AN IMBEDDING PROBLEM

J. W. CANNON AND S. G. WAYMENT

Abstract

If H is an uncountable collection of pairwise disjoint continua in E^{n}, each homeomorphic to M, then there exists a sequence from H converging homeomorphically to an element of H. In the present paper the authors show that if $\left\{M_{i}\right\}$ is a sequence of continua in E^{n} which converges homeomorphically to M_{0} and such that for each i, M_{i} and M_{0} are disjoint and equivalently imbedded, then there exists an uncountable collection H of pairwise disjoint continua in E^{n}, each homeomorphic to M. For $n=2$, 3 , and $n \geqq 5$ it is shown that one cannot guarantee that the elements of H have the same imbedding as M_{0}.

Introduction. Let M be a continuum in E^{n}. It is well known that if H is an uncountable collection of pairwise disjoint continua in E^{n}, each homeomorphic to M, then there exists $M_{0} \in H$ and a sequence $\left\{M_{i}\right\}$ from H such that the sequence $\left\{M_{i}\right\}$ converges homeomorphically to M_{0}, that is, for $\epsilon>0$ there exists N such that $i \geqq N$ implies the existence of a homeomorphism h_{i} of M_{0} onto M_{i} which moves no point more than ϵ.

The following question is immediately raised: suppose M_{0} is a continuum in E^{n} and $\left\{M_{i}\right\}$ is a sequence of pairwise disjoint continua in E^{n} such that $\left\{M_{i}\right\}$ converges homeomorphically to M_{0} and for each $i, M_{i} \cap M_{0}=\varnothing$. Does there necessarily exist an uncountable collection H of disjoint continua in E^{n} such that each M^{\prime} in H is homeomorphic to M_{0} ? We remark that similar questions are discussed in [4].

The purpose of this note is to answer the above question in the affirmative under the additional condition that the $M_{i}, i=0,1$, $2, \cdots$, are equivalently imbedded in E^{n} and to note that the answer to the question is negative for $n=2,3$, and $n \geqq 5$ under the condition that the elements of H have the same imbedding as M_{0}. Two continua M_{1} and M_{2} are said to be equivalently imbedded in E^{n} provided there exists a homeomorphism of E^{n} onto E^{n} which carries M_{1} onto M_{2}. Finally, we note that if a nontopological imbedding property is imposed on the collection H in E^{2}, then the answer is again negative.

Received by the editors November 14, 1969.
AMS Subject Classifications. Primary 5422, 5425, 5478.
Key Words and Phrases. Homeomorphic convergence, equivalently imbedded, ϵ-homeomorphism, uncountable collection of continua.

The general problem in E^{n}.

Theorem 1. Suppose that the pairwise disjoint sequence of continua $\left\{M_{i}\right\}$ converges homeomorphically to M_{0} in E^{n} and suppose that for each i, M_{i} and M_{0} are disjoint and equivalently imbedded in E^{n}. Then there exists an uncountable collection H of pairwise disjoint continua in E^{n}, each of which is homeomorphic to M_{0}.

Proof. The proof consists of constructing uncountably many sequences of homeomorphisms of M_{0}, each of which converges to a homeomorphism. The techniques of proof were first used by Bing [2], [4].
We remark that if M and M_{0} are equivalently imbedded, then there exists a homeomorphism h of E^{n} onto E^{n} such that $h\left(M_{0}\right)=M$ and consequently the sequence $h\left(M_{i}\right)$ converges homeomorphically to M. We conclude that if M and M_{0} are equivalently imbedded, then for each $\epsilon>0$ there is a continuum M^{\prime} disjoint from M and a homeomorphism h^{\prime} such that $h^{\prime}(M)=M^{\prime}, h^{\prime}$ moves no point of M more than ϵ, and M^{\prime} and M are equivalently imbedded. We shall refer to h^{\prime} as a disjoint ϵ-homeomorphism of M onto M^{\prime}.

There exists a homeomorphism f_{1} from M_{0} onto M_{1} and we shall choose ϵ_{1} so that $\rho\left(x, f_{1}(x)\right)<\epsilon_{1}$ for all $x \in M_{0}$. Let f_{0} be the identity homeomorphism on M_{0}. For notational convenience let $f_{0}\left(M_{0}\right)=M^{0}$ and $f_{1}\left(M_{0}\right)=M^{1}$. If E_{i} is the set of elements (x_{1}, x_{2}) from $M_{0} \times M_{0}$ such that $\rho\left(x_{1}, x_{2}\right)>1 / i$, then it follows for any finite collection K of homeomorphisms on M_{0} that

$$
\inf _{\boldsymbol{x} \in K}\left\{\inf _{\left(x_{1}, x_{2}\right) \in E_{i}}\left[\rho\left(k\left(x_{1}\right), k\left(x_{2}\right)\right]\right\}=\delta>0 .\right.
$$

Let

$$
\delta_{1}=\inf _{i=0,1}\left\{\inf _{\left(x_{1}, x_{2}\right) \in E_{1}}\left[\rho\left(f_{i}\left(x_{1}\right), f_{i}\left(x_{2}\right)\right]\right\},\right.
$$

let $\eta_{1}=\rho\left(M^{0}, M^{1}\right)$, and let $\epsilon_{1}^{\prime}=\min \left\{\delta_{1}, \eta_{1}, \epsilon_{1}\right\}$. For $\epsilon_{2}<\epsilon_{1}^{\prime} / 3$ there exist disjoint ϵ_{2}-homeomorphisms f_{1}^{0} and f_{1}^{1} on M^{0} and M^{1} respectively. Let f_{0}^{0} and f_{0}^{1} be the identity homeomorphisms on M^{0} and M^{1} respectively, let $f_{j}^{i}\left(M_{i}\right)=M^{i j}$, for $i, j=0,1$, and let $f_{i j}\left(M_{0}\right)=f_{j}^{i}\left(M_{i}\right)$ $=f_{j}^{i}\left(f_{i}\left(M_{0}\right)\right)$ for $i, j=0,1$. Denote

$$
\inf _{i, j=0,1}\left\{\inf _{\left(x_{2}, x_{2}\right) \in E^{2}}\left[\rho\left(f_{i j}\left(x_{1}\right), f_{i j}\left(x_{2}\right)\right)\right]\right\}
$$

by δ_{2} and let $\eta_{2}=\min _{\left(i_{1}, i_{2}\right) \neq\left(j_{1}, j_{2}\right)}\left\{\rho\left(M^{i_{1}, i_{2}}, M^{j_{1}, i_{2}}\right)\right\}$ and let ϵ_{2}^{\prime} $=\min \left(\delta_{2}, \eta_{2}, \epsilon_{2}\right)$. To further simplify notation, let $\alpha(n)$ represent a finite sequence on the first n positive integers into the set $\{0,1\}$, and
for $\beta=0$ or 1 let $\alpha(n) \beta$ represent a finite sequence on the first $n+1$ integers into $\{0,1\}$ with β being the value on $n+1$. Also, let $\alpha(\infty)$ represent a sequence on the positive integers into $\{0,1\}$. We next choose $\epsilon_{3}<\epsilon_{2}^{\prime} / 3$ and proceed to define $f_{1}^{\alpha(2)}$ to be disjoint ϵ-homeomorphisms of $M^{\alpha(2)}$ and define $f_{0}^{\alpha(2)}$ to be the identity on $M^{\alpha(2)}$. Finally define $f_{\alpha(3)}\left(M_{0}\right)=f_{\beta}^{\alpha(2)}\left(M^{\alpha(2)}\right)$ for each $\alpha(2)$ and $\beta=0$, We continue the process inductively to obtain for each integer n, the 2^{n} homeomorphisms $f_{\alpha(n)}$.

Let a be a number in $[0,1)$. If $. a_{1} a_{2} \cdots=\alpha(\infty)$ represents the binary expansion of a always chosen to not repeat ones infinitely and $\alpha(n)$ represents the nth truncated approximation, then the association of the sequence $\left\{f_{\alpha(n)}\right\}$ with a is a one-to-one map from the interval $[0,1)$ into the collection of sequences previously constructed and defines an uncountable collection of sequences of homeomorphisms on M_{0}. The function of $f_{a}(x)=\lim _{n} f_{\alpha(n)}(x)$ is well defined since $\rho\left(f_{a}(x), x\right)$ $\leqq \sum_{i=1}^{\infty} \epsilon_{i}<\epsilon_{1} \sum_{i=0}^{\infty} 1 / 3^{i}=\epsilon_{1}(3 / 2)$. Since $f_{a}(\cdot)$ is defined on a compact subset of E^{n}, it follows from the usual advanced calculus argument on uniform convergence that $f_{a}(\cdot)$ is continuous. If x_{1} and x_{2} are distinct elements of M_{0}, then $\left(x_{1}, x_{2}\right) \in E_{n}$ for some n. Then $\rho\left(f_{\alpha(n)}\left(x_{1}\right), f_{\alpha(n)}\left(x_{2}\right)\right)$ $>\delta_{n}$. However,

$$
\rho\left(f_{\alpha(n)}\left(x_{i}\right), f_{a}\left(x_{i}\right)\right)<\sum_{i=n+1}^{\infty} \epsilon_{i}<\delta_{n} \sum_{i=1}^{\infty} 1 / 3^{i}=\delta_{n} / 2
$$

for $k=1,2$ and consequently, by the triangle inequality, $f_{a}\left(x_{1}\right) \neq f_{a}\left(x_{2}\right)$ and f_{a} is one-to-one. We have shown that f_{a} is a one-to-one continuous map from a compact metric space M_{0} into a Hausdorff space E^{n}, and hence f_{a} is a homeomorphism. We have left only to show that $f_{a}\left(M_{0}\right)$ and $f_{b}\left(M_{0}\right)$ are disjoint whenever $a \neq b$. Let.$a_{1} a_{2} \cdots$ and.$b_{1} b_{2} \cdots$ be the binary expansions of a and b and let n be the first integer with $a_{n} \neq b_{n}$. Then $\rho\left(f_{\alpha(n)}\left(M_{0}\right), f_{\beta(n)}\left(M_{0}\right)\right) \geqq \eta_{n} \geqq \epsilon_{n}^{\prime}>3 \epsilon_{n+1}$. However, if $x \in M_{0}$ then

$$
\rho\left(f_{\alpha(n)}(x), f_{a}(x)\right)<\sum_{i=n+1}^{\infty} \epsilon_{i}<\epsilon_{n+1} \sum_{i=0}^{\infty} 1 / 3^{i}=\epsilon_{n+1}(3 / 2)
$$

and similarly $\rho\left(f_{\beta(n)}(y), f_{b}(y)\right)<\epsilon_{n+1}(3 / 2)$. Hence, again by the triangle inequality, $f_{u}\left(M_{0}\right) \cap f_{b}\left(M_{0}\right)=\varnothing$.

The problem in E^{3}. A homeomorphic image of the unit sphere is said to be wild or wildly imbedded in E^{3} provided there is no selfhomeomorphism of E^{3} which takes S onto the unit sphere. The FoxArtin sphere S_{0} (a wild sphere) has the property that there exists a
sequence of disjoint tame spheres $\left\{S_{i}\right\}$ such that $\left\{S_{i}\right\}$ converges homeomorphically to S_{0}. It follows easily that there exists a sequence of disjoint Fox-Artin spheres $\left\{S_{i}\right\}$, each imbedded like S_{0}, such that $\left\{S_{i}\right\}$ converges homeomorphically to S_{0} and such that S_{i} $\operatorname{Cint}\left(S_{0}\right)$. Bing has shown [1], [3] that there do not exist uncountably many wild spheres in E^{3}. Thus if we consider the set H of all spheres in E^{3} imbedded equivalently with the Fox-Artin sphere, then there exists a disjoint sequence of elements from H converging homeomorphically to an element from H but no subset H^{\prime} of H can be composed of uncountably many pairwise disjoint elements. It is interesting to note that the existence of uncountably many disjoint spheres in E^{3} follows from the existence of a sequence of Fox-Artin spheres converging to a Fox-Artin sphere by employing Theorem 1. Of course the result also follows trivially by considering the set of all spheres of radius r about the origin for r in (0,1].

The problem in E^{2}. A homeomorphic image $h(J)$ of the unit circle J is said to be thick or thickly imbedded in E^{2} provided the Lebesgue measure $\mu(h(J))>0$. A simple closed curve J_{0} with positive Lebesgue measure is easily constructed and one can construct a sequence of disjoint thick homeomorphic images J_{i} converging to J_{0}.

Let H be the collection of all thick homeomorphic images of the unit circle J. Suppose H contains an uncountable subset H^{\prime} of pairwise disjoint elements. For each i, let D_{i} represent the closed disk with radius i centered at the origin. Then for some n, D_{n} intersects each of uncountably many elements of H^{\prime} in a set of positive measure. Hence for some $\epsilon>0, D_{n}$ intersects each of infinitely many elements of H^{\prime} in a set of measure greater than ϵ, which is impossible since the elements of H^{\prime} are disjoint and the measure of D_{n} is finite. Hence H contains no uncountable subset of pairwise disjoint elements.

Remark 1. An examination of the preceding technique shows that if H is any collection of pairwise disjoint measurable sets in a σ finite measure space, then at most a countable number of the elements from H can have positive measure.

We note also that any homeomorphism of E^{3} onto E^{3} carries the set of wild spheres one-to-one and onto the set of wild spheres, while homeomorphisms of E^{2} onto E^{2} need not carry the set of thick Jordan curves onto the set of thick Jordan curves. This leads to a further sharpening of the question raised in the introduction.

Question. Let M be a continuum in E^{n} for $n \neq 1$ and let H be the set of all homeomorphic images $h(M)$ of M into E^{n} such that $h(M)$ and M are equivalently imbedded. Does the existence of a disjoint
sequence of elements $\left\{M_{i}\right\}$ from H such that $\left\{M_{i}\right\}$ converges homeomorphically to M imply that there exists an uncountable pairwise disjoint subcollection H^{\prime} of H ?

It is known [5] that there does not exist an uncountable collection of n-cells in $E^{n}, n \geqq 5$, whose boundaries are pairwise disjoint and not flat. Using this fact and an argument similar to that given in the discussion of the problem in E^{3} in this paper, one can answer the above question in the negative for $n=3$ and $n \geqq 5$. Examples 3 and 4 in [4] give a negative answer for $n=2$. The question remains unsettled for $n=4$.

References

1. R. H. Bing, Conditions under which a surface in E^{3} is tame, Fund. Math. 47 (1959), 105-139.
2. ——, Each disk in E^{3} contains a tame arc, Amer. J. Math. 84 (1962), 583-590. MR 26 \#4331.
3. - E^{3} does not contain uncountably many mutually exclusive wild surfaces, Bull. Amer. Math. Soc. 63 (1957), 404. Abstract \#801t.
4. ——, Snake-like continua, Duke Math. J. 18 (1951), 653-663. MR 13, 265.
5. J. L. Bryant, Concerning uncountable families of n-cells in E^{n}, Michigan Math. J. 15 (1968), 477-479. MR 38 \#6561.

University of Wisconsin, Madison, Wisconsin 53706 and Utah State University, Logan, Utah 84321

