
An Immediate Concurrent Execution (ICE) Abstraction
Proposal for Many-Cores

 U. Vishkin
The University of Maryland Institute for Advanced Computer Studies (UMIACS) and Electrical and Computer

Engineering Department

Abstract
Settling on a simple abstraction that programmers aim at, and hardware and software systems people enable and
support, is an important step towards convergence to a robust many-core platform.

The current paper: (i) advocates incorporating a quest for the simplest possible abstraction in the debate
on the future of many-core computers, (ii) suggests “immediate concurrent execution (ICE)” as a new
abstraction, and (iii) argues that an XMT architecture is one possible demonstration of ICE providing an easy-
to-program general-purpose many-core platform.

1. Case for Abstraction
In 2004, standard (desktop) computers comprised one processor core. In 2008, some have 8 cores. By 2012, 64-
core computers (another factor of 8) are expected. Transition from serial computing to parallel computing
mandates the reinvention of the very heart of computer science (CS). These highly parallel computers need to be
built and programmed in a new way. Current solutions by leading vendors do not scale to tens of cores. Given
that clock speeds have not been improving for quite a few years,
the use of parallel processing for improving single-program
completion time is a critical target for future designs. We need to
figure out how to build scalable many-core computers, how to
program them effectively so that programmers can get strong
performance with minimal programming effort, how to train the
workforce, and how to teach this new environment at all levels,
including introductory programming courses to college freshmen
and K-12 students.

Foremost among current challenges is timely
convergence to a robust many-core platform that will serve the
world for many years to come. Critical to the economy and
workforce, the basic motivation behind the current position paper
is bringing about the reinvention of CS for meeting this
challenge: 1) Andy Grove (Intel) noted that the software spiral (hardware improvements lead to software
improvements that lead back to hardware improvements) had been an engine of sustained growth for IT; but (as
explained in [6] and since convergence is yet to happen), it is now broken! 2) Both under-trained and mis-
trained for a future certain to be dominated by parallelism, most CS students only study the old serial paradigm,
acquiring serial habits that complicate later transition to parallelism. But, how should we approach the
convergence challenge, and, in particular, what the first step should be.

The final posting in a special series on why research advances are needed to overcome the problems
posed by mulitcore processors on the Computing Community Consortium blog [5] perhaps implies a perception
of despair in the community. The problem is not new. Many parallel computer architectures have been proposed
and built over the last 40 years, but with limited success. Exploiting the parallelism present in them has often
eluded their users. The main source of encouragement in [5] is a call on all involved communities to
collaboratively start with a clean slate, rather than have language researchers locked into mechanisms supported
by commodity hardware and hardware researchers locked into fully supporting any current software.

This is not the first time that CS is facing a complex system problem requiring a solution that involves
many different players and should be robust over time in the face of system upgrades. It has become a signature
intellectual success story of CS to address such problems by figuring out a simple abstraction that acts as “a
single nail holding everything together”. In fact, abstractions that present the user with a virtual machine that is
easier to understand and program than the underlying hardware, but still allows effective use of the hardware,
facilitated significant Computer Science accomplishments. Broad consensus built around these simple

One of the dictionary definitions of
abstract is difficult to understand, or
abstruse. In CS, however, abstraction has
become synonym with the quest for
simplicity. Interestingly, the word
abstraction in Hebrew shares the same
root with simple (as well as undress and
expand).

abstractions was the key. Some formative abstractions were: (i) that any single instruction available for
execution in a serial program executes immediately, henceforth called immediate serial execution (ISE); note
that since an instruction may apply to any location in memory, ISE extended another formative abstraction that
we call “immediate memory access (IMA)”: that any particular word of an indefinitely large memory is
immediately available, and (ii) that a computer is serving the task that the user is currently working on
exclusively, henceforth exclusive computer availability (ECA).
The IMA abstraction abstracts away a hierarchy of memories,
each with greater capacity, but slower access time, than the
preceding one, and the ISE abstraction extends it to immediate
execution of any operation. The ECA abstraction abstracts away
virtual file systems that can be implemented in local storage or a
local or global network, access to the Internet, and other tasks
that may be concurrently using the same computer system. These
abstractions have improved the productivity of programmers and
other users, and contributed towards broadening participation in
computing.

Some simple and robust abstraction can be the first
writing on the clean slate sought in [5]. We will then need to
build a consensus around such an abstraction as a way to
reproduce past CS success stories for the many-core era. Finding
the best many-core platform requires a battle of ideas whose
outcome will affect a rather broad community. The need for
acceptance by all relevant segments of the community suggests
the necessity of benchmarks for predicting the success of a
many-core platform. Development of such benchmarks is, in
fact, long overdue. Abstractions provide an effective way for
lowering the bar towards broadening participation in the debate
to all relevant participants. While the utility of abstraction will
become much clearer once such benchmarks are available, there
is no reason not to focus on abstractions immediately.

The desired abstraction will: (i) be simple, hiding the
details of the underlying hardware, (ii) be accessible to the
broadest possible groups of users, (iii) allow strong speedups for
applications, (iv) be scalable; a user of a 16-core computer
should rely on the same abstraction as a user of a future
generation 1024-core computer, or else performance code will
have to be continuously rewritten; this will also help put the
above noted software spiral back on track; (v) extend, rather than
replace, existing (successful) abstractions; in particular, when
code provides no parallelism, the user will need to be able to fall
back on the serial abstraction ISE; and last, but definitely not
least, (vi) be buildable; we must be able to build an actual
computer system that provides good performance for users that
rely on the abstraction. Note also that the ECA abstraction does
not require change.

2. Our ICE abstraction candidate
The candidate abstraction proposed is: That an indefinitely large
number of instructions available for concurrent execution
executes immediately, and dub it immediate concurrent execution
(ICE). A step-by-step explication of the instructions that are available next for concurrent execution requires the
lowest level of cognition relative to all current parallel programming models, is independent of the number of
processors, and falls back on ISE, in case of one instruction per step. The embodiment below reinforces relative
simplicity and ease-of-programming, while addressing speedups and implementation.

Ideally one would desire an indefinitely
large memory capacity such that any
particular ... word would be immediately
available ... We are ... forced to
recognize the possibility of constructing
a hierarchy of memories, each of which
has greater capacity than the preceding
but which is less quickly accessible. For
historical context consider the above
quote from [1], one of the most
formative efforts in the history of the
field. The quote reflects a tension
between a desired abstraction and
physical realization. Six decades later,
the verdict on how this tension was
resolved is clear. As imperfect as this
abstraction is, mainstream CS holds that
the abstraction won. A prevailing
working assumption for nearly every
computer scientist is the IMA abstraction
(as well as the more general ISE
abstraction). Consider those computer
system and compiler professionals
whose important work requires
accounting for the memory hierarchy in
order to mitigate its gaps with the IMA
abstraction. These people actually labor
to support this abstraction so that
programmers can incorporate it in their
programming model and improve their
productivity. When it comes to the IMA
abstraction, the only exception to all
those who either abide by the abstraction
or serve it is the relatively few who are
seek to get the most out of the memory
hierarchy for their application, by
avoiding the IMA abstraction.

3. An embodiment of the ICE abstraction
We finally argue that we have already made significant progress towards an “XMT/PRAM” embodiment of the
ICE abstraction. Addressing all the six properties above, different parts of the embodiment are at different
maturity stages. The main components in this embodiment are: (i) The well-known PRAM parallel algorithmic
approach that has never been seriously challenged on ease of thinking, or wealth of knowledge-base; PRAM
algorithms are essentially prescribed as (a) a sequence of rounds, and (b) for each round, up to p processors can
execute concurrently; where p is the number of processors assumed. The objective is minimizing the number of
rounds. (ii) The Work-Depth methodology (due to [4]) suggests that the objective could be simpler. The parallel
algorithm can be prescribed as (a) a sequence of rounds, and (b) for each round, any number of operations can
be executed concurrently assuming unlimited hardware. The total number of operations is called "work" and the
number of rounds is called "depth". The objective is reducing work and depth. The methodology of restricting
attention only to work and depth has, in fact, been used as the main framework for the presentation of PRAM
algorithms in texts such as [2,3]; see also the class notes available through [9]. By way of the Work-Depth
methodology, the PRAM provides a direct embodiment of the ICE abstraction, and is a simple natural extension
to serial algorithms as the ICE parallel abstraction generalizes the ISE serial abstraction. (iii) A very fine-
grained, irregular general-purpose on-chip parallel computing platform, optimizing single-program completion
time; developed as well as hardware and software prototyped at UMD, the platform comprises a so-called
eXplicit Multi-Threaded (XMT) architecture that scales to 1000 processors on-chip and can be programmed
using a PRAM-like (actually work-depth like) programming language XMTC [9]. XMTC is a modest extension
of the language C augmented with a spawn command, and only one other command. And (iv) a “back-end”
performance model [7] that is closer to hardware constraints, both as a compiler target and for coders seeking
performance beyond ICE.

Advantages of the embodiment include: 1) a methodology for PRAM-like parallel programming that, as
explained above, reflects the ICE abstraction, freeing the programmer from the need to first decompose the
problem as typically required by other parallel programming approaches; recall that parallel programming
difficulties have failed all general-purpose parallel systems to date by limiting their use. 2) XMT is, in fact, a
practical implementation of the ICE abstraction. 3) XMT is comprehensive and coherent. It accounts for
application programming (VHDL/Verilog, OpenGL, MATLAB, etc), parallel algorithms, parallel programming,
compiling, architecture, power, deep-submicron implementation, and backward compatibility on serial code. 4)
The approach goes after any type of application parallelism regardless of its amount, regularity, or grain size and
is amenable to multiprogramming. 5) We have demonstrated its feasibility through hardware and software
prototyping. We also demonstrated good performance, programmability and teachability. Highlights include:
evidence of 100X speedups on general-purpose applications (on a simulator of 1000 on-chip processors), a 64-
processor, 75MHz XMT FPGA-based computer [8], 90nm ASIC tape-outs, basic yet stable compiler, and a
class tested programming methodology where college freshmen and even high-school students are taught only
parallel algorithms and then self-study XMT programming. 6) Just released XMTC compiler and cycle-accurate
simulator of XMT that can be downloaded to any standard desktop computing platform. This software release is
available through the XMT home page, or sourceforge.net [9].

4. Conclusion
The memory hierarchy had been a challenge for serial computing, and the IMA abstraction addressed that. The
fact that hardware needs more time to execute some operations than others was yet another challenge and the
ISE abstraction extended IMA to address that, but ISE is not good enough to address the world of parallel
hardware. Abstractions have played an important role in parallel computing, e.g., in parallel programming
models. They should play a similar key role for many-cores, as well. Our main point is that the ICE abstraction,
coupled with an XMT/PRAM platform (or perhaps some other embodiment in the future) provide a viable
option for the many-core era

The community should engage in assessing candidate abstractions, and establish a merit-based process
for a healthy competition among them. Consensus built around the abstraction that will be selected will go a
long way towards convergence to a many-core platform that will put back on track the software spiral and
reconnect the training of CS students with the future needs of the field.

Acknowledgement
Helpful comments by G. Caragea, M. Olano, A. Schulman, A. Tzannes and A. Varshney are gratefully
acknowledged.

References

[1] A.W. Burks, H.H. Goldstine, and J. Von Neumann, Preliminary Discussion of the Logical Design of an
Electronic Computer Instrument (1946).
[2] J. JaJa, An Introduction to Parallel Algorithms, Addison-Wesley, 1992.
[3] J. Keller, C.W. Kessler and J.L. Traeff. Practical PRAM Programming. Wiley-Interscience, 2001.
[4] Y. Shiloach and U. Vishkin. An O((n**2)log n) parallel max-flow algorithm. J. of Algorithms 3 (1982),
128--146.
[5] M. Snir, Multi-core and parallel programming: Is the sky falling? The Computing Community
Consortium Blog, http://www.cccblog.org/2008/11/17/multi-core-and-parallel-programming-is-the-sky-falling/
[6] H. Sutter, The free lunch is over – A fundamental shift towards concurrency in software, Dr. Dobbs
Journal 30 (3), March 2005.
[7] U. Vishkin, G. Caragea and B. Lee. Models for Advancing PRAM and Other Algorithms into Parallel
Programs for a PRAM-On-Chip Platform. In Handbook on Parallel Computing: Models, Algorithms, and
Applications (Eds S. Rajasekaran and J. Reif), Chapman and Hall/CRC Press, 2008.
[8] X. Wen and U. Vishkin. FPGA-based prototype of a PRAM-on-chip processor, ACM Computing
Frontiers, Ischia, Italy, May 5-7, 2008.
[9] Explicit Multi-Threading (XMT): home page http://www.umiacs.umd.edu/users/vishkin/XMT/ and
software release http://sourceforge.net/projects/xmtc/

