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ABSTRACT The net present value (NPV)-based resource constrained project scheduling problem (RCPSP)
is a well-known scheduling problem in many industries, such as construction, software development, and
manufacturing. Over the last five decades, although different approaches have been proposed to solve the
problem, no single approach has been shown to achieve satisfactory performances with quality solutions
for a wide range of problems. This study presents a hybrid immune genetic algorithm (IGA) to solve
NPV-based RCPSPs. Hybridizing a genetic algorithm (GA) with an immune algorithm (IA) enhances the
overall performance of their standalone components (i.e., only GA or IA). Performance of the proposed
IGA is further improved by applying a variable insertion based local search (VINS) and forward-backward
improvement (FBI). A restart mechanism is presented to the algorithm which induces diversity and helps to
avoid becoming trapped in local optima. Moreover, an activity move rule (AMR) is implemented to shift the
negative cash flow associated activities to further improve the NPV. Taguchi Design of Experiment (DOE) is
conducted to investigate the impact of various parameters and to determine the appropriate set of parameters
for the proposed IGA. The performances of the proposed algorithms are tested on 17,280 standard benchmark
instances ranging from 25 to 100 activities. Comparison with the state-of-art algorithms through extensive
numerical experiments reveal the effectiveness of the proposed algorithms. Overall, the proposed algorithm
outperforms existing algorithms, particularly the projects with 0% and 100% negative cash flow associated
activities, the 75-activity instances, and the projects with two resources usage in terms of a lower value of
average percentage deviation.

INDEX TERMS Net present value, resource constrained project scheduling, RCPSPDC, immune genetic
algorithm.

I. INTRODUCTION

A project is a unique endeavor that is constrained by the
completion time, budget and resources. The primary objec-
tive of any project is to complete on time, within financial
and resource constraints. Project scheduling is a major part
of project management that typically involves the selection
of the start and end time of any work [1]. Critical path
method (CPM) is a widely used managerial tool for planning
and scheduling projects formaking decisions. However, CPM
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may not obtain optimal solution as it ignores the resource con-
straints and deadline of the project [2]. In practice, projects
are depending on the limited resources and a completion time.
Therefore, the duration determined by the CPM is practi-
cally unrealistic. The RCPSP determines the timetable of any
task whilst satisfying the precedence relationships of project
activities as well as the project’s resource constraints [3], [4].
The classical RCPSP has been a widely studied issue over the
past few decades, where the objective function is to minimize
the length of the schedule, that is the project’s makespan.
Nonetheless, by focusing solely on makespan, the classical
RCPSP does not address a project’s economy as it neglects
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cash flows of the project. Many larger scale capital intensive
projects such as construction engineering, power plants or
infrastructure projects run over a long time horizon which
involve huge cash flows [5], [6]. Therefore, owing to the
time value of money (TVoM), a small variation in cash
flow timing may have a substantial impact on the overall
project’s profitability [7]. As a result, from financial point of
view, project scheduling focusing solely on the minimization
of makespan is not always desirable [7]–[9]. Consequently,
in RCPSP, financial perspectives have become an important
point in decision-making by the project managers.
The classical RCPSP has therefore been extended to take

into account of discounted cash flows (RCPSPDC), and to
concentrate on the project profitability by maximizing the
net present value (NPV) of the cash flows of the activities,
which is also known as theNPV-basedRCPSP. Cash flows are
either positive or negative. In projects, on one hand, negative
cash flows occurs due to the expenditure of resource pro-
curement and activity execution; elseway, the positive cash
flows come only from sales or payments made by the clients.
The project’s NPV depends on the TVoM of the cash flows.
Therefore, the TVoM is considered by discounting the net
cash flows, that is the difference between cash inflows and
outflows. As the RCPSPDC is based on maximizing the NPV
instead of the makespan, therefore, the project is bounded to
its completion period, which is the project’s deadline.
The RCPSPDC is an NP-hard problem [10]–[12], which

means that exact methods are limited to solve small-sized
problems within reasonable computational efforts [13].
To overcome this challenge, numerous heuristic and
meta-heuristic algorithms are proposed for solving the RCP-
SPDC; example includes, Lagrangian relaxation (LR) proce-
dure [11], [12], simulated annealing (SA) [5], [14], [15], tabu
search (TS) [5], [14]–[16], scatter search (SS) [17], memetic
algorithm (MA) [18], ant colony optimization (ACO)
[19], [20] and genetic algorithms (GA) [10]. However,
based on the problem’s NP-hard characteristics and the
no free lunch theorem, for both a relatively good solu-
tion and reasonable computing time, no single heuristic or
meta-heuristic algorithm is suitable for solving the RCP-
SPDC [21]. Moreover, the literature shows that the hybridiza-
tion of meta-heuristics overcomes the limitations of a single
meta-heuristic algorithm [22]–[27].
Motivated by this fact, this study proposes a hybrid

meta-heuristic algorithm to solve the RCPSPDC by the
hybridization of the GA and the IA, creating an immune
genetic algorithm (IGA). The GA is a powerful biolog-
ical mechanism and natural selection theory-based meta-
heuristic algorithm [28], [29]. Among the population-based
meta-heuristics, GA is the most widely applied not only in
RCPSP [30], [31] and RCPSPDC [10], but also in others sort
of optimization domains [27], [32]–[34]. GA generates good
quality solutions with a reasonable time when the problem
domain is large [10], [33]. On the other hand, IA is also
a biologically dependent heuristics that designs to obtain
the best solution by modifying the genes [35]. While IA

maintains a fine diversity, as a single meta-heuristic, it has
some drawbacks such as premature convergence and poor
search capability [36]. On the other hand, GA, as a sin-
gle meta-heuristic has limited local search capability and
abortive convergence [29]. In GA, the infeasible solutions
generated by the worst individuals are eliminated, although
the optimal solution may be very near to those infeasible
solutions. Past studies show that in evolutionary algorithms
the immune property enables the prevention of immature
convergence [29], [37] and enhances local search [29], [38].
Therefore, the hybridization of GA and IA enhances the
search capability to find the best solutions beyond that of
the algorithms applied individually. This hybrid approach has
already showed effectiveness in related complex planning and
scheduling problems, such as assembly line balancing prob-
lems [39]–[41], job-shop scheduling [42], [43], flow-shop
scheduling [29] and layout design [44]. However, to the
best of our knowledge, the utilization of IGA to RCPSPDC
has not been studied in the research. Moreover, none of the
existing IGAs in the literature has considered the VINS, FBI,
restart scheme, and the AMR to further enhance the overall
performance. In this study, the concept of IGA is therefore
utilized to examine the RCPSPDC. Furthermore, different
components such as VINS, FBI, restart mechanism, and
AMR have been utilized to improve algorithmic efficiency.
Immunization in GA thus consequently improves the solution
performance by enhancing the optimal or best solution(s)
search capability [45]. Therefore, the following six key con-
tributions have been made in this study:

1) Proposing a new IGA by hybridizing the GA and IA to
solve the RCPSPDC.

2) Utilizing five different priority rules with the proposed
IGA to initialize population to assist in searching better
solutions.

3) Examining different types of crossover and mutation
operators such as single-point-crossover, double-point-
crossover, swap mutation and inverse mutation to uti-
lize the best crossover and mutation operator.

4) Introducing a restart scheme to induce diversity and to
avoid trapping in local solution.

5) Adopting the VINS and the FBI as a local search to
enhance the exploitation of the solutions.

6) An AMR to delay the negative cash flow associated
tasks that increases the overall profitability of the
project due to the impact of the TVoM.

The performances of the proposed approaches are evalu-
ated by solving the standard benchmark problem instances
available for RCPSPDC [10], [12], [17].

The rest of the paper is organized as follows. The next
section presents a comprehensive literature review on solving
the RCPSPDC. The mathematical model utilized in this work
is described in section 3. The proposed algorithm for solving
the RCPSPDC is presented in section 4. Section 5 presents
the computational results and discussion. The conclusions are
drawn in section 6 with future research directions.
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II. RELATED WORKS ON RCPSPDC

The NPV-based project scheduling was first introduced
in 1970 byRussell [46] who presented it as a nonlinearmodel,
assuming that the parameters are deterministic in nature and
ignoring the deadline and resource constraints of the project.
Later, Grinold [47] added a project deadline and transformed
the nonlinear model of Russell [46] into an equivalent lin-
ear model. However, the model developed by Grinold [47]
ignores the resource constraints in project scheduling. Next,
Neumann and Zimmermann [48] modified the model of
Grinold [47] for solving problems with ensuring prece-
dence feasibility and resource constraints. The deterministic
NPV-based project and its extensions has also been studied
byHerroelen et al. [49], Schwindt and Zimmermann [50] and
Mika et al. [14]. To solve those existing approaches, numer-
ous exact and approximation methods have been utilized in
the literature. Approximation methods can be devided into
heuristic and meta-heuristic algorithms. A review on solving
RCPSPDC using exact and approximation methods is found
in the literature of Gu et al. [13]. A brief discussion of various
algorithms to solve the RCPSPDC is presented next.

A. EXACT METHODS

Exact methods are those that ensure optimality by gen-
erating the optimal schedule. The most commonly used
exact method to solve the RCPSPDC is the branch-
and-bound procedure [51]–[53]. Vanhoucke, et al. [53]
presented a branch-and-bound procedure for solving the
projects with discounted cash flows, however ignores
the resource constraints. Their approach showed its effi-
ciency in generating optimum solutions for only small-sized
problems. Doersch and Patterson [54] examined a lin-
ear programming (LP) model for solving the RCPSPDC,
where the problem was solved by zero-one LP code.
Their procedure solved small-sized problems optimally,
however, that approach was computationally very expen-
sive for larger-sized problems. Next, an another exact
approach namely, lazy cause generation was introduced by
Schutt, et al. [55] to solve the RCPSPDC. That study com-
pared their results with Vanhoucke, et al. [53] and showed
that their algorithm generated better deadline feasible solu-
tions than existing approaches. The exact method presented
by Schutt, et al. [55] provides a state-of-the-art method to
slove the RCPSPDC. However, exact methods have draw-
backs with convergence, particularly when the problem size
increases [13], [23]. As the RCPSPDC is an NP-hard prob-
lem [10], it takes non-deterministic polynomial time in find-
ing the optimal solution. In order to overcome this issue,
numerous approximation methods have been developed to
find the near optimal solution within a reasonable computa-
tional cost. The following section presents different approxi-
mation methods to solve the RCPSPDC.

B. HEURISTICS AND META-HEURISTICS ALGORITHMS

The first heuristic algorithm for RCPSPDC was devel-
oped by Russell [56] who revealed that the heuristics

for makespan minimization is not necessarily suitable for
NPV maximization. Later, Smith-Daniels and Aquilano [57]
presented a backward scheduling concept for maxi-
mizing the project’s NPV. Baroum and Patterson [58]
developed cumulative cash flow weight based heuris-
tic that resulted in increasing the NPV. Heuristic algo-
rithms were also presented by Yang et al. [59], Pinder and
Demeulemeester [60], Padman et al. [61], and Waligóra and
Różycki [62] to solve the RCPSPDC. Among them, Pinder
and Demeulemeester [60] assumed that no payments were
made during the project life cycle, that means only one pay-
ment is done after completing the project.Moreover, they also
ignored the concept of TVoM in their model. Furthermore,
Yang et al. [59] presented nine heuristic algorithms however,
their performance was limited to small activity projects.

With respect to the meta-heuristic algorithms, Icmeli and
Erenguc [16] presented the TS method and tested their model
on Patterson’s dataset [63]. Chen and Chyu [18] apply MA
to effectively solving small activity projects up to 20 tasks.
Shou [19] also tested Patterson’s dataset [63] applying ACO
that improved the NPV of the projects. Chen et al. [20]
present ACO that outperforms GA, SA and TS for projects
up to 98 activities.

Patterson’s dataset [63] contains instances between 7 and
50 activities in which the number of resources varies
between 1 and 3. Later, Vanhoucke [17] introduced a
new standard benchmark dataset for RCPSPDC consisting
of 17,280 instances with four different sizes of activities (25,
50, 75 and 100) with the number of resources 2 or 4 which
contains more complex instance problems. Vanhoucke [17]
developed an SS heuristic to solve those datasets. Next,
Gu et al. [11] applied LR heuristic for large project instances
of the Vanhoucke’s dataset [17]. Gu, et al. [12] further
improved the results of Schutt et al. [55] using FBI method in
LR procedure to meet the tight deadline of the projects. They
also hybridized LR with constraint programming and showed
the effectiveness of their hybrid approach by comparing with
the study of Vanhoucke [17]. Thituvady et al. [64] hybridized
LR with ACO (LR-ACO) and compared their findings with
the study of Vanhoucke [17] for 100 activities. The LR-ACO
showed better results, particularly for projects with positive
cash flow activities. However, when the number of negative
cash flow activities were larger and the project deadline was
tight, SS [17] algorithmwasmore effective than the LR-ACO.
Later, Leyman and Vanhoucke [10] solved those benchmark
datasets by examining the GA and compared performance
with the results of Gu, et al. [12] and Vanhoucke [17]. Their
study reported that their proposed GA outperformed a few
existing algorithms.

C. SUMMARY

From the above literature review on RCPSPDC, it can be
seen that, many exact methods, heuristics, and meta-heuristic
algorithms have been proposed over the years. Among them,
GA is a simple and effective meta-heuristic algorithm, which
has a good track record to solve different complex problems
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with combinatorial optimization [28], as well as for solving
RCPSPDC [10]. However, GA has two main disadvantages:
lack of a local search capability and premature conver-
gence [29], [65]. Therefore, to overcome these drawbacks,
GA combines with other meta-heuristics [29]. The main rea-
sons of the hybridizing GA and IA are: to improve the search
area and to avoid local optima [40], [43], [44]. To take the
advantages of hybridization, an IGA has been proposed in this
research for solving the RCPSPDC. A brief discussion on the
proposed IGA with its different components is presented in
Section IV.

III. PROBLEM DESCRIPTION

The RCPSPDC network is represented as an activity-on-
node (A-o-N) network G(N, Pred), where N represents the
project nodes or activities, and Pred represents the prece-
dence relationship between the activities. Activity 1 and N
are dummies. The mathematical formulation for the classical
RCPSPDC [10], [12], [17] is as follows:

MaxZ =
N∑

i=1

Cie
−αFi (1)

Subject to:

Fi ≤ Fj − Dj, ∀(i, j) ∈ Pred (2)
∑

i∈S(t)

Rik ≤ Ak , k = 1, . . . ,K ; t = 1, . . . ,D (3)

FN ≤ D (4)

Fi integer, ∀i ∈ N (5)

where,
N : the number of activities
K : the number of renewable resources
Ci: the cash flow of activity i
Fi: the finish time of activity i
α: the discount rate
Dj: the known duration of activity j
S(t): the set of in-process activities at time t
Rik : the K type renewable resource demand for activity i
Ak : the constant availability of K type renewable resource
D: the project’s due date.
The objective function (1) seeks to maximize the project’s

NPV, whereas constraint (2) ensures precedence relationship
of the project activities. Inequality (3) ensures the renewable
resource availability constraint at time t, i.e., the demand
of the renewable resources (Rik ) must satisfy its availability
(Ak ). Inequality constraint (4) presents the project’s dead-
line constraint. The finish time of the activities will be a
non-negative integer value presented in constraint (5), which
is the decision variable. When a project fails to meet the
due date, the following penalty function is imposed to the
project’s NPV [10].

NPV = −Y1 + NPVinf .Y
Fn−D
2 ; if NPVinf ≥ 0 (6)

NPV = −Y1 +
NPVinf

Y
Fn−D
2

; if NPVinf ≤ 0 (7)

where, NPVinf is the NPV of the deadline infeasible sched-
ule. Y1 is a large fixed value (=20,000) [10]. Y2 aims to
penalize the NPV depending on the difference of the project’s
makespan from the due date. A detailed discussion on the
optimum value of Y1 and Y2 for projects with different cash
flows is explained by Leyman and Vanhoucke [10].

IV. PROPOSED IMMUNE GENETIC ALGORITHM

This section presents the IGA for the RCPSPDC. GA is a
biological evolution-based meta-heuristic for solving com-
binatorial optimization problems [28], [66], [67]. In GA,
an individual is characterized by genes (activities) which are
joined to form a chromosome (solution). These solutions
are further evaluated by selection, crossover and mutation
operations to find the best solution. On the other hand, IA is
another biologically based evolutionary algorithm that pur-
poses modifying the genes of the individuals in order to
generate a better fitness [68]. In IA, the objective function
of the problem is known as the antigen, whereas antibody
is the required candidate solution. The biological immuniza-
tion system generates antibodies and excludes antigens by
altering the genes to deal with the invading antigens. [69].
Thus, IA in GA overcomes the blindness of crossover and
mutation operations [29], [70] and improves global search
ability. Firstly, the immunization in the IGA is affinity based
which ensures the better generation as well as the best solu-
tion. To increase the local search capability of IGA, a VINS
scheme is also introduced in the proposed IGA.Moreover, for
better exploitation and to ensure the diversity, a restart mech-
anism is used. The forward-backward-improvement (FBI)
first shifts the activities of a feasible schedule from left to
right towards the deadline. Thus, the resulted schedule is
considered to shift from right to the left which helps to
meet the project’s due date. Furthermore, the AMR delays
the activities with negative cash flows as far as possible by
pushing right towards the due date, to increase the overall
profitability. A pseudo code presented in Algorithm 1 shows
the generalized IGA for the RCPSPDC, and the flow chart for
the proposed IGA is shown in Fig 1. The following sections
are described based on the flowchart presented in Fig 1.

A. SOLUTION REPRESENTATION AND NON-RANDOM

INITIALIZATION

In IGA, a solution is usually represented by binary, integer,
or real number [71], [72]. A solution is also known as a
chromosome. In RCPSPDC, each chromosome is represented
as a sequence of the project activities. Fig. 2 shows the
solution representation of the IGA for the RCPSPDC, where
a set of individuals is called the population. An individual
(sequence) is characterized by a set of genes (activities). The
genes together form a chromosome (sequence) which is the
solution of the problem. The population is evaluated based
on the individual’s fitness value, that is the project’s NPV.
The greater the NPV value, the better an individual is. The
population passes through a number of operations till meeting
the termination condition. A complete generation includes
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Algorithm 1 IGA for RCPSPDC

1: Set population size (PS), crossover probability (Pc),
mutation probability (Pm), immunization probability
(Pi), R_counter, FBI_counter, max generation (Gen);

Non-random
2: initialization with five-priority rules P0;
3: for each i ∈ P0 do

4: Generate schedule using the parallel schedule genera-
tion;

5: Apply FBI;
6: end for;
7: P← P0;
8: Set Gen =1;
9: while Gen <= max Gen do
10: for n= 1 to ncross (=PS × Pc) do
11: Select two individuals as parents ia, ib ∈ P by

tournament selection;
12: Generate two offsprings from ia, ib by crossover

presented in Algorithm 2 or Algorithm 3;
13: if rand (0,1) < Pm then

14: Apply mutation presented in Algorithm 4 or
Algorithm 5;

15: end if;
16: end for;
17: for k= 1 to nimmune (=PS × Pi) do
18: Apply immunization presented in Algorithm 6;
19: end for;
20: for i = worst individual of the population do
21: Apply VINS;
22: end for;
23: if best fitness (Gen) = best fitness (Gen + 1) for con-

secutive R_counter then
24: Apply restart;
25: end if;
26: if FBI_counter/Gen == 0 then

27: Apply FBI;
28: end if;
29: if project activities are associated with negative cash

flows then
30: Apply AMR;
31: end if;
32: Apply Elitism strategy;
33: Gen← Gen+ 1;
34: end while;
35: Save the best sequence and NPV;

a range of operations from the tournament selection to the
elitism strategy presented in Fig 1.

A solution is usually generated at random, which, due to
the complexity of the problem, does not guarantee the quality
solution. In this study, a non-random initial population is
thus generated applying a multi-priority rule. The process
is as follows: the first five individuals or solutions of the
initial population are generated by five priority rules namely,

shortest operation first (SOF) [73], [74], minimum resource
demand (MinRD) [73], [74], maximum resource demand
(MaxRD) [73], [74], most total successor (MTS) [73], [75],
[76], and discounted cash flow weight (CFW) [60], [77].
The rest individuals of the initial population are randomly
generated. A description of the different priority rules is given
below:

SOF: The activities are scheduled based on their duration;
i.e., an activity with the shortest or minimum duration is being
scheduled first [73], [74].

MinRD: The activities are scheduled based on the total nec-
essary resource, which is the activity with the least resource
usage being scheduled first [73], [74].

MaxRD: The activities are scheduled based on the total
resource used, that is the activity with the most resource use
scheduled first [73], [74].

MTS: Scheduling is done in such a way that the activ-
ity with maximum number of successors being scheduled
first [73], [75], [76].

CFW: The activities are scheduled in such a way that an
activity with highest value of discounted cash flow based on
activity duration being scheduled first [60].

Among the priority rules, cash flow weight [77] has
already proven to be very effective rule, while other pri-
ority rules are also competitive [73] to solve the RCP-
SPDC. The schedule is generated by two different generation
schemes [78]: serial schedule generation scheme (SSGS) that
works based on activity-incremetation, and parallel schedule
generation scheme (PSGS) which performs with the time-
incrementation. Among them, the PSGS is better for hard
problems, whereas the SSGS is better for the easy prob-
lems [79]. The PSGS generates a non-delay schedule [79].
Therefore, the schedules are generated by the renowned
PSGS, in this study. After PSGS, the well-known FBI
approach implemented by Li and Willis [80] is applied to
ensure the deadline feasibility of the solution.

B. SELECTION MECHANISM AND GENERATION SCHEME

In this proposed IGA, the tournament selection mecha-
nism [75], [81] is used as the selection operator, where three
individuals (schedules) are chosen randomly from the pop-
ulation. Then, the best two individuals based on their NPV
value are selected as parents. After the reproduction opera-
tion, an offspring replaces the worst individual of the current
population (Pworst ) if it generates a better NPV value than that
individual. In GA, this process is well-known as the steady
state [82]. The elitism strategy [21] is preserved in this study
where best individual or sequence of one generation is saved
and passed without alteration to its subsequent generation.

C. CROSSOVER

The crossover is a process that combines the chromosomes of
the parents for creating the new offspring with a probability
of Pc. Two different types of crossover operations name
single-point and double-point crossover are examined in this
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FIGURE 1. Flowchart of IGA.
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FIGURE 2. Solution representation of IGA for RCPSPDC.

study to solve the RCPSPDC. The following section describes
different crossover operations.

1) SINGLE-POINT CROSSOVER

This study adopts the single-point crossover introduced by
Hartmann [75]. In a single-point crossover operation, each
position of the activity sequence is examined individually
from both parents. After that, up to a random crossover
point, from one of the parents each child inserts all activi-
ties. Particularly, parent 1 inserts activities directly into child
1 and parent 2 inserts activities directly into child 2. Lastly,
each child’s missing activities are inserted directly from the
other parent following the same relative order of activities,
with ensuring the precedence relationship of activities. Fig. 3
shows a project network example, while the single-point
crossover for this network is shown in Fig. 4. Assume that,
the value of the discount factor is 0.01 and the deadline of
the project is 15 units. After crossover, the fitness of child 1
is inferior to its parent, therefore parent 1 will participate the
next step. On the other hand, child 2 produces better NPV
than its parent, thus it will participate the next operation. The
pseudo code for crossover is presented in Algorithm 2.

FIGURE 3. An example of project network.

2) DOUBLE-POINT CROSSOVER

In double-point crossover operation [31], [75], [83], [84],
at first two cut points are selected randomly. Outside of these
two points, all the activities of the first parent are introduced

FIGURE 4. Single-point crossover.

Algorithm 2 Single-Point Crossover

Input: The selected parents using the tournament selec-
tion

1: Generate a random crossover point (Cp) between 2 and
(n− 1);

2: Up to Cp, insert the activities from parent 1 to child 1 and
parent 2 to child 2;

3: Insert each child’s missing activities from the other par-
ent in that parent’s same relative order of activities with
satisfying activity precedence;

4: Save and return child 1 and child 2;

FIGURE 5. Double-point crossover.

directly into the first child. Then, the first child’s missing
activities are taken in relative order from the other parent with
satisfying the precedence relationship. Similarly, for the sec-
ond child, the activities outside the two cut points are inserted
directly from the second parent and the remaining activities
are taken in relative order from the first parent with satisfying
the precedence relationship. Fig. 5 shows the double-point
crossover operation for the project network shown in Fig. 3.
After crossover, the fitness of the children are inferior to their
parent, therefore the parents will participate the next step. The
pseudo code for crossover is presented in Algorithm 3.

D. MUTATION

To maintain diversity, after crossover, the mutation operation
modifies the position of the genes (activities) for making
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Algorithm 3 Double-Point Crossover

Input: The selected parents using the tournament selec-
tion

1: Generate two random crossover points (Cp1) and (Cp2),
where 1 < Cp1 < Cp2 < n;

2: Insert the activities directly from parent 1 to child 1, and
parent 2 to child 2, except the activities between (Cp1)
and (Cp2);

3: Insert each child’s missing activities from the other
parent in that parent’s same relative order of activities
between (Cp1) and (Cp2) while satisfying their prece-
dence relationships;

4: Save and return child 1 and child 2;

some development of the child [34], [85]. In this study, two
different types of mutation operations are utilized, namely,
swap and inverse mutations, to solve the RCPSPDC.

1) SWAP MUTATION

In swap mutation [84], with satiafying the precedence rela-
tionship, the position of two activities are swapped randomly
with a probability of Pm. Assume that, the schedule (1-4-2-3-
5-6-8-7-10-9-11) is selected for the swap mutation operation.
For the project network shown in Fig. 3, activity 4 may swap
its position with activity 2, 3, 5, 6 and 8 after satisfying
the precedence relationship. Therefore, the swap mutation
between activity 4 and 5 is shown in Fig. 6. The NPV of the
schedule is improved after mutation, which is also deadline
feasible. Therefore, the schedule after swap mutation will
compete the next operation. Algorithm 4 provides the pseudo
code for the swap mutation.

2) INVERSE MUTATION

In inverse mutation [19], [84], [86], a new chromosome
is generated by randomly selected two activity positions

FIGURE 6. Swap mutation.

Algorithm 4 Swap Mutation

Input: The selected individuals using
Pm

1: Generate the first random activity number (v) between
2 and (n− 1);

2: Generate the second random activity number (w)
between 2 and (n− 1) where v 6= w;

3: Interchange the position of v and w with satisfying their
precedence relations;

4: if NPV (i) > NPV (Pworst ) then
5: Replace the individual;
6: end if;

FIGURE 7. Inverse mutation.

and then inverting the activities between them by satisfying
their precedence relationships. Assume that, the chromosome
(1-4-2-3-5-6-8-7-10-9-11) is selected for the inversemutation
operation with the probability of Pm. For the project net-
work shown in Fig. 3, if the randomly selected activity posi-
tions are 2 and 5, then after inversing the activities between
them the new chromosome is (1-5-3-2-4-6-8-7-10-9-11) as
shown in Fig. 7. The NPV of the schedule is improved after
inverse mutation, which is also deadline feasible. Therefore,
the schedule after inverse mutation will compete the next
operation. The pseudo code for the swap mutation is pre-
sented in Algorithm 5.

Algorithm 5 Inverse Mutation

Input: The selected individuals using
Pm

1: Randomly generate two numbers: (v) within 2 : n − 3,
and (w) within v+ 1 : n− 1;

2: Inverse the position of the activities between v and w,
and arrange the sequencewith satisfying their precedence
relations;

3: if NPV (i) > NPV (Pworst ) then
4: Replace the individual;
5: end if;

E. IMMUNIZATION

The purpose of immunization in GA is to overcome the
blindness of crossover and mutation in operation [69]. The
IA in GA also gets the benefit of local information for
accomplishing the best solution [69] with the immunization
probability, Pi. The immunization used in this study is typ-
ically based on four steps proposed by Zandieh and Gho-
lami [69]: affinity evaluation, clonal selection and expansion,
affinity maturity, and replacement of antibodies. Algorithm 6
represents the pseudo code for immunization. The steps are
described below:

1) Evaluate Affinity: Each antibody (schedule) has a cer-
tain NPV which corresponds to the antibody affinity.
Drawing the concept of affinity [69], a higher affinity
means a better fitness value of the antibody, the affinity
function is defined as:

Affinity(i) =
NPV (i)

∑nimmune
i=1 NPV (i)

(8)

The higher value of NPV is equivalent to the higher
value affinity. A higher value of antibody fitness indi-
cates that the feasible solution is more closer to the
optimum solution.
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Algorithm 6 Immunization

Input: Individuals after crossover and muta-
tion

1: for i = 1 to nimmune(= PS×Pi) do
2: Calculate Affinity(i) = NPV (i)∑nimmune

i=1 NPV (i)
;

3: Apply clonal selection and expansion where, clone ∝
affinity;

4: Perform affinity maturation by swap mutation;
5: if NPV (i) > NPV (Pworst ) then
6: Replace the antibody;
7: end if;
8: if The individual is selected for the replacement then
9: Save and return the solution;
10: end if;
11: end for;

2) Clonal selection and expansion: In this step, the anti-
bodies with the higher affinity from the population is
selected first. After that, clones (copies) are generated
in proportional to the affinity values; a higher affinity
results in more clones. That means that more clones are
produced from a schedulewith a higher NPVvalue than
a schedule with a lower NPV value.

3) Affinity maturation: For each clone, the affinity mat-
uration is carried out by swap mutation where higher
affinity results in lower mutation, and vice versa.

4) Antibody replacement: Finally, if it generates a better
NPV than the Pworst , then replace the antibody.

F. LOCAL SEARCH

The local search is utilized to increase the performance of
the algorithm. In this study, two different types of local
search are employed: VINS and FBI. The generated solution
is first go to the VINS in each generation, and after restart
scheme the FBI is applied after each FBI_counter. A detail
discussion on the VINS and FBI is presented if the following
subsections.

1) VARIABLE INSERTION NEIGHBORHOOD SEARCH (VINS)

The VINS [21], [27] is employed to increase the performance
of these proposed algorithms as a local search technique.
In VINS, with satisfying the activity precedence, each activity
in a sequence is inserted from position x th to yth, where x 6=y.
Firstly, consider the position of the dummy activities is fixed.
Then, by satisfying the precedence constraints, an activity
is inserted to all feasible positions. Assume that, a schedule
(1-4-2-3-5-7-6-8-9-10-11) is selected for the local search
operation. Fig. 8 shows the insertion operation for the activity
4 of the sequence. With satisfying the precedence relation-
ship, the activity 4 can only be inserted into the 3th, 4th and
5th position of the sequence. Therefore, three new schedules
are generated with the NPV of 6.85 units, 6.89 units, and
7.12 units, respectively. All generated schedules are deadline
feasible. Thus, the schedule with NPV 7.12 units will replace

FIGURE 8. Variable insertion neighborhood search.

the original schedule. Note that, the VINS is utilized to the
Pworst in each generation.

2) FORWARD BACKWARD IMPROVEMENT (FBI)

The FBI mechanism is a useful tool for minimizing comple-
tion time of the project [80], [87], [88]. This procedure is
typically applied at the fitness evaluation stage of the current
generation, after the PSGS, to meet the project’s due date.
Noted that, applying the FBI mechanism in every generation
makes the algorithm computationally expensive. Hence, this
mechanism is applied after a certain number of generations
(FBI_counter). The value of the FBI_counter is determined
using the Taguchi’s DOE described in the subsection V-B.
In FBI, the finish time of activities of a forward schedule
determines the priority for the backward scheduling. Fur-
thermore, after backward scheduling, the activity start times
determine the activity priority for the next forward sched-
ule. The pseudo code for FBI is presented in Algorithm 7.
Fig. 9 also shows the FBI operation for a given schedule
(1-3-5-4-2-7-6-8-9-10-11). After PSGS, the makespan of the
sequence is 16 units which is deadline infeasible and the
NPV is 7.25 units, as shown in Fig. 9. After that, backward
schedule is generated by shifting the activities to the right,
in the descending order of the finish time. Conventionally,
in FBI, the backward scheduling starts from the point of
makespan [80], [87], [88]. However, starting the backward
schedule from the makespan may create a problem to shift the
activities towards the left due to the starting time of the first
activity. To avoid this problem, in this study, the backward
schedule is started from the point of summation of all activ-
ity durations, (i.e.

∑n
n=1 Di). After shifting all the activities

towards the deadline, it is seen that there is no activity for
the first eight-unit times. Thus, after shifting all the activities
8 units left, the makespan is 14 units which is deadline feasi-
ble and theNPV is 6.78 units. Similarly, for forward schedule,
towards the left, the activities are moved as much as possible
depending on the backwards schedule’s activity start time.
Then the sequence generated by the forward schedule has a
makespan of 13 units with an NPV of 6.72 units. Therefore,
after FBI, three different schedules are generated: schedule
form PSGS, backward schedule and forward schedule. Thus,
the schedule which is deadline feasible and has a better NPV
value will preform to the next step. Therefore, the schedule
(1-3-4-2-5-7-6-8-9-10-11) will compete the next step.
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FIGURE 9. Forward backward improvement.

G. RESTART SCHEME

A restart mechanism is utilized to avoid trapping in local
optima and to maintain diversity [82], [89]. Note that,
the restart scheme is utilized if the IGA has the equal
best-fitness value (NPV) for consecutive R_counter gener-
ations. There are four steps of the restart scheme which is
described as follows:

1) Firstly, sort the individuals of the population in
descending order of their fitness value (NPV);

2) Secondly, the first 20% individuals are skipped as the
best individuals;

3) Thirdly, 50% of the remaining 80% individuals are
generated from the best individuals utilizing the swap
mutation;

4) Finally, the rest 40% individuals are generated at
random.

H. ACTIVITY MOVE RULE (AMR)

The AMR delays the activities with negative cash flow based
on the precedence relations [10]. In AMR, the process starts
with regards to the last activity of the sequence. The last
dummy activity is scheduled at the time of project’s deadline.
After that, with satisfying the precedence relationship the
negative cash flow associated activities are delayed as pos-
sible. The pseudo code for AMR is presented in Algorithm 8.
Fig. 10 illustrates the AMR for the schedule, which is selected
after FBI.With satisfying the precedence relationship, a delay

is possible for the negative cash flow associated activ-
ity 10. Therefore, after applying the AMR, the sequence
is unchanged, however the start time of the activities has
changed. Thus, after applying the AMR, the makespan is
15 units and the NPV is 6.90. Note that, the AMR is only
implemented when negative cash flows are associated with
the activities.

I. TERMINATION CONDITION

The termination criteria is a predefined generation number.
When it generates 5,000 schedules, the algorithm stops. The
termination condition is related to the PS. For example, if the
PS is 20, then 250 generations is the termination criteria.

J. COMPUTATIONAL COMPLEXITY ANALYSIS

Let us assume that, ng is the number of generations and np is
the number of populations per generation. The non-random
initialization has a complexity of O(n2). The PSGS and FBI
have the complexity of O(n2K ). The selection, swap muta-
tion, inverse mutation, and immunization have a complexity
of O(n). Both the single and double-point crossover have a
complexity ofO(n2). The computational complexity of VINS
isO(n4K ) in the worst case. The complexity of restart mecha-
nism and AMR are O(n3npK ) and O(n3K ), respectively. The
overall complexity isO(n2)+O(n2K )+O(npngn2K (n+n2+
n+n))+npngn4K+npngn3K+npngn4K+npngn3K . Hence,
the overall complexity of the proposed IGA is O(npngn4K ).
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FIGURE 10. Activity move rule.

Algorithm 7 Forward Backward Improvement

Input: Schedule after PSGS and it’s fitness,
NPVPSGS

1: for ∀i ∈ P do

2: for activity n : −1 : 1 do

3: Set Fn =
∑n

n=1Di;
4: if The activity ready for scheduling has all of its

successors scheduled then
5: Schedule the activity with satisfying the

resources;
6: else

7: Select the next activity on list;
8: end if;
9: end for;
10: Makespan of the backward schedule, MBS =∑n

n=1Di − F1;
11: NPV of the backward schedule, NPVBS
12: for activity 1 : n do
13: Set F1 = 0;
14: if The activity ready for scheduling has all of its

predecessors scheduled then
15: Schedule the activity with satisfying the

resources;
16: else

17: Select the next activity on list;
18: end if;
19: end for;
20: Makespan of forward schedule,MFS = Fn;
21: NPV of the forward schedule, NPVFS ;
22: NPV (i) = max(NPVPSGS ,NPVBS ,NPVFS ) and dead-

line feasible;
23: if NPV (i) > NPV (Pworst ) then
24: Replace the individual;
25: end if;
26: end for;

V. COMPUTATIONAL RESULTS

The results of the computational experiments are pre-
sented in this section. All the experiments of this study

Algorithm 8 Activity Move Rule

1: for ∀i ∈ P do

2: for activity n : −1 : 1 do

3: Set Fn = D;
4: if The activity is associated with a negative cash

flow and has all of its successors scheduled then
5: Schedule the activity with satisfying the

resources;
6: else

7: Select the next activity on list;
8: end if;
9: end for;

10: Determine NPV (i);
11: Save and replace the individual;
12: end for;

were performed on an Intel(R) Core i7-3770 processor
with a 16 GB RAM and 3.40 GHz CPU. The algorithms
were experimented in MATLAB programming language
(2018b). This research examines the standard benchmark data
employed by Leyman and Vanhoucke [10], Gu et al. [12],
and Vanhoucke [17], that are available the following
link: www.projectmanagement.ugent.be. The data consists
of 720 project networks with four different types of activi-
ties: 25, 50, 75 and 100. Every dataset is executed with six
different negative cash flow percentage (% Neg), 0%, 20%,
40%, 60%, 80% and 100%. Moreover, as the project’s due
date, four different deadline increments (D-Incr), 5%, 10%,
15% and 20%, are imposed to the lower bound of RCPSP
project duration. Thus, the dataset consists of (720*6*4) =
17,280 problem instances. Each project is also characterized
by the order strength (OS) [90] and resource constrainedness
(RC) [91]–[93]. The higher the OS, the more precedence
relations among the activities. On the other hand, RC mea-
sures the average quantity needed by all project activities of
each renewable resource, divided by its availability. The OS
and RC of the project instances are both either 0.25, 0.50 or
0.75. The number of resource usage (RU) by an activity in
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TABLE 1. Comparison among different heuristic combinations using Friedman test.

each processing period is either 2 or 4. The discount rate is
employed as 1% for calculating the NPV.

A. DIFFERENT HEURISTIC COMBINATIONS

This section describes different combinations of GA, IA and
IGA utilizing random or non-random initialization and dif-
ferent crossover and mutation operators. Before solving all
the instance problems, the performance of different heuris-
tic combinations are tested. Table 1 shows different com-
binations of GA and IGA. Considering OS, RC, and RU,
each combination is tested with 24 instance problems; which
are: rcpspdc55, rcpspdc301, rcpspdc411 and rcpspdc665with
D-Incr 5% and 20%, and % Neg 0%, 60% and 100% (i.e.
6 instances from each 25, 50, 75 and 100 activity prob-
lems). All the heuristic run with the following parameter
values: PS = 20; Pc = 0.6; Pm = 0.15; Pi = 0.7,
R_counter = 5 and FBI_counter = 10. The overall per-
formance is evaluated using the non-parametric Friedman
test [94], [95]. The relative ranks are calculated based on the
mean NPV of the instance problems. The rank measurement
using the Friedman test (Table 1) revealed that, the IGA
with non-random initialization, double-point crossover and
inverse mutation (IGA-IM) and the IGA with non-random
initialization, double-point crossover and swap mutation
(IGA-SM) are the best two heuristic combinations to solve the
RCPSPDC. Therefore, all the instance problems are solved
using the IGA-SM and IGA-IM.

B. PARAMETER SETTINGS

In this section, the parameter analyses for the proposed
IGA is presented. Different combination of parameters may
change the output of the proposed IGA. Thus, the well-
known Taguchi’s DOE is used to test the behaviors of the
combination of different parameters for determining the best
parameters set. Six different factors with three different levels
for the proposed IGAs presented in Table 2 are tested. The

TABLE 2. Combination of parameter values.

orthogonal array employed in this study is L27(36); thus
there are 27 combinations in the DOE. Each parameter com-
bination was tested by 45 instance problems, 15 instances
form small-sized problems (25 activity), 15 instances form
medium-sized problems (50 activity) and the remainder
instances are from the larger-sized problems (100 activity).
This experiment has conducted on the most complex problem
instances considering OS, RC, and RU. The orthogonal array
and the responsive mean NPV values for each operation are
presented in Table 3.

The factor level trend of each parameter for IGA-SM and
IGA-IM are presented in Fig. 11 and Fig. 12, respectively.
Table 4 presents the best combination of parameters for the
proposed algorithms. After DOE, for IGA-SM, the optimum
values of these factors are (based on the maximum values of
mean NPV): PS = 20; Pc = 0.7; Pm = 0.15; Pi = 0.8,
R_counter = 10 and FBI_counter = 10. On the other hand,
for IGA-IM, the best combination of the parameters is: PS =
20; Pc = 0.8; Pm = 0.1; Pi = 0.8, R_counter = 5 and
FBI_counter = 20.
The responses for the mean values of different param-

eters for IGA-SM and IGA-IM are presented in Table 5
and Table 6, respectively. Here, for each parameter, delta is
the difference between the maximum and minimum mean
response values. A larger delta value indicates a higher influ-
ence of the factor on the solution. Thus, the factor with the
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TABLE 3. Orthogonal table and responsive mean NPV.

TABLE 4. The best combination of parameters.

FIGURE 11. Factor level trend for IGA-SM.

largest delta value is the most influential factor. The most sig-
nificant factor for IGA-SM is PS; followed by R_counter, Pc,
Pi, Pm and FBI_counter. For IGA-IM, on the other hand, Pi is
the most influential factor; followed by PS, Pm, FBI_counter,
R_counter and Pc.

C. COMPARISON OF RESULTS WITH STATE-OF-ART

ALGORITHMS

To make a fair comparison with state-of-the-art algorithms,
our proposed algorithms terminate after 5,000 schedule

FIGURE 12. Factor level trend for IGA-IM.

generations. The results are analyzed based on the relative
average deviation (%AvDev) and the percentage of dead-
line feasible solutions (%Feas). The %AvDev is defined as
the deviation from the best-known resource unconstrained
NPV-based solutions (NPVopt ), described in Vanhoucke [96].
Therefore, the %AvDev for the result obtained form the IGA
(NPVIGA) is calculated as:

%AvDev = |
NPVopt − NPVIGA

NPVopt
| ∗ 100% (9)

To calculate the %AvDev, instances with deadline fea-
sible solutions are only considered here. A solution with
the lower %AvDev value is a better solution. Note that,
the value of%AvDevmay be greater than 100%. For instance,
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TABLE 5. Response table for mean values of parameters for IGA-SM.

TABLE 6. Response table for mean values of parameters for IGA-IM.

TABLE 7. Comparative result based on the %Neg.

TABLE 8. Comparative result based the D-Incr.

TABLE 9. Comparative result based on the number of activities.

suppose the NPVopt of a project with 60% negative cash
flow associated activities is 2 and the NPVIGA is -1, thus the
%AvDev is 150%. The results of this study are compared
with the state-of-art algorithms. To the best of our knowledge,
the GA [10], the SS [17] and the LR-based algorithm [12]
are the existing state-of-the-art algorithms for the RCPSPDC,
focusing on the available benchmark dataset introduced by
Vanhoucke [17].
Tables 7–12 presents the comparative computational

results in terms of %Neg, D-Incr, activity number, OS,
RC and RU, respectively. Here, the blue color indicates
that the proposed algorithms outperforms the state-of-the-art
algorithms in comparison with Leyman and Vanhoucke [10],
Vanhoucke [17] based on 5,000 schedule generations. On the

other hand, the red color indicates that the results outperform
the existing algorithm based on 12,500 schedules gen-
erated by Gu et al. [12]. Interested readers may down-
load the results of this study at the following link for
further research: https://research.unsw.edu.au/projects/cross-
disciplinary-optimisation-under-capability-context.

Based on the results shown in Tables 7-12, following find-
ings can be summarized:

1) For both 0% and 100% cash flows, results obtained
from both the IGA-SM and IGA-IM outperform all
the state-of-the-art algorithms, even if the termination
criteria is 5,000 or 12,500 schedules generation. There-
fore, for 0% and 100% negative cash flow activity
instances, both the IGA-SM and IGA-IM are better
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TABLE 10. Comparative result based on OS.

TABLE 11. Comparative result based on RC.

TABLE 12. Comparative result based on RU.

than the methods of Leyman and Vanhoucke [10],
Vanhoucke [17], and Gu et al. [12].

2) For 20%, 40%, and 60% negative cash flows, IGA-SM
and IGA-IM outperform the existing algorithms based
on 5,000 schedule generations. Therefore, the proposed
IGAs are more effective algorithms based on the %Neg
except 80% in comparison to the results of Leyman and
Vanhoucke [10], and Vanhoucke [17].

3) In terms of D-Incr, our proposed algorithms outperform
for 15% D-Incr and 5,000 schedule generations, how-
ever for others D-Incr are also competitive.

4) Both the IGA-SM and IGA-IM outperforms the results
of Leyman and Vanhoucke [10], and Vanhoucke [17]
for 50 activity instances. For 75 activity instances the
proposed IGA-IM outperforms existing all state-of-
the-art algorithms, whereas IGA-SMoutperforms algo-
rithms based on 5,000 schedule generations. A similar
trend can be observed as the activity number increases.

5) In case of both OS and RC value of 0.25, the proposed
algorithms obtained outperforming results comparing
results after 5,000 schedule generations.

6) Based on RU, both IGA-SM and IGA-IM are the
best performing algorithm for 2-RU, as it generates
the least %AvDev in comparison to both 5,000 and
12,500 schedule generations. Therefore, it competes
favourably with all the results of Leyman and Van-
houcke [10], Vanhoucke [17], and Gu et al. [12].

7) In comparison based on the %Feas, the LR-based
algorithm developed by Gu et al. [12] outperforms
other algorithms, however the results of IGA-SM and
IGA-IM are competitive.

The AMR is used to shift the activities with negative cash
flow. Hence, for the 100% negative cash flow associated

projects, all the activities is moved to the left. As a result,
once the schedule starts there is no idle time in the schedule.
Nonetheless, when the activities are associated with both
positive and negative cash flows, only the activities with
negative cash flow can be shift to the left of the schedule. Such
movements may induce idle time(s) in the project schedule.
As a consequence, AMR increases the project’s NPV (i.e.
fitness), however, not much in comparison to the projects
associated with 100% negative cash flows. In contrast, AMR
is not applied to 100% positive cash flow associated activity
projects. The schedule is therefore generated in such a way
that the activities are performed without delays with shifting
left as early as possible. Thus, the 0% and 100% negative cash
flow associated projects achieve higher NPV than the others.

In this study, IGA-SM generates 98.41% deadline feasi-
ble solution with a %AvDev of 213.15, whereas IGA-IM
generates 98.36% deadline feasible solution with a %AvDev
of 213.08. Thus, IGA-IM performs better in comparison with
IGA-SM based on the lower value of %AvDev, however
inferior in terms of generating the higher numbers of deadline
feasible solutions.

Before analyzing the difference between IGA-SM and
IGA-IM by any parametric or non-parametric test, the
normality test of the data is important. If the data is nor-
mally distributed, then parametric test (e.g.; t-test) is con-
ducted; otherwise, the non-parametric test like the Wilcoxon
signed rank test [97] is examined. In this study, the nor-
mality of the measured NPV values of the test instances
is assessed using the Kolmogorov-Smirnov test [98]. The
Kolmogorov-Smirnov test (Table 13) showed that the NPV
values of the instances for both IGA-SM and IGA-IM are
not exhibited normal distributions (p < 0.05). Therefore,
to analyze the difference between IGA-SM and IGA-IM,
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TABLE 13. Normality test of the resulted NPV values of the test instances
using Kolmogorov-Smirnov test.

TABLE 14. Wilcoxon signed rank test between IGA-SM and IGA-IM.

theWilcoxon signed rank test is carried out based on the NPV
values. Table 14 shows the Wilcoxon signed rank test based
on the NPV values of deadline feasible solutions. There is
no statistically significant (p < 0.05) difference between the
IGA-SM and IGA-IM for 25 activity instance set. However,
the IGA-IM is significantly (p > 0.05) better than the
IGA-SM for 50, 75 and 100 activity projects.
Figures 13–14 present box plot for 25, 50, 75, and

100 activities using the IGA-SM and IGA-IM, respectively
based on the NPV values of deadline feasible solutions. The

FIGURE 13. Box plot of different activity instances using IGA-SM.

FIGURE 14. Box plot of different activity instances using IGA-IM.

range of the data is presented by the end of the wishkers. The
upper and lower edges of the box represent the first and third
quartile respectively. The line crossing the box indicates the
median, the central value of the data.

Table 15 shows the average computational time (in sec-
onds) to solve the different size instances. For each size
instances, 25 to 100 activities, IGA-SM takes more time
than the IGA-IM. This is because of the different combina-
tions of the parameters, specially for the FBI_counter as it
applies after 10 generations for the IGA-SM whereas after
20 generations for the IGA-IM. Therefore, in terms of the
computational time IGA-IM is better than the IGA-SM. From
Table 15, it is seen that, the average computational time
increases exponentially with the increase of the activities
number that represents the NP-hard characteristics of the
RCPSPDC.

TABLE 15. Average computational time.

VI. CONCLUSION

Owing to the nature of the complexity of the RCPSPDC,
over the last few decades, no single algorithm has been
shown to perform better with a reasonably good solution for
all the problem instances of the datasets. For this reason,
in this study, two different types of IGAs have examined for
solving the RCPSPDC. Firstly, the RCPSP with the target
of maximizing the NPV is established and consequently the
hybrid IGA is applied to solve the problem. Hybridizing the
IA with GA increases the search ability to find the nearly
optimal solution and avoids the issue of premature conver-
gence. The VINS in IGA enhances the performance of the
population’s worst individual. In addition, the restart scheme
induce diversity and prevents trapping from local solution.
Moreover, the AMR delays the negative cash flow associated
activities which further improves the NPV.

The parameters of the algorithms are set using the well
known Taguchi’s DOE. The performance of the proposed
algorithms are verified by testing on a standard dataset prob-
lems from 25 to 100 activity projects. Consequently, the pro-
posed algorithms have been compared with the state-of-
the-art algorithms to examine their performance. The study
revealed that, the proposed algorithms are consistently more
effective than the existing algorithms with a lower value
of average deviation. The proposed algorithm outperforms
existing state-of-the-art algorithms, particularly for (i) the
projects with 0% and 100% negative cash flow associated
activities, (ii) the 75-activity instances, and (iii) the projects
with two resources usage. The proposed techniques can be
utilized in a range of financial sectors such as software,
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manufacturing, service, and construction industries. The
algorithms developed in this study can aid practitioners and
project managers inmaking the right decision at the right time
in executing the project. These will help project managers to
more carefully estimate the potential budget in order to ensure
profitability.
The proposed algorithms are also applicable to solve

resource constrained portfolio optimization and revenueman-
agement problems. However, the proposed IGA is prob-
lem specific whose performance is dependent on different
parameter combinations. Thus, for any further extension of
the problem, the algorithm should be redesigned. In this
study, the cash inflows comes from the payments at activity’s
completion time. However, cash flow may occur with the
progress of the work at a regular time interval. In the future,
a hybrid approach of the IGA will be tested on RCPSPDC
with different paymentmethods. It is known that, owing to the
no free lunch theorem, no single heuristic or meta-heuristic
algorithm with a reasonably good solution and within a
reasonable computational time is suitable for solving the
RCPSPDC [21]. Therefore, in the future, the performance
examination of other swarm intelligence algorithms such as
animal migration optimization [99], water wave optimiza-
tion [100], or their hybridization with other heuristics would
be valuable to solve the RCPSPDC. Moreover, the study
of multi-mode RCPSPDC with uncertainty and disruption
would be more interesting. Furthermore, an integration of
supply chain management with the RCPSPDC to ensure the
right product at the right place at the right time with a reason-
able cost would be helpful to assure the profitability of the
project.
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