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Abstract

An immersed finite element (IFE) space is introduced for interface problems of second order
elliptic partial differential equations. The IFE space is nonconforming and its partition can be
indenpendent of the interface. The error estimates for the interpolation of a function in the
usual Sobolev space indicates that the IFE space has an approximation capability similar to
that of the standard linear finite element space except for a logarithm factor.

1 Introduction

In this paper, we will discuss the approximation capability of the immersed finite element (IFE)
space formed by first degree polynomials for the following interface problem:

—V-(BVu) = f, (z,y) €9, (1.1)
U‘BQ =9, 1 2)

together with the jump conditions on the interface I':
[l = 0, (1.3)

[Bun] e = 0.

Here, see the sketch in Figure 1, Q C R? is a convex polygonal domain, the interface I is a curve
separating ) into two domains 27, Q7 such that Q = Q= UQT, and the coefficient 8(z,y) is a
piecewise constant function defined by

i o
Maw={§g§23295

The basic idea of the immerse finite elements is to form the partition 7; independent of
interface I' so that partitions with simple and efficient structures, such as a Cartesian partition,
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Figure 1: A sketch of the domain for the interface problem.

can be used to solve an interface problem with a rather complicate or varying interface. We only
consider partitions formed by triangles here, partitions formed by quadrilateral elements will be
discussed in a forthcoming paper. Without loss of generality, we assume that the triangles in
the partition used have the following features:

(Hy): If T meets one edge of a triangle at more than two points, then this edge is part of T'.

(Hz): If T’ meets a triangle at two points, then these two points must be on different edges of
this triangle.

Obviously, triangles in a partition can be separated into two classes:

e Non-interface triangle: The interface I' either does not intersect with this triangle, or it
intersects with this triangle but does not separate its interior into two non-trivial subsets.

e Interface triangle: The interface I' cuts through its interior.

In a non-interface triangle, the local nodal basis functions will be the standard linear polynomi-
als, but in an interface triangle, the local nodal basis functions will be formed by piecewise linear
polynomials that can satisfy the interface conditions (1.3) and (1.4) in a sense of approximation
explained in the next section. The immersed finite element space defined over the whole domain
Q with the partition chosen can then be defined in the usual way.

This report is organized as follows. In Section 2, we will introduce the IFE space and describe
some basic properties of the local nodal basis functions of the IFE space. In Section 3, we will
use the technique based on the multipoint Taylor expansion, see [2, 3], to derive error estimates
for the interpolation in the IFE space of the functions in Sobolev spaces. We would also like to
point out that several arguments used in the error estimation are inspired by [4].

For any subset T of €2, we let

T°=TNQ* s=—,+.

For any function f(z,y) defined in T C Q, we can restrict it to T, s = —,+ to obtain two
functions as

fs(xvy) = f(:c,y), if (a?y) €T% s=—+.

We use DFE to denote the line segment between two points D, E € Q. For any curve I', we use
nr to denote its unit normal vector pointing to a particular side of I'. Also, for any measurable
subset A of €, we use |A| to denote its measure.



2 The immersed finite element space

In this section, we will first introduce the local nodal IFE basis functions and then use them to
define the IFE space over the whole domain with a partition chosen. We will also describe some
basic features of these basis functions.

For a typical triangle T € Ty, we use A = (21,y2)7, B = (w9,12)7,C = (23,y3)T to denote
its vertices, and use D = (zp,yp)? and E = (zg,yr)? to denote its interface points on the
edges if T is an interface triangle ( see the sketch in Figure 2).

A

T+

B C

Figure 2: A typical interface triangle AABC'. The curve between D and E is part of the interface
T.

Our main concern is the finite element functions in an interface triangle. We follow an idea
similar to that for the Hsieh-Clough-Tocher macro C! element [1] in which piecewise polyno-
mials are used in a triangle to maintain certain desirable features. For our interface problem,
we obviously would like the finite element functions to satisfy the jump conditions across the
interface. Since the interface I' separates an interface triangle 7" into two subsets T~ and T, we
naturally can try to form a finite element function by two first degree polynomials defined in 7'~
and Tt respectively. Note that each polynomial of degree one has three freedoms (coefficients).
The values of the finite element function at the vertices of T provides three restrictions. The
normal derivative jump condition provides another. Then we can have two more restrictions by
requiring the continuity of the finite element function at interface points D and E. Intuitively,
these six conditions can yield the desired piecewise linear polynomial in an interface triangle.
This leads us to consider functions defined as follows:

¢~ (x,y) = a1 + by + ¢4, (z,y) €T,
¢(I ) — ¢+(T/7y)202$+52y+02, (mvy)aETJra
Y ¢~ (D) =¢™(D), ¢~(E)=¢"(E),

(67V¢~ —3TV¢T) - n(DE) =0,

(2.5)

where n(DE) is the unit vector perpendicular to the line DE. A
As usual, we only need to define the nodal IFE basis functions in the reference triangle T

with vertices A, B and C:
A 0 - 0 A 1
=(5)2-(0) - (o)



The interface triangle T' is related with the reference triangle by the usual affine mapping;:
F(x)=xp+ Mx

Under this mapping, D becomes D = (0,91)T, E become E= (1 — G2, 92)T with 0 < 91,92 < 1,
and

$(X) = $(F (X)) = §(X). (2.6)

s o (X) = ¢H(A) + ard + az(j — 1), XeTH,
X) = N N P AN . . 2.7
LR e s P S D
The continuity of gig at D and E lead to
ax(fr —1) —bafn = &(B)—d(A), (2.8)
ar(1— o)+ az(f2 — 1) —baile = (B) — (A) + (3(C) — (B))(1 — i)
The flux jump condition (3-V¢~ — 37¢*)-n(DE) = 0 becomes
(57567 = 5%6%) -a(DF) = 0, with a(DF) = ~*n(DF) = (1 ).
2
which leads to
aing + asng — pigby = P(qu(é) - Qg’z(é))ﬁla
with p = 37 /87. Assuming that 7y # 0, we can write the above as
a1é — ag + pby = p(ds(C) — ¢;(B))d, with & = f% (2.10)
2

Lemma 2.1 The function ¢(x,y) defined by (2.5) in an interface triangle T is uniquely decided
by its values at the three vertices of T'.

Proof. We only carry out the proof for ¢. Equations (2.8), (2.8), and (2.10) for a linear system
about a1, as and by whose matrix is

0 -1 -
A= 1-92 -1 4 |, (2.11)

and the right hand side of this system is

)  Gu(B)-di(A)
r= ¢Z(B)*¢i(A)A+A(¢i( A) j¢z‘( (L — 92)
p(0:(C) — ¢i(B))d

Assuming that the line passing D and E is in the direction (1,a)T, then

U2 — 11
o =

1 1
173;27 y27é )



and

det(A) = (1 —9)(1+daa+p(l—792)(1+a))
= (1—1) (?31 +da+p(1—y11jaa> (1+a))
= (1=92) ()1 + da+p(1 — i)
> (1 —92)(Ga+min{l, p}) >0

because 0 < g1 < 1. This implies that this linear system has a unique solution, and the function
¢ or ¢ is uniquely determined by the jump conditions and its values at vertices of the triangle.

Now, we let ¢;(X) be the piecewise linear function described by (2.5) and

1, ifi=j,
“bi(xj’yj):{ 0, ifi# ],

for 1 <1i,j < 3. Moreover, we now let S,(7T') be the linear space of all the functions defined by
(2.5), and call it the immersed finite element space on an interface triangle 7. Furthermore, we
notice:

e The proof of Lemma 2.1 itself provides a way to construct the nodal basis functions in an
interface triangle, and ¢;(X),7 = 1,2, 3 form a basis of Sy, (7).

e ;From the proof we can see that ¢~ (z,y) = ¢*(x,y) when p = 1, i.e., when the coefficient
does not have the jump, the functions in Sp(T) become the usual linear polynomials. In
this case, Sp,(T') reduces to the standard linear finite element space.

e When I'N T is a straight line, the function ¢(x,y) defined by (2.5) is continuous in T" and
therefore is in H(T).

We now turn to the discussion on the properties of the IFE functions.

Lemma 2.2 For an interface triangle T, every function ¢ € Sp(T) satisfies the fluz jump
condition on I' N'T exactly in the following weak sense:

/ (B~V¢~ —B"Ve¢t) nrds = 0.
rnT

Proof. For any ¢ € Si(T), it is obvious that ¢° € H?(T*), s = —,+. Also, because ¢ is a
piecewise linear polynomial satisfying (2.5), Green’s formula leads to
/ (B Vo —B'Vet) nrds = —/ (B-Vé~ - FVéY) - ngpds = 0.
rnT DE

Lemma 2.3 For the three functions ¢;(X),i =1,2,3 defined above, we have
$1(X) + d2(X) + ¢3(X) = L.

Proof. Again, we only need to show that this is true for ¢; whose parameters in (2.7) are
a1i,G2i,b2;,1 = 1,2,3. Using the linear system determining the parameters ap, as,bs in the



proof of the Lemma 2.1, we have

__all=p) i=1
i+ aa+p(l— i)’ ’

—(1+ada)p+ 1+ a)(p—=1)j»
U+ aa+ p(1 —91)

a1, = ) = 27

pta(l+p+ap) —(1+a)(p—1)j
i +aa+p(l—ih) ’

ada+p
o1+ aa+p(1—11)°

i=1,

% 01+ aa+ p(1— 1) ’ ’

_a(=1+p)(=a+ (1 +a)j)
g1 +aa+p(l—11)
aa+1 i=1

th + aa+ p(1 —1n)’ ’

i=3,

b —1-Ga(-1+p+ap)+a(l+a)(p—1Di
S U1+ o+ p(l —11) ’

_ a1+ a)(=1+p)(=1+7)
n+aatp(l—g)

A simple calculation can show that
aji+aj +ajz =05 =12
ba1 + baa + bo3 =0,

which together with (2.7) lead to the result of this lemma.

In the discussion below, we need another assumption on the partition 7.
(H3): The family of partitions 7, with h > 0 is regular, see [7].

Lemma 2.4 There exists a constant C such that for any interface triangle T € T, and X € T
we have

6 (X)] < C, (2.12)
Ve (X)| < Ch™t, (2.13)
Proof. Obviously, (2.12) follows from the boundedness of the parameters aq,as,bs in (2.7).

From the proof of the previous lemma, we can see that these coefficients are linear combinations
of the following functions

1 « 1676
htaa+pl—01) n+aa+pl—ip) +aa+p(l—11)

Without loss of generality, we can assume that @ > 0, and when « tends to oo, & will tend
to @ by which (Goo, —1)T describes the direction for the image of the normal vector of BA
under the affine mapping F(x). Since the partition is regular, there must exist a constant C



such that éoo > C' > 0. Therefore all the functions listed above can be uniformly bounded by
a constant for &, a € [0,00]. This implies the boundedness of éi, and then the boundedness of
bii=1,2,3.

Note that

() X e it
az

( ¢z(é)b—2¢z(3) )7 Xel,

and V¢; = M~ TV¢,;. Because of partition is regular, we have |M~T|| < Ch~!. Since HngASi
is bounded, we finally have

IVeill < Ch™
n

Now we use the partition 7, to define an immersed finite element (IFE) space S;,(€Q). We
first define a nodal basis function ¢(z,y) for each node (zx,yn)? of 75, piecewisely such that
¢(zn,yn) = 1 but zero at other nodes, and ¢|r € S, (T) for any triangle T' € Tj,. Here S, (T) is
the usual space of linear polynomials when T is a non-interface triangle, or the immersed finite
element space on T introduced above when T is an interface triangle. Then we define S, ()
as the span of these nodal basis functions, and it is easy to see that S,(€) has the following
properties:

e For a partition 7}, the IFE space S, (£2) has the same number of nodal basis functions as
that formed by the usual linear polynomials.

e For a partition 7}, fine enough, most of its triangles are non-interface triangles, and most
of the nodal basis functions of the IFE space S, (Q2) are just the usual linear nodal basis
functions except for few nodes in the vicinity of the interface I'.

e For any ¢ € S;,(Q), we have
dlover € HH(Q\Q), (2.14)

where ' is the union of interface triangles.

3 Some error estimates for interpolation approximations
For any T' C Q, we let

PWMT) = {u | ulps € WJH(T*),s =, 4}, p>1.m=0,1,2,

PHZ,(T) = { € C(T), ulr- € HX(T*),s = -+, [ﬁaaﬂ -0 F“T}’
r
PC(T) = {u e C(T),u|lrs € C™(T®),s =—,+ [ﬂgz] =0 on F}, m > 2.

As usual, we have PH™(T) = PW3*(T). Obviously, we have PH?

2 (T) c PH?(T). Also, for
any function u € PW*(T'), we let

2 2 2
[ ullo pr = Nll 2+ [l s - (3.15)



Semi-norms of PW"(T') can be defined accordingly by

2 2 2
|u|m,p,T = ‘u|m,T* + ‘u‘m7p7T+ . (316)

When p = 2, we will drop p from the notation of the norms. Similar definitions can be introduced
for PHm(Q) PH?,(Q) and PC3(Q).
In this section, we assume that the interface curve I' and the partition 7; chosen satisfy the

following assumptions:

(Hy4): The interface curve I is defined by a piecewise C? function, and the partition 7}, is formed
such that the subset of I in any interface triangle is C2.

(Hs): The interface I' is smooth enough such that PC3(T) is dense in PH?(T) for any interface
triangle of 7j,.

Based on the regularity of the transmission problem, see [6, 9], (Hs) will be true if I is smooth
enough.

For a function u € PHZ2,,(T),T € Ty, we let I, ru € Si(T) be its interpolation such that
In ru(X) = u(X) when X is a vertex of T. For an interface triangle T with vertice A, B, C, we

have

Inru(X) = u(A)g1(X) 4 u(B)pa(X) + u(C)¢3(X).
Accordingly, for a function v € PH?

2.(Q), we let Iyu € S,(2) be its interpolation such that
Inuly = Inr(ulr) for any T € 7. The purpose of this section is to derive error estimates of
the interpolation of u € PHZ ().

Since the error estimates in any non-interface triangle is well known, we focus our discussion
on interface triangles. For an arbitrary interface triangle, see Figure 3, we let T be the subset
in T" enclosed by the interface I" and the line segment DFE, and let

T* = T\T*, s=—,+,

For any point Ae ', we let A 1 _be intersection point of the line segment DE and the line
perpendicularly passing DE and A. We will use the following four matrices:

o @2 AP (o= Dna(ny ()
N = (( —1>nz<A>ny<A> (A2 + pny (A )
oo P+ oA (- DBy (D) | 1
NTA) = ( 5 Dig(Dny(A) ng(A) + g (AY? ) =
L W42 (p— D)L,
Nop = ( —1flxny pﬁi—kpﬁi )’
NE = ( . +pn (p— )ngny, >’

=2 | ~=2
nxny Ny, + pny,

where n(A) = (ny(A), ny(A)) is the unit normal vector of I' at A, and n(DE) = (M, my) T is
the unit normal vector of DFE.

Since I NT is a C? curve, when the partition 7}, is fine enough, we can introduce a local
coordinate system centered at point D with one axis in the direction of DE. For any point
(z,y)T, let (&,m) be its coordinates in this local coordinate system. Then we have

()=o) (s s ) () o



B C

Figure 3: An interface triangle with no obscure point.

where (zp, yD)T is the coordinates of point D and fpg is the angle between DFE and the x axis.
As in [5], we can assume that I' has the following equation in this local system:

n=0(), ¢e€lo,|DE], (3.18)

with
[6(6)] < Ch?, (3.19)
|¢'(€)] < Ch. (3.20)

(From now on, if necessary, for any point P, we will use

(o) = (50

Yp np

to denote its coordinates in the x — y and £ — n systems, respectively.

Lemma 3.1 There exists hg > 0 such that for all 0 < h < hg and any point Ae I', we have
HE—LH < Ch2. (3.21)
|Ms— Ne(@)|| < Chy 5= -+, (3.22)

Proof. We can just prove these in the local coordinate system because the transformation (3.17)
preserve the vector length. In the local system, we have

= (5)a(4)

Hence (3.21) is just the consequence of (3.19). Also, we have

n(0F) - ( | ) ,n@_W( 0.



Then, by (3.20), we have

|n(DE) - n(d)| < cn,

which together with definition of N7— and N*(A), s = —, +, lead to (3.22).

We will call a point X = (z,y)T in an interface triangle T € 7}, an obscure point if one of
the three line segments passing X and the vertices of T" intersects the interface more than once.
Without loss of generality, we discuss an interface triangle not consisting of any obscure point;
the arguments used below can be readily extended to handle interface triangles with obscure
points.

For any function u € PHZ,,(T), the error estimates for Iy, 7u is obtained by estimates over
the three subsets T, T** and T™* of T. The key issue is to establish suitable multipoint Taylor
expansions for functions in S,,(7) and PC3(T).

We start with the estimation on 7*~. Let X = (z,y)? be a point in 7*~. Without loss of
generality, we can assume that line segments X B and XC do not intersect with the interface
and DE, while line segment X A meets I' and DE at A and A, respectively, see Figure 4. Also,
we assume that

A=tA+(1-DX = (7,97
A=tA+(1-D)X = (7,7)7.
A
r
T+
A T* FE
D _
A
T+
X
B C

Figure 4: A point X € T is connected to the three vertices by line segments.

Lemma 3.2 Given a real number r, a two dimensional vector q, a point X € T*~, and a point
X35 € DE, there exits a function v € Sp(T') such that v(X) =r,Vu(X) = q, and

0 = a- (A= X)o:(X) + (B~ X)hao(X) + (C — X)¢3(X))

+ (N = - (A= X)(1 = D1(X) + (N~ - (A = Xp)61(X). (3.23)

10



Proof. Let
oY), YeT,
v(Y) = { vH(Y), YeTt
be a function in Sy, (7"). Since v(Y) is piecewise linear, v(X) = r, Vo(X) = q uniquely determine
v™(Y). Then the interface conditions v=(D) = v*(D),v™(E) = v*(E), and 75— P =

Inpg
+ vt
8

uniquely determine v (Y").

Since v(tB + (1 — t)X) is a linear function of ¢, using integration by parts, we have

”(X)+/O du(tB +d(t17t)X)dt

v(B)

— o(X) +Vo(X)- (B—X)+ /1(1 _ s Zt(j —D%) 4

= r+q-(B-X). ’
Similarly, we have

v(C) = r+q-(C—-X)
For point A, we first have
o(A) = o(X)+ ot () — o (A) + /Ot%(uw (1—8)X)dt
+ [ g”(tAHl—t) dt+/ S (EA+ (1= )X)dt
;

Using integration by parts, we have

[ aasaoxas [ Paava-oxas [ Laasa-pxa

2

(tA+ (1 —t)X)dt

= Vv(X)-(A—X)—Vv(Z)-(A—x)(lff)%—/o(1 )‘32

2

+Vo(A) - (A= X)(1 =) = Vo= (4)- (A - X)(1—5+/t(1 )a (tA+ (1 —t)X)dt

ot 2
_ " 1 82
+Vot(A) - (A— X)(1—1t) +/{ (1— )(9 5 (tA+ (1 — ) X)dt
= Vo(X)-(A—X)=Vo (A)-(A— X)1—1)+ Vo (A)-(A— X)(1—1)
= Vu(X) (A= X)+ Ny —I)Vu (A A)-(A—X)(1—-1)
— A (A X)+ (Nop— Da-(A— X)(1-),
where all integral terms involving second order derivatives of v(Y) disappear because v(Y) is a
piecewise polynomial of degree 1.
By Taylor expansion, we have
vH(A) = v (Xpg) + Vo (Xpg) - (A~ Xpp)
v (4) = v (Xpg)+ Vv (Xpg) - (A - Xpp).



Hence, from the continuity of v(Y) on DE,
vH(A) — v (4)
= (N’ —I)Vv (Xpp) - (A X55)
= (Ngz—DVo(X)- (A= Xp5) = (N5 — I)a - (A— X55)
Putting these together, we have
v(A) = r+q- (A—X)—I—(NE—E—I)q- (A= X)(1-1)
+(Ngz — Da - (A = Xp5).

Then, from these expansions of v(Y") at the vertices of T, we have

v(X) = Ith(X) v(A)$1(X) + v(B)pa(X) + v(C)ds(X)
= Zcm (A= X)p1(X) + (B — X)¢2(X) + (C — X)o3(X))

+ (N5 —Da- (A= X)(1 = D1 (X) + (N5 — Da- (A - Xpg)é1(X),

and the proof is finished because v(X) = r and 32°_| ¢;(X) = 1.

Lemma 3.3 For any u € PC*(T), X € T*~, and X557 € DE we have
Ih7T’U,(X) — u(X)

= (N(A) ~ N5 ) Vu(X) - (A~ X)d1(X)(1 1) — (Npyr — DVu(X) - (A~ Xp5)1(X)

+(1 =) (N~ (A) — 1)/0 ‘Ndzf (tA+ (1 —1)X) - (A — X)dt $1(X)
+/Ot(1 )fz(tA—i—(l—t) X)dt ¢>1(X)+/;(1 )652 (A + (1 — )X)dt 6y (X)3.24)
+/O (14)52@3“17@ X)dt ¢2(X)+/0 (17t)d22(t0+(17t) X)dt ¢s(X).

Proof. Since u(tB + (1 —t)X) is a C? function as a function of ¢, we have

w(B) = u(X)+/01 zt(tB—i—(l—t)X)dt

w(X) + Va(X) - (B - X) + /01(1 - )‘Zz B+ (1-0)X)dt.  (3.25)

Similarly, we have

u(C)

u(X) +/01 ‘ét (tC + (1 —t)X)dt

1 2
d
= u(X)+ Vu(X)-(C-X) —|—/ (1- t)ﬁg(tC’—l— (1-t)X)dt. (3.26)
0
Using the jump condition across the interface, we have

ny(A)? + pra(A?  (p— Dna(A)n, (A)

i) = < (0~ Dria(Amg(A) ()2 + pry(AY? )V“(g)‘N(XW“(Z)‘

12



Then, we have

L du
)

= u(X)+/0tZ—t(tA+(1—t)X)dt+/;Z—1;(tA+(1—t)X)dt

uw(A) = u(X)+ tA+ (1 —t)X)dt

2

= u(X)vu(ﬁ)-(AX)a£)+Vu(X)-(AX)+/t(1 )‘;tQ (tA+ (1 —t)X)dt
+ Vut(A) - (A- X)(1—{E)+[1(1—t)%(tA+(1—t)X)dt

= u(X) + Vu(X) - (4~ X) + (N7 (4) - DV~ (A) - (A~ X)(1 - 1)
+/Ot(1 )(52(25144-(1—15) )dt—i—/{( )d:(tA—I—(l—t)X)dt

= u(X)+ Vu(X )-(A—X)+(N*(A)—I)Vu( )- (A= X)(1-1)

+ (1= (N (A) —1) /0 l dvdzf (tA+ (1 —1)X)- (A—a)dt (3.27)

t d2 1 d2
+/0(1 )dQ(tA—k(lft)X)dt—k/f (-5 (tA+ (1 - )Xt

Then
Inru(X) = u(A)d1(X) + u(B)d2(X) + u(C)ds(X)

X) D 6i(X) + Va(X) - (A= X)d1(X) + (B = X)d2(X) + (C = X)¢3(X))

=1

FV(A) = DU (X) - (A= X)(1 = D) (X)
a0 -0 [T (003 (4= X6, (329)

+/Ot(1 )‘52 (tA+ (1 — )X)dt ¢1(X)+/:(1 )‘52 (tA+ (1 — )X)dt 61(X)
+/01(1—t)%(t3+<1_t))()dt ¢2(X)+/01(1 DL G0+ (1= )X)dt 65(X)
Now let v € S, (T) be such that
o(Y) :{ ngg ?E;i
with first degree polynomials v~ (Y),v* (Y) determined by
{ v (X) =u™(X), Vo (X) = Vu (X),

vH(D) = (D), v*(B)=v(B), 5+ I (4)

on(DE)

_ v (A) _ (3.29)

Then by Lemma 3.2, we have
3

wX) = u(X)Y hi(X)+ Vu(X) - (A= X)$1(X) + (B = X)d2(X) + (C = X)¢3(X))

i=1

H(NSZ = DVu(X) - (A= X) (1~ 8)d1(X) (3.30)
+ (No— = D)Vu(X) - (A = Xp5)61(X).

13



Finally, (3.24) follows from (3.28) and (3.30).

Lemma 3.4 There exits a constant C such that
1 nzu = ullg goe < Ch? [Jullyp (3.31)
for any w € PH? ,(T) where T is an arbitrary interface triangle.

Proof. Because of (Hs), we just need to show that (3.31) is true for any u € PC%(T).

We proceed by estimating the L? norms for all the terms on the right hand side of (3.24).
By Lemmas 3.1 and 2.4, we have the following estimate for the L? norms of the first two terms
by letting X557 = Ay:

|Q1H0 1o T 1Q2llg -
= ||V ()~ M) V() - (A = X)en(X) (1 - )
+ H(N];_E DV (X) - (A ,L)c;sl(X)H
< OB lull pu- < OB ully g

For the third term, we note that

0,T*~

0,7~

Qi < C1-ty (/0 [um(i,n)(f—x)z+2uzy(€,n)(5—fv)@—y)+uyy(€,n)@—y)2]dt>

2

IN

Ch*(1—1t) </01 [t (€,1) + 2uay (€,) + uyy(ﬁ,n)]dt)

IN

1
O (1= [ [ () + iy (€m) + ()]
0
with £ =tZ + (1 — t)z,n =ty + (1 — t)y. Therefore,

2
Qsllsr- = [ Qax

< Ccr'(1 /7/ L&m) +ud, (&) +ul, (& n)] dtdX

SC%LWMMH%#M+%@MM
Ch* Jully -

A

or

1Qallo 7~ < Ch? Jlully r— -

For the fourth term, we have

Qi < C </0 (1 - t) [umm@ 77)($A - m)g + ZUmy(ga n)(xA - x)(yA - y) + Uyy(f, n)(yA - y)Q} dt)

Ch? </0 (1 —1t) [uze(&,m) + 2uay(§,m) + uyy (&, )] dt)

IA

CWAO4VMMm+ﬁMm+%ﬁth

IA

14



with ¢ =txa + (1 —t)z,n =tya + (1 —t)y, A = (za,ya)". Therefore

i < ot [ [ e + 2 6+ 03 6] i

< Ch“/Tf [z (&) + 1l (€ 1) + up, (€,m)] dX < OB |lully -
or

1Qull-— < Ch? |Jully 7 -
Similarly, we can show that
@5l - < Ch? ||ully 7+,
QI < CR? |lully -
1Q7llpe- < CB? |lully - -
Finally, (3.31) follows from the estimates for Q;,i = 1,2,---,7 above.

We now turn to the estimation in H' norm on 7. In the following two lemmas, we let
I, I and I3 be the integral terms in the expansions (3.27), (3.25), and (3.26), respectively.

Lemma 3.5 For anyu € PC*(T), X € T*~, and X557 € DE we have
IIn,ru(X) — u(X)) 9¢1(X)

= (N~ (A) ~ Npp)Vau(X)(A - A) (3.32)

0s DE 0s
- = 9¢1(X) 5¢1 5¢2 5¢3

Proof. We give a proof only for the case in which s = x because the case in which s = y can be
carried out similarly. From (3.24) in Lemma 3.3, we have

a(Ih,TU(A;(; —u(X)  _ % [( N~ (A) ~ NS )Vu(X)(A ﬁ)} $1(X)
HN () - Ny Vu(x)(a - 32
I [N~ DVu(X)(A ~ Xpg)] én(X) (333
—(N=_ — )Vu(X)(A - Xpp) aqj;; :

+(GRen0+ G20+ G2000) + (052 + £ 52 4 152

ox Ox ox 0 ox or
;From the expansions (3.27), (3.25), and (3.26), we have
0 = a0 a0+ 5 -
+ a% (N (A) — I)Vu(X)(A— Z)} + %,
0 = aZgg) (xp — ) + 8;1;—59);)@3 —y)+ %,
0 = T ey G;Z(;;) (e —v)+ 2.

15
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Then

2 03+ 2L2,x) 1 )
= (4 X)) 15 (B Xa(X) 4+ (- X))
- [V - DVux)(A - B (),

where

0%u(X)
( Y )
p= .
0%u(X)
dzxdy

Let v(Y) € Sj, be such that Vo(X) = p. Then by Lemma 3.2, we have
0 = p-(A=X)d(z)+p-(B—X)pa(x) +p-(C—X)p3(x)
+ (Ngp—Dp - (A= A)d1(X) + (Ngz — I)p - (A = Xpg)o1(X).

Hence
%le( X)+ 812@( X)+ 813¢3( X)
= (N = Dp- (A= Doa(X) + (N = D) - (A = Xpp)n (X)

LN~ DVa(X)(E - X)] u(X),
and
3(Ih,TU(§;*U(X)) _ %[(N*(j)_NB_E)Vu(X)( —N)} $1(X)

V() - N wa) (4 - 4200

9 [N = DVU(X)(A ~ X5)] a(X)
9¢1(X)

~(Ngz — DVu(X)(A - Xp7) o
+ (N = Dp - (A= A)1(X) + (Ngiz — D)p - (A — Xp55) 61 (X)
- 2N (D)~ DVu(X)(A - )] 6:(x)

u(X
h%(iﬁl +12%¢2 I ?;b )

= (N7 (A) = No)Vu(X)(A - A) i )
~(Nop = )Vu(X)(A - Xp5) a‘%er )
+ (Nop —Dp - (A= A)¢1(X) + (Nf —Ip- (A - Xpg)¢1(X)
(Il% + 1 %‘f + 1 %¢3) + 5 [(1 = Nop) Vu(X)(A = Xpp)] 61(X)
= () Ny Va(x)(a - 32
~(N= = )Vu(X)(A - Xo55) ad’aiX) + (1 % + I, % s (?;i?’)
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Lemma 3.6 There exits a constant C such that
’ 6(Ih7Tu — ’U.)

- < Chlullyr, 5=y, (3.34)

0,T*~

for any w € PH?(T) where T is an arbitrary interface triangle.

Proof. Because of (Hs), we just need to show that (3.34) is true for any u € PC3(T). The

result follows by letting X555 = A, in (3.32) and applying arguments similar to those used in
the proof of Lemma 3.4. Note that (2.13) in Lemma 2.4 has to be used here.

|

The estimation on T*% is rather similar. We state the results in the following four lemmas.
Please see see Figure 5 for the notations involved. In particular, we let

B=13B+(1—-ip)X = (@p.98)"

E—EBB—F l—tB X = ($B, )T,

)

= ( )
C=1icC+(1—tc)X = (Fc, o))"
C=tcC+(1—-tc)X = (Tc,70)".
A
C
~ I
_ T\ x
B
\\
T N FE
C
D B
T+
B C

Figure 5: A point X € T*" is connected to the three vertices by line segments.

Lemma 3.7 Given real number r, a two dimensional vector q, a point X € T*%, and two points
X555 € DE, X55 o € DE, there exits a function v € Sp(T') such that v(X) =1, Vv(X) =q,
and

0 = q (A= X)¢1(2) + (B = X)da(a) + (C — X)¢3(2))
+(NS o~ Da- (B~ Xpg )é2(X) + (N2~ Da(B — X)(1 -~ 5)d2(X) (3.35)
(C-X + (N2 = Da(C = X)(1 — tc)ps(X).



Lemma 3.8 For any u € PC*(T), X € T** s XpE.B € DE and X550 € DE we have
IhyTu(X) — ’U,(X)
= (NT(B) = Ngg)Vu' (X) - (B~ X)(1 ~ Ip)¢a(X)
+H(NT(O) = N Vut (X) - (C = X)(1 — te)ds(X)
—(NSw = D) Vu(X) - (B = B1)¢a(X) — (NS = D)Vu(X) - (C— CL)ds(X)

1 d2 te d2
+/(1 )d2(tA+(1—t) )dt¢1(X)+/ (1- )dg(tB—i-(l—t) )dt ¢2(X)
0 0
! d*u
—|—/~ (1-— t)?(tB + (1 —t)X)dt ¢p2(X) (3.36)
tp
t~c d2 1
+/0 (1 =03 (0 + (1= )X)dt gy(X +/ TU 04 (1 - X)dt ¢a(X)
1
~ dVut(tB + (1-6)X
HNH(B) - T) ( Ja dt) (1~ T)0a(X)
0
1
~ dvut(tC + (1-t)X
HNH@) - 1) ( J dt) (1 To)ba(X).
0
|
Lemma 3.9 There exits a constant C such that
1 n,zu = ully g < CH® [Jully (3.37)
for any uw € PH*(T) where T is an arbitrary interface triangle.
|
Lemma 3.10 There exits a constant C' such that
th,Tu —Uu
B L
for any w € PH?(T) where T is an arbitrary interface triangle.
|

Similar multipoint expansions can be established on T*. Please see Figure 6 for the notations
involved. In particular, we let

A= gAA + (1 _Z:A)X = (EA7gA)7
B=1igB+(1-1t5)X = (T5,75)",
C=1cC+(1-1c)X = (T, Te)"

18



T

B C

Figure 6: A point X € T™* is connected to the three vertices by line segments.

Lemma 3.11 Given a real number r, a two dimensional vector q, a point X € T™*, and a point
X575 € DE, there exits a function v € Sp(T) such that v(X) =r,Vu(X) = q, and

0 = a (A= X)ou(X) + (B — X)pa2(X)(+ (C*X)cﬁs( )

+(NE = Da(A = Xp5)61(X) + (I = Ni)a - (A= X)(1—La)éa(X),  (3.38)
+<N;—Eff>q-(BfXxlf%B)@(X) (—f> H(C = X)(1 —Fo)es(X).
| |

Lemma 3.12 For any u € PC?*(T) we have

Ih,Tu(~X) —u(X)
= (Nf() I)VU(X) (A X)(1—ta)p1(X)

~(I = NEDVu(X) - (A= X)(1 — Ta)n (X)),
fuvng NVu(X) - (B = X)(1 — tp)¢2(X) — (N5 — DHVu(X) - (C — X)(1 — tc)ds(X)
—(Nf = DVu(X)(A = AL)d1(X) (3-39)

dVu~

1 - T (A) - T) / (tA+ (1 - 1)X) - (A - X)dt 6,(X)

0

2

# [T 000 600 + [ n5E e+ 00X 6i(x)

dt? T,
2

b [ a0 Shem s (- 0x0 60+ [ 1= 5 60+ (- 0X)at 6u(x),

However, the error estimates on T* is quite different from those obtained on T*%, s = —, +.
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Lemma 3.13 There exists a constant C' such that
5_3
1 —ully e < Ch? |lullyr + Ch2 5 Jlully |, 1o (3.40)

for any u € J(T), where T is an arbitrary interface triangle.

Proof. The proof is similar to that for Lemma 3.4 we only need to derive estimates for the first
five terms in (3.39). For the first term, we have

1/2
@il = cn( [ IvucoPax)
T*

1/q , 1/PI 1/2 1 1
Ch U dX} [/ | Vu(X)|*P dX} (5+17=1, 1<p,q<o0)
* T*

. , 1/(2p")
—  Chmes(T*)% (/ IVu(X)[2 dX)
T*

IN

1/p
< Chi (/ ||Vu(X)||de> (p = 20, mes(T*) < Ch®)
-
= Ch3% |lully . -
Similarly, we can show that

5 3 )
”QiHO,T* < Ch2"» Hu”l,p,T* , 1=2,3,---,5.

Putting these together we have (3.40).

|
Similarly, we have
Lemma 3.14 There exits a constant C' such that
el BT PR S WTREE
for any uw € PH?(T) where T is an arbitrary interface triangle.
|

We now derive the error estimates for the interpolation Ipu in Sp(Q). Let Tp ;¢ denote the
set of all the interface triangles, and let €' be the subset of €2 formed by the union of all the
interface triangles.

Theorem 3.1 There exists a constant C such that

1Thu = ully o < CH? flog(A)['"? [|ully,q (3.41)
1 _
HW < Chllog(W)|"? |lullyg .5 = .9, (3.42)

& 0,Q

)

for any uw € PH?

int

(Q) and h > 0 small enough.
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Proof. From Lemmas 3.4, 3.9, and 3.13, we have

2 2
||IhU*’U,||079/ = Z ||Ih,Tu7u||07T
Teq’h,int
2 _6 2
< Cht Y by +C Y0 RTE ull
TETh,int TeTh,int
2 _86 2
= Ch*|ulsq +CH° % > Jullf
TeTh,int
1/q 2/p
2 5-6
< Ch'llulyg +CH® 5 | Y 19 Do el
TETh,int TETh,int

Since the family of partitions 7}, is regular, have

Z 1=Ch L.

TeTh int
Following the same argument used in [4], we also have the following estimate from [8]:

2 2
lull 0 < Cpllullzq

where C is a constant independent of p € [2,00). Putting these in the above, and letting
p = |In(h)| for h > 0 small enough, we have

Ihu—ulf g < OB |lull}g +Ch* 507 |[ull} o
= Ch*|[ull3 o + Ch*75 Jlull} , o
< OBt |lull3 g + Ch* o pllul} o
< CB*|lull3 o + Ch* [log(h)] [[ull3 o

Ch* (1 + [log()]) [[ull3 ¢
= Ch*[log(h)| |ull3 -

The estimate (3.41) of this theorem then follows by combining the above estimate and the
estimate from the standard finite element interpolation theory:

2 2
[ nu — u”O,Q/Q’ < Con' [[ull5 -

Similar derivations can be carried out to obtain (3.42).

4 Conclusions

In this paper, we have discussed a nonconforming immersed finite element (IFE) space that can
be used to solve interface problems of second order elliptic partial differential equations. The
partition of this IFE space is very simple because it can be formed without consideration of
the interface location. If applicable, even a Cartesian partition can be used in this IFE space
to solve a problem with a rather arbitrary interface. The IFE space is closely related to the
standard finite element space formed by piecewise first degree polynomials except for functions
over interface triangles. Over an interface triangle, IFE functions are formed according to the
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jump conditions of the itnerface problem to be solved. We have employed the multipoint Taylor
expansion technique to analyze the interpolation errors in the IFE space for functions in the
Sobolev space related to the interface problems. It has been shown that the IFE space has an
approximation capability similar to that of the standard linear finite element space except for a
logarithm factor. The estimates for the interpolation error obtained here are critical for deriving
error estimates of the finite element (volume) solution to an interface problem based on this IFE
space.
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