (Weisskopf et al. 2002).
In addition to the photon positions, Chandra observations
provide information about their number, energy, and time of
arrival. As a result, Chandra provides a unique opportunity
for high spatial /spectral resolution studies of the X-ray
emission, at scales ranging from sub-arcsecond to several
arcminutes.
Although Chandra images of numerous sources reveal

multiscale structures with unprecedented detail and clarity, it
is often difficult to study small-scale structures because of the
low count statistics and the image blurring by the off-axis
HRMA (High Resolution Mirror Assembly) PSF. The size
and the shape of the PSF changes significantly as a function of
off-axis angle and the spectral energy distribution of the
source. Simulating the Chandra PSF as a function of off-axis
angle and energy for each observed source is the first step in
multiscale analysis of Chandra images (Karovska et al. 2001).
The examples presented in this paper are based on simu-

lations using the Chandra PSF simulator ChaRT/MARX

Fig. 5.—Simulation of an extended source. (A) the original image used for the simulation; (B) the PSF; (C) the convolved simulation used in the analyses; (D) the
EMC2 primary reconstruction; (E) the EMC2 significance map, thresholded at one standard deviation; and (F) the Richardson-Lucy restoration, stopped at 100
iterations. The EMC2 reconstruction was performed with 500 burn-in iterations and 2000 subsequent iterations were used for the restoration.
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(Carter et al. 2003) and archival Chandra observations made
with the imaging detectors: the Advanced CCD Imaging
Spectrometer (ACIS-S) and the High-Resolution Camera
(HRC-I).

In Figure 7 we show a simulated Chandra observation us-
ing the HRC detector (0B13 pixel�1) of a binary source with
pointlike components separated by �200 (16 detector pixels)
at 50 off-axis angle. The brightness ratio between the compo-
nents is 10:1, with 5000 counts for the source on the left and
500 counts for the source on the right. To obtain this image,
we convolved these two point sources with a blurring function
composed of the Chandra telescope off-axis PSF and the
detector blurring due to the pixel size of 0B13. The PSF was
simulated using the Chandra Ray Tracer, ChaRT (Carter et al.
2003) and MARX (Wise et al. 1997) software that simulates
the effects of the detectors. Figure 7b shows the simulated
PSF.

The EMC2 restorations of the source and significance maps
are shown in Figures 7c, 7d, 7e, and 7f . Two sets of resto-
rations are shown, both with hyperprior density function
proportional to exp (���3=3). Figures 7c and 7d have � ¼ 10,
and Figures 7e and 7f have � ¼ 1000. These restorations are
intended to show the effect of the hyperprior distribution on
the outcome of the restoration. We can see clearly that the
� ¼ 1000 restorations are preferable, because the � ¼ 10
produces too much smoothing in the restoration. Otherwise,
the results are good, and the simulation noise in the data
makes it impossible for the intensity in the restored image

to shrink down to 2 pixels. We have shown the restored
images on the log scale to illustrate these ‘‘leftovers,’’ but the
pixels adjacent to the points have restored intensity values far
less than the two points themselves. On the linear scale the
images appear as two lit pixels against a black background.
The significance maps in Figures 7d and 7f again show pat-
terns very similar to the restorations. The hyperprior using
� ¼ 1000 produced good results, and it is used in all of the
other EMC2 restorations shown in the paper.

In our second example we show the results of applying the
EMC2 technique to a Chandra image of an extended source
containing multiscale structures. NGC 6240 is a starburst
galaxy at a distance of 144 Mpc containing two supermassive
black holes separated by �200 (� 1000 pc). This active galaxy
has been observed using various multiwavelength techniques.
High spatial and spectral resolution X-ray studies of the
central region surrounding the black holes are very important
for understanding the phenomena associated with post-merger
systems evolution and nuclear activity (Lira et al. 2002;
Komossa 2003).

In Figure 8 the EMC2 posterior mean reconstruction of the
NGC 6240 central region is shown with the original data.
Figures 8c and 8d are the significance maps, thresholded at 1
and 3 standard deviations, respectively. The EMC2 recon-
struction shows multiscale structures including diffuse emis-
sion features and subarcsecond scale structures associated
with the central sources. Clearly visible are several arcs and
looplike structures that appear to be originating from the

Fig. 6.—Comparing termination points of the Richardson-Lucy deconvolution. The Algorithm was stopped at (a) 10, (b) 20, (c) 50, and (d) 100 iterations.
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vicinity of the nuclei. These structures are not discernible in
the original images or in adaptively smoothed images. EMC2
sharpens these structures while preserving the extended dif-
fuse emission and reveals more details in the fine-scale
structure in the vicinity of the nuclei. According to the sig-
nificance map, the features in the restored image, including the
loops and the structures in the vicinity of the nuclear region,
are statistically significant. Figure 9 shows two two-color
overlays of the optical emission recorded by the Hubble Space

Telescope (HST ) and X-ray images from Chandra. The first
panel shows the raw X-ray emission, and the second shows
the EMC2 reconstruction of the X-ray emission. The corre-
spondence between the two wavelengths is much stronger for
the EMC2 reconstruction. The X-ray observations provide
valuable scientific information on the content of the various
components of the source, and by comparing these parts of
the image with other frequencies much can be learned about
the object.

Fig. 7.—Shown is a simulated example. (a) The data and (b) the PSF are shown with the color map on the square root scale to best illustrate the variability of the
counts in these images. EMC2 was run using two priors on the smoothing parameters, p(� ) / exp (���3=3) with � ¼ 10 in (c) and (d) and � ¼ 1000 in (e) and ( f ).
The reconstructions under the two prior distributions appear in (c) and (e). The corresponding significance maps appear in (d ) and ( f ). The significance maps
illustrate the posterior mean divided by the posterior standard deviation. The contour lines in (d) and ( f ) correspond to levels 3.0 and 10.0, so we are quite confident
that the nature of the source is binary. The EMC2 reconstructions were performed with 500 burn-in iterations and 2000 subsequent iterations used in each of the
restorations.
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For comparison with the EMC2 results we show in Figure 10
the results from Richardson-Lucy deconvolution (20 and 100
iterations) of the NGC 6240 images. The Richardson-Lucy
results tend to aggregate intensity into clumps and do not re-
construct well the extended and the low brightness structures.

5. CONCLUSIONS

This work brings several new and important features to a
deconvolution analysis, the most important being the quanti-

fication of the uncertainty of the outcome. The analysis itself
is based on principled methods and is performed entirely in
one procedure, thus eliminating any error propagation that
may occur by reprocessing data in multiple steps. The regu-
larization technique works well and preserves the integrity of
extended sources in the image.

The EMC2 technique can be thought of as an extension of
two previous deconvolution techniques, the Richardson-Lucy
and the Nowak-Kolaczyk techniques. Our method is related to

Fig. 9.—HST and Chandra images of NGC 6240 are compared. The figures shown are overlays of the HST optical frequency image with the raw Chandra data
(left) and the EMC2 posterior mean restoration (right). Clearly there is more correlation between the wavelengths in the restored image than in the raw data,
providing additional confidence in the EMC2 results.

Fig. 8.—EMC2 restoration and significance maps for the Chandra image of NGC 6240. (a) The original data set as recorded by the telescope. (b) The EMC2
reconstruction. (c, d ) The significance map, thresholded at 1 and 3 standard deviations, respectively. The EMC2 reconstruction was performed with 500 burn-in
iterations and 2000 subsequent iterations used for the restoration.
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these techniques in that the likelihood of the statistical model
is the same, and the prior is the same as the Nowak-Kolaczyk
technique but departs from them in the inclusion of the hy-
perprior distribution to fit the smoothing parameters and also
in the sampling-based fitting method, which makes uncer-
tainty information available to the user. We feel that both of
these extensions are useful for investigators, the first greatly
improving the usability of the procedure and the second in
making scientific inferences based on observed image data.

Of course, the EMC2 procedure adds smoothing to the
basic likelihood in the Richardson-Lucy procedure and thus
models an image that is smooth. Although the smoothing can
be minimized to enable sharper edges in the restoration, it
must be remembered that the procedure is a smoothing pro-
cedure and should not necessarily be expected to perform well
on images with sharp variations between adjacent pixels. For
example, when applied to point sources, the procedure does
not resolve the point source as well as a Richardson-Lucy
restoration. Nevertheless, it does almost as well, and its vastly
superior performance for extended emissions is enough to
recommend this procedure for almost any restoration in which
the user is uncertain as to the nature of the source being
observed.

In the current implementation of EMC2, the PSF is a single
matrix, representing the scattering of a point source from
anywhere on the entire image; however, the procedure de-
scribed here requires only that we be able to calculate prob-
abilities that an event with any true location is observed in any
other location on the detector. This probability can come from
one PSF, many PSFs in a mosaic image, or an unknown PSF
that can be described probabilistically and simulated from.

Thus, the method is extendable to a broad range of decon-
volution problems. The current implementation of EMC2 is
limited to sources covering a small enough angle so that the
PSF is nearly constant across the entire region. Multiple PSFs
would greatly increase the utility of the procedure and allow
restorations of much larger images.
Deconvolution of larger images also necessitates inclusion

of background and instrumental effects into the statistical
model, as described in x 3.1, since these effects tend to vary
over a larger range of the detector. As discussed, the exposure
map is an easy extension of the procedure. However,
smoothing similar to the multiscale model or perhaps some
other procedure that smooths only on a smaller scale will be
necessary to incorporate the instrumental background. This is
a suitable area for more research.
Further extension of this technique will include incorpo-

rating more prior information. For example, other components
of the image could also be specified and included in the
analysis. This would amount to adding a step to the MCMC
algorithm that splits the true counts according to the current
intensities of each of the components for each pixel. Often
astronomers have some prior information about the observed
source or the observation itself, which would be reasonable
to include in an image analysis. For example, the user could
include information about point sources in the image at known
locations. Stronger prior information from other observations
could also be fitted in the statistical model. This information
would consist in the model as another additive component of
the pixel intensities �. The capacity to use previously avail-
able information would therefore increase the power of the
EMC2 procedure to detect certain types of sources.

Fig. 10.—EMC2 and Richardson-Lucy reconstructions of the Chandra image of NGC 6240 are compared. (a) The raw data and (b) the posterior mean EMC2
restoration. The lower two panels are the Richardson-Lucy deconvolutions, stopped at (c) 20 and (d ) 100 iterations, respectively. The Richardson-Lucy restorations
clearly undersmooth the image, aggregating the intensity at ‘‘clumps’’ in the image.
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Other procedures have been proposed to better represent
sharp lines in the image, by introducing partitions that do not
split along the pixel grid (see, e.g., Willett & Nowak 2002).
Using this type of procedure involves selecting among many
different models at the same time as producing an MLE of
the parameters of the final model. While this type of proce-
dure may be desirable for producing a more parsimonious
representation of the image intensities as well as better rep-
resenting sharp diagonal features, our procedure has been
designed with the principal goal of producing uncertainty in-
formation on the image in a square pixel framework. Sharper
features and better representations of diagonal features can also
be obtained by using a subpixelated ideal image, taking ad-
vantage of greater knowledge of the PSF. In principle, it is
possible, and perhaps desirable in the future, to include some
model selection and more flexible model components such as
Willet’s wedgelets in our model, but the computational burdens
of such an algorithm might be too great to fit in a reasonable
amount of time with today’s computing resources.
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