An Imaginary Tale

The story of $\sqrt{-1}$

With a new preface by the author

Paul J. Nahin

PRINCETON UNIVERSITY PRESS

PRINCETON AND OXFORD

Contents

List of Illustrations	xi
Preface to the Paperback Edition	xiii
Preface	xxi
Introduction How Heron and Diophantus of Alexandria overlooked imaginary numbers nearly 2,000 years ago.	3
Chapter One	
The Puzzles of Imaginary Numbers The early work of Scipione del Ferro in cubic equations, and of Niccolo Tartaglia, Girolamo Cardano, and Rafael Bombelli on complex numbers as the roots of cubic equations. Francoise Viète and noncomplex trigonometric solutions to the irreducible cubic.	8
Chapter Two	
A First Try at Understanding the Geometry of $\sqrt{-1}$ René Descartes' interpretation of imaginary numbers as meaning physical impossibility in geometric constructions, and John Wallis on physically interpreting imaginary numbers.	31
Chapter Three	
 The Puzzles Start to Clear The long-lost work of Casper Wessel on the geometric interpretation of complex numbers. √-1 as the rotation operator in the complex plane. The easy derivation of trigonometric identities with De Moivre's theorem. Complex exponentials. Factoring the cyclotomic equation. The rediscovery of Wessel's ideas by the Abbé Adrien-Quentin Buée and Jean-Robert Argand. Warren and Mourey rediscover Buée and Argand. William Rowan Hamilton and complex numbers as couples of real numbers. Carl Friedrich Gauss. 	48
Chapter Four	
Using Complex Numbers Complex numbers as vectors. Doing geometry with complex vector algebra. The Gamow problem. Solving Leonardo's recurrence. Imaginary time in spacetime physics.	84

CONTENTS

- -

CHAPTER FIVE

More Uses of Complex Numbers	105
Taking a shortcut through hyperspace with complex functions. Maximum walks	
in the complex plane. Kepler's laws and satellite orbits. Complex numbers in	
electrical engineering.	

142

CHAPTER SIX

Wizard Mathematics The mathematical gems of Leonhard Euler, John Bernoulli, Count Fagnano, Roger Cotes, and Georg Riemann. Many-valued functions. The hyperbolic functions. Karl Schellbach's method of using $(\sqrt{-1})^{\sqrt{-1}}$ to calculate π . Euler again, using complex numbers to calculate real integrals, and the gamma and zeta functions.

CHAPTER SEVEN

The Nineteenth Century, Cauchy, and the Beginning	
of Complex Function Theory	187
Introduction. Augustin-Louis Cauchy. Analytic functions and the Cauchy-	
Riemann equations. Cauchy's first result. Cauchy's second integral theorem.	
Kepler's third law: the final calculation. Epilog: what came next.	

APPENDIXES	227
A. The Fundamental Theorem of Algebra	227
B. The Complex Roots of a Transcendental Equation	230
C. $(\sqrt{-1})^{\sqrt{-1}}$ to 135 Decimal Places, and How It Was Computed	235
D. Solving Clausen's Puzzle	238
E. Deriving the Differential Equation for the Phase-Shift Oscillator	240
F. The Value of the Gamma Function on the Critical Line	244
Notes	247
Name Index	261
Subject Index	265
Acknowledgments	269