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Abstract Subclinical, low-grade systemic inflammation
has been observed in patients with type 2 diabetes and in
those at increased risk of the disease. This may bemore than
an epiphenomenon. Alleles of genes encoding immune/
inflammatory mediators are associated with the disease, and
the two major environmental factors the contribute to the
risk of type 2 diabetes—diet and physical activity—have a
direct impact on levels of systemic immune mediators. In
animal models, targeting of immune genes enhanced or
suppressed the development of obesity or diabetes. Obesity
is associated with the infiltration and proinflammatory
activity of macrophages in adipose tissue, and immune
mediators may be important regulators of insulin resistance,
mitochondrial function, ectopic lipid storage and beta cell
dysfunction or death. Intervention studies targeting these
pathways would help to determine the contribution of an
activated innate immune system to the development of type
2 diabetes.
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Abbreviations CRP: C-reactive protein . FasL: Fas
ligand . FLIP: Fas-associated death domain protein-like IL-
1β converting enzyme-inhibitory protein . ICAM:
intercellular adhesion molecule . MCP-1: monocyte
chemotactic protein-1 . NF-κB: nuclear factor-κB . PAI-1:
plasminogen activator inhibitor-1 . RANTES: regulated
upon activation normal T cell expressed and secreted .
SOCS: suppressor of cytokine signalling

Introduction

Type 2 diabetes is caused by the failure of beta cells to com-
pensate for insulin resistance. Inflammatory or immuno-
logical factors are implicated in both insulin resistance and
beta cell failure, and this review will consider evidence sug-
gesting that these might be linked by a common mechanism.

Association of subclinical inflammation with
type 2 diabetes

Subclinical systemic inflammation [1–6] and abnormalities
of virtually all systemic indicators of inflammation have
been reported in type 2 diabetes. These include increases in
acute-phase proteins, cytokines and mediators associated
with endothelial activation (Table 1), although it is impor-
tant to note that the degree of immune activation is far
below that seen in acute infections. For example, median
plasma C-reactive protein (CRP) levels were only twice as
high in patients with diabetes as compared with matched
control subjects in a population-based German cohort, and
serum levels of IL-6 largely overlapped (Fig. 1). We re-
cently extended this study to include chemokines (C. Herder
et al., unpublished results). Interestingly, we observed the
selective upregulation of certain chemokines rather than a
uniform upregulation of all inflammatory mediators. Sys-
temic concentrations of RANTES (regulated upon activa-
tion normal T cell expressed and secreted) and IL-8 were
elevated, whereas levels of monocyte chemotactic protein-1
(MCP-1) and eotaxin were not.
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The possibility that these inflammatory changes might be
a consequence of type 2 diabetes rather than a contributor to
its development can be rejected on two grounds. First, sim-
ilar degrees of subclinical inflammation are seen in subjects
with IGT and those with overt type 2 diabetes (Table 1).
Second, prospective studies (Table 2) have reported subtle
proinflammatory changes, including raised leucocyte counts
and modest increases in circulating inflammatory media-
tors, many years before the diagnosis of type 2 diabetes
[7–22] and at a stage when few would be expected to
have IGT or impaired fasting blood glucose levels. Very
high levels of CRP did not further increase diabetes risk
[17].

Genetic studies support a pathogenic role for immune
mediators

Although low-grade inflammatory changes precede type 2
diabetes by many years, immune activation might none-
theless simply reflect an underlying, but unrelated disease
process. One way of assessing whether immune reactivity
plays a causal or contributory role in the pathogenesis of
type 2 diabetes is to search for an association between dia-
betes risk and immune genes. The number of immune genes
identified as containing one or more alleles associated with
type 2 diabetes is steadily increasing. However, most studies
are small and are not population-based, and the reported
associations have yet to be confirmed in different popula-
tions. Nonetheless, it is worth noting that alleles in HLA
loci and in the genes encoding TNF-α, TNF-β, TNF-α
receptor 80, IL-6, IL-6 receptor-α, CRP, TGF-β and plas-
minogen activator inhibitor-1 (PAI-1) have been reported to
be associated with type 2 diabetes and/or the metabolic
syndrome [23–36]. Most of these alleles are functional in
that they modify the inflammatory response, and the con-
cept of an inflammatory contribution to the pathogenesis of
type 2 diabetes would indeed require functional alleles such
as these to be associated with diabetes risk.

Lessons from animal models

Another way of investigating the relationship between in-
flammatory immune reactivity and type 2 diabetes is to
study immune gene defects in animals to determine whether
these cause or prevent the development of diabetes. While
such studies do not allow firm conclusions to be drawn
concerning the pathogenesis of human diabetes, they can
provide the necessary proof of principle. Several of the
immune genes associated with diabetes have been studied
in animal models and, as shown in Table 3, immune gene
disruption or transgenic overexpression in mice had a major
effect on the risk of developing insulin resistance or dia-

Table 1 Markers of subclinical inflammation in type 2 diabetes or
the metabolic syndrome

Acute-phase proteins
α-1 Acid glycoprotein Haptoglobin
CRP Fibrinogen
Serum amyloid A protein Orosomucoid
Systemic cytokines/chemokines
IL-6 Soluble IL-6 receptor
TNF-α Soluble TNF-α receptors 1 and 2
IL-10 MIF
IL-1+IL-6 MCP-1
IL-18 RANTES
Blood/endothelial cell activation
Soluble ICAM-1 Soluble VCAM-1
Soluble E-selectin Soluble P-selectin
von Willebrand factor Soluble CD40 ligand
TAFI PAI-1
t-PA Leucocyte count

All parameters exhibit increased levels in blood of patients with type
2 diabetes and/or in individuals with metabolic syndrome, except for
systemic levels of IL-10 which are reported to be decreased [102,
105, 106, 183–188]
MIF Macrophage migration inhibitory factor, TAFI thrombin-
activatable fibrinolysis inhibitor, t-PA tissue plasminogen activator,
VCAM-1 vascular cell adhesion molecule-1
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Fig. 1 Elevated systemic levels
of CRP (a) and IL-6 (b) in type 2
diabetes. Comparison of patients
with type 2 diabetes (n=152)
with non-diabetic control sub-
jects matched for age and sex
(n=77) from a population-based
sample. Modified after Müller
et al. [218] Box andwhisker plots
show the 10th, 25th, 50th (median),
75th and 90th percentiles
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betes in response to a high-caloric diet [37–43]. A straight-
forward explanation is that, in these animal models, TNF-α,
IL-6, intercellular adhesion molecule-1 (ICAM-1) or PAI-1
are either directly or indirectly involved in the development
of severe obesity and diabetes. However, one important
caveat is that, as previously observed [44], the phenotype
caused by a gene defect strongly depends on the overall
genetic background, i.e. a defective PAI-1 or ICAM-1 gene
may not exhibit diabetes- or obesity-regulating properties if
introduced onto another genetic background (S. Martin and
H. Kolb, unpublished results). It should, however, be ac-
knowledged that immune genes do affect diabetes risk.

Table 2 Prospective studies of incident type 2 diabetes

Study Age at entry
(years)

Number of
subjects

Follow-up
for diabetes

Incident
diabetes (n)

Immunological
risk factor

Atherosclerosis Risk in Communities
Study (ARIC) [7, 8]

45–64 12,330 7 years 1,335 Factor VIII ↑
von Willenbrand factor ↑
Leucocyte count ↑
Orosomucoid ↑
Fibrinogen ↑
Sialic acid ↑
Serum albumin ↓

Women’s Health Study
(WHS) [9]

≥45 27,628 4 years 188 CRP ↑
IL-6 ↑

Cardiovascular Health Study
(CHS) [10]

≥65 5,888 3–4 years 45 CRP ↑

Pima Indian Population [11] ≥5 2,088 15 years 695 γ-globulin ↑
Pima Indian Population [12] 18–50 272 5.5 years 54 Leucocyte count ↑
West of Scotland Coronary Prevention
Study (WOSCOPS) [13, 189]

45–64 5,974 4.9 years 127 CRP ↑

National Health and Nutrition Survey
Epidemiological follow-up Study
(NHANES I) [14]

25–74 8,352 20 years 878 Leucocyte count ↑

Japanese male office worker
study [15]

35–59 2,953 6 years 154 (263 IFG) Leucocyte count ↑

Insulin Resistance Atherosclerosis
Study (IRAS) [16]

40–69 1,047 5 years 144 PAI-1 ↑

Monitoring of Trends and Determinants
in Cardiovascular Disease (MONICA)
Augsburg cohort Study [17]

45–74 2,052 7.2 years 101 CRP ↑

EPIC-Potsdam study [18] 35–65 27,548 2.3 years 188 IL-6 ↑, IL-6+IL-1 ↑
Mexico City Diabetes Study [19] 35–64 1,244 6 years 190 (metabolic

syndrome)
CRP ↑ in women only

Hong Kong Cardiovascular
Risk Factors
Prevalence Study [20]

25–74 228 IGT
228 NGT

2 years 21 CRP ↑

Hoorn study [22] 279 6.4 years 54 CRP ↑ in men only
Nurses’ Health Study [21] 30–55 32,826 10 years 737 TNF-α Rec 2 ↑

IL-6 ↑
CRP ↑

Table 3 Animal models that prove the link between inflammatory/
immune genes and type 2 diabetes

Inflammatory/immune defects that cause insulin resistance
or type 2 diabetes in mice on a high-caloric diet
ICAM-1 gene disruption [38]
CD11b gene disruption [38]
IL-6 gene disruption [39]
Inflammatory/immune defects that prevent insulin resistance
or type 2 diabetes in mice on a high-caloric diet
TNF-α/TNF-α receptors 1 and 2 gene disruption [37]
PAI-1 gene disruption [40, 41]
PAI-1 gene overexpression [42]
Inducible nitric oxide synthase gene disruption [43]
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Immune mechanisms in diabetes pathogenesis: insulin
resistance

No randomised controlled trial has provided formal proof
that high-caloric diets and insufficient muscle work are the
major environmental factors promoting the pathogenesis of
obesity and type 2 diabetes, and it is unlikely that any such
trial will ever be undertaken. The indirect evidence is, how-
ever, overwhelming, and we will assume that this concept is
valid.

Environmental factors seem to act via two major targets.
One is the processing of glucose, fatty acids and other
metabolites, as regulated by insulin and other hormones in
the majority of tissues, and the other is beta cell function.
The resulting insulin resistance and impaired insulin secre-
tion precede the onset of hyperglycaemia by many years, if
not decades [45, 46]. The hypothesis of an immune origin
of type 2 diabetes is based on the concept that immune
inflammatory mediators are responsible for the effects of
these environmental factors on insulin resistance and beta
cell function. As depicted in Fig. 2, the metabolic concept
of the pathogenesis of diabetes considers that tissue func-
tion is directly affected by the toxic effect of excess glucose,
NEFA and triglycerides, probably mediated by increased
oxidative stress. The immunological concept assumes that
the production of proinflammatory immune mediators is an
essential step in glucotoxicity and lipotoxicity. Conversely,
anti-inflammatory immune mediators such as IL-10 would
be expected to counteract glucotoxicity and lipotoxicity.

In animal models, both insulin resistance and diabetes
can result from diverse genetic defects affecting the func-
tion of individual organs, including liver, fat, muscle, islet
and neuronal tissue [47–67]. However, as described above,
insulin resistance may also result from defects in various
inflammatory/immune genes (Table 3). What mediates the
effects of environmental factors on insulin resistance?
There are indications that dietary effects may be immune
mediated and that monocytes, endothelial cells and other
cell types respond to elevated concentrations of glucose or
NEFA by releasing inflammatory mediators, such as PAI-1,
IL-6, TNF-α, soluble ICAM-1, prostaglandins, MCP-1 and
IL-1β [68–75].

These responses can be suppressed by experimental
strategies aimed at blocking the production or action of free
radicals or superoxide [69, 72, 73, 76–79]. It has therefore
been proposed that increased mitochondrial activity ac-
counts for increased oxidative stress, which, in turn, causes
the expression of several critical immune genes via redox-
regulated transcription factors, such as nuclear factor-κB
(NF-κB) or stress kinases. The recent observation of a close
association between impaired mitochondrial function and
insulin resistance or type 2 diabetes supports this concept
[80, 81].

The upregulation of proinflammatory gene expression in
response to high levels of glucose or fat has also been
observed in vivo within a few hours of enteral uptake or
parenteral administration of nutrients [82–87]. Further-
more, levels of circulating immune mediators, such as IL-6
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Fig. 2 Metabolic vs immunologic concepts of the pathogenesis of
type 2 diabetes. The two major pathogenic factors causing type 2
diabetes appear to be insulin resistance of major peripheral tissues and
impairment and gradual loss of beta cell function, both of which are
closely associated with vascular damage. The metabolic concept
assumes a direct detrimental effect of high levels of glucose and
NEFA or triglycerides on target cells limited by the functional ca-

pacity of mitochondria. The immunological concept suggests that an
essential step in macronutrient toxicity is the induction of inflamma-
tory mediators, which regulate mitochondrial function and damage
target cells. Without such an inflammatory response, excess mac-
ronutrient supply (including advanced glycation and lipoxation end
products) would not be diabetogenic
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or IL-18, released in healthy subjects in response to the
macronutrient challenge were similar to those seen in type 2
diabetes. An additional, interesting argument is that western
diets are usually rich in advanced glycation and lipoxation
end-products. Both are glucose-derived compounds that
have been shown to elicit a profound proinflammatory re-
sponse in vitro as well as in vivo [88, 89].

It may be argued that the inflammatory response ob-
served is only an epiphenomenon attributable to excess
radical production in mitochondria, whereas the conse-
quences of impaired or unbalanced mitochondrial activity
relevant to diabetes are immediate functional defects in fat
cells, hepatocytes, beta cells or other cells [90]. The only
available experimental evidence to address this comes from
animal studies. It has been shown that a high-calorie diet
does not induce insulin resistance if certain proinflamma-
tory genes, such as PAI-1 and TNF-α, are non-functional
[37, 41]. Furthermore, deletion of other immune genes,
such as ICAM-1, renders a high-caloric diet prodiabetic
[38]. The intercellular adhesion molecule ICAM-1 is not
expressed in mitochondria and is not considered to regulate
mitochondrial function. Conversely, immune or inflamma-
tory mediators such as PAI-1 appear to have major effects
on mitochondrial function and ectopic triglyceride accu-
mulation in non-adipocytes [41]. Many proinflammatory
genes are induced by the transcription factor NF-κB. Im-
paired activation of NF-κB by deletion of the gene encod-
ing IκB kinase-β in myeloid cells alone protected mice
from high-fat-diet-induced insulin resistance in liver and
muscle, indicating a key role for activated leucocytes [91].
We recently observed that cytokines modulate the expres-
sion of uncoupling protein-2, a major regulator of ther-
mogenesis and substrate oxidation [92]. The capacity of
mitochondria to process large quantities of substrate may
therefore be modulated by low-grade inflammation.

The induction of low-grade inflammation by a high-
caloric diet may also occur via the concomitant growth of
adipocytes. The observation that systemic levels of many
immune mediators are strongly correlated with BMI, fat
mass and/or waist circumference [93] has led to the assump-
tion that many circulating immunemediators originate from
adipocytes; however, this view may be too simple. Two
recent studies in mice and humans provide evidence that
obese adipose tissue exhibits macrophage infiltration and
that these macrophages are a major source of inflammatory
mediators [94, 95]. Infiltrated macrophages account for
almost all TNF-α expression and much of the IL-6 ex-
pression in adipose tissue. It should be noted that the
upregulation of proinflammatory genes in macrophages
occurs before circulating insulin levels increase (a marker
of insulin resistance). The infiltration of adipose tissue by
macrophages is strongly correlated with BMI in humans,
suggesting that fat accumulation in adipocytes triggers the
influx of macrophages and their activation. This may occur
through the release of chemokines from adipocytes [94–96]
and/or via the expression of stress proteins on the fat cell
surface [97, 98]. Hence, obesity would only result in insulin
resistance and type 2 diabetes if macrophage infiltration and
activation—‘adipositis’—evolved and persisted.

How do proinflammatory immune mediators cause insu-
lin resistance? Many studies have analysed this question,
and these will only be summarised here. Immune mediators
such as TNF-α and IL-6 can directly interfere with insulin
signalling [99–103], and the binding of these cytokines to
their cognate receptor on muscle cells or hepatocytes has
been shown to induce an intracellular response that inter-
feres with the ability of the insulin receptor to phosphory-
late its intracellular targets. The cellular response to insulin
is dampened in consequence. One well-described example
of this is the induction of the protein suppressor of cytokine
signalling-3 (SOCS-3) by IL-6 in hepatocytes. This protein
associates with the insulin receptor and suppresses insulin-
dependent receptor autophosporylation and IRS-1 phos-
phorylation [100]. SOCS-3 also binds to IRS-1 and IRS-2,
leading to their ubiquitination and proteasomal degradation
[104]. Immune mediators also affect insulin sensitivity
indirectly by modulating the regulatory function of fat,
nerve or other cells, e.g. by influencing the release of leptin
or by activating the hypothalamic–pituitary–adrenal axis
[105–109].

One final aspect of immune-mediated insulin resistance
to consider is the way in which physical exercise/muscle
work might counteract insulin resistance. Muscle work is
intimately linked with the production of certain immune
mediators, and skeletal muscle expresses a large amount of
IL-6, which is released into the circulation in response to
exercise [110–112]. In contrast, the expression of low levels
of TNF-α is unaltered [113]. The production of IL-6 is
modulated by the glycogen content of muscle tissue [114],
and IL-6 may also be released from the human brain during
prolonged exercise [115]. Muscle-derived IL-6 may have
beneficial effects, at least within a certain concentration
range, since IL-6 inhibits low-grade TNF-α production and
stimulates lipolysis and fat oxidation [116, 117]. Intra-
arterial acute infusion of IL-6 does not impair whole-body
glucose disposal in healthy humans [118]. Although IL-6
administration has been shown to induce hepatic and
skeletal muscle insulin resistance in mice [119], the fact that
IL-6 deficiency was associated with the development of
diabetes in the same species cannot be ignored (Table 3).
In obese subjects, IL-6 levels in the central nervous sys-
tem are negatively correlated with fat mass, and intra-
cerebroventricular IL-6 treatment decreases body fat in
rats [120]. Taken together, these findings suggest that the
glucose-lowering effect of exercise may indeed be im-
mune mediated.

Immune mechanisms in diabetes pathogenesis: beta cell
destruction

The other major issue in the pathogenesis of type 2 diabetes
is whether and, if so, how immune mediators are involved
in the steady loss of beta cell function which predates the
onset of diabetes [121–123]. Metabolic stress resulting
from a high-caloric diet and the concomitant detrimental
effects of increased glucose or NEFA concentrations on
beta cells are considered major contributors to beta cell loss
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[74, 122, 124–127], which occurs mainly by apoptosis
[128, 129]. The question at issue is whether beta cell
damage and apoptosis are direct consequences of the in-
creased mitochondrial generation of oxygen radicals or
whether immune/inflammatory mediators are responsible
(Fig. 3).

Evidence favouring oxidative stress as a mediator of beta
cell apoptosis in type 2 diabetic patients has recently been
published [130], and lipid peroxidation was shown to be
increased in the islets of patients with type 2 diabetes as
compared with control subjects. The islets of diabetic pa-
tients contained less cytoplasmic Cu/Zn superoxide dis-
mutase, and there was a clear inverse correlation between
oxidative DNA damage and islet beta cell volume density in
these patients.

There is controversy as to whether in vitro exposure of
human islets to high glucose levels leads directly to beta cell
apoptosis [68, 131, 132]. High glucose increased TUNEL
staining (evidence of apoptosis) in a dose-dependent man-
ner, and increased expression of the Fas receptor, leading to
cleavage of pro-caspase 3 and activation of caspase 3. This
probably occurred through transactivation of Fas by Fas
ligand (FasL) expressed constitutively by neighbouring
islet cells [68, 131, 132]. In contrast, glucose oxidation was
unaffected in human islets exposed to high glucose in vitro,
and human islets transplanted to hyperglycaemic nude mice
did not exhibit ultrastructural signs of apoptosis [68, 132].
One of the differences between the in vitro studies cited
above is in the method used to culture human islets. In the
former study, human islets were cultured on an extracellular
matrix from bovine corneal epithelial cells, whereas in the

latter the islets were cultured in free-floating organ cultures.
Clarification is needed as to whether this methodological
difference affected the outcome of these and other studies,
and may explain discrepancies in the literature concerning
the expression of FasL on human beta cells [131, 133].

It is intriguing that glucose-stimulated IL-1 synthesis and
secretion and high-glucose-induced beta cell apoptosis
were prevented by an IL-1 receptor antagonist [134], al-
though this observation requires independent confirmation.
IL-1 expression has also been detected in pancreases from
type 2 diabetic patients, but not in control subjects, as well
as in Psammomys obesus fed a high-energy diet leading to
hyperglycaemia [134]. In this model, IL-1 expression in
islet beta cells was reversed by the administration of phlo-
rizin, leading to normoglycaemia. It is surprising that IL-1,
which usually does not cause beta cell apoptosis in human
islets [133, 134], induced apoptosis in these experiments. It
is not clear whether this relates to the culture conditions, or
to the secretion of cytokines such as TNF-α or IFN-γ in
these particular islet preparations. A very recent study from
the same group suggested that an IL-1 receptor antagonist is
a physiological regulator of beta cell viability, since small
interfering RNAs directed against the IL-1 receptor antag-
onist increased the apoptotic rate, even at basal glucose
levels at which beta cell IL-1 production is low [135]. In the
same study, leptin, an important adipokine and a member of
the IL-6 cytokine family, was shown to induce beta cell
apoptosis in human islets by reducing levels of IL-1 re-
ceptor antagonist and increasing IL-1β synthesis and se-
cretion [135].

The reduced level of the Fas-associated death domain
protein-like IL-1β converting enzyme-inhibitory protein
(FLIP) observed in the pancreases of type 2 diabetic pa-
tients may also contribute to glucose-induced apoptosis
[136]. Interestingly, this inhibitor determines whether Fas-
signalling will lead to apoptosis or cell proliferation. This
concept is consistent with the observation that the sig-
nalling intermediates involved in glucose- and IL-induced
beta cell apoptosis in human islets are strikingly similar
[137]. The toxic actions of NEFA on beta cell function may
be mediated by similar pathways; several lines of evidence
point to this. Exposure to NEFA causes oxidative stress [76,
125, 127, 138–141] followed by apoptosis [142], and IL-1
potentiates NEFA toxicity [143]. Exogenous IL-1 or other
toxic immune mediators from the islet endothelium [144–
147] or from the circulation may act in concert with dietary
fatty acids to damage beta cells, although the signalling
pathways involved may differ in some respects. While
cytokines induce activation of NF-κB and nitric-oxide-
dependent endoplasmic reticulum stress, NEFA induce en-
doplasmic reticulum stress independently of NF-κB and
nitric oxide in beta cells [148]. Since recent studies have
questioned the role of nitric oxide in cytokine-induced beta
cell destruction in vivo [149], and have emphasised mito-
chondrial perturbation as an important feature, the main
effector mechanisms elicited by cytokines and metabolic
factors may not differ to a great extent.

In conclusion, there is emerging, although controversial,
evidence that metabolic factors—particularly glucose in
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(pre) type 2 diabetes—may contribute to beta cell dysfunc-
tion and apoptosis. This is thought to occur via metabolic
stress leading to the synthesis of inflammatory mediators
that elicit intracellular responses that are largely similar to
those involved in immune-mediated beta cell destruction in
type 1 diabetes.

Immune or inflammatory?

As described above, low-grade inflammation in (pre) type 2
diabetes is generally considered to be a non-specific con-
sequence of metabolic stress. This type of ‘inflammatory’
response would not require the infiltration of ‘inflamed’
tissues by (auto)antigen-reactive immune cells—the hall-
mark of classic inflammation. Although it is conceivable
that inflammation is fuelled by non-antigen-specific reac-
tions, we would like to point out that a chronic inflamma-
tory state, such as that observed in (pre) type 2 diabetes,
may be driven by antigens, and that chronicity may result
from deficient anti-inflammatory feedback loops. Antigens
known to be expressed on stressed cells or released from
damaged cells, notably stress proteins or certain lipid com-
pounds, are candidates for this role [97, 150–152]. Such
stress antigens may drive inflammation in obese adipose
tissue, islets or the vessel wall, and heat shock protein 60
and oxidised lipids have already been identified in animal
models as antigens that either cause or maintain the ath-
erosclerotic disease process in the vessel wall [153–155].

Limited data are available on islet histology in type 2
diabetes. Although a decrease in beta cell volume, an in-
creased number of alpha cells and the deposition of islet
amyloid have been reported, it is not known whether tissue
macrophages, dendritic cells or endothelial cells exhibit a
proinflammatory phenotype [128, 129, 139, 156–158]. In
diabetic patients, the presence of extensive islet amyloido-
sis does not appear to be associated with the influx of
macrophages [159]. However, there are no data on the type
of morphological or inflammatory changes that occur in
pancreatic islets prior to diabetes onset, for example, in
obese individuals with IGT.

Intervention studies

The classical treatment modalities for type 2 diabetes are
diet and exercise for weight reduction, and pharmacological
intervention by oral hypoglycaemic drugs or insulin, all of
which affect the inflammatory state. Weight reduction and/
or physical exercise markedly reduce circulating levels of
inflammatory mediators such as CRP and IL-6 (Table 4), a
response that probably indicates the remission of macro-
phage-mediated inflammation in adipose tissue as a con-
sequence of altered fat cell metabolism. It could be argued
that the remission of systemic low-grade inflammation by
lifestyle changes is an epiphenomenon, but, once again,
genetic studies imply a causal relationship. For example, it
was reported by the Finnish Diabetes Prevention Study that
the protective effect of lifestyle changes was associated

with polymorphisms in the promoters of the genes en-
coding TNF-α and IL-6 [160].

As shown in Table 4, all oral hypoglycaemic agents have
anti-inflammatory properties. It is therefore conceivable
that a dampening of innate immune reactivity contributes to
their therapeutic effects and those of insulin. To date, the
preventive or therapeutic potential of anti-inflammatory/
immunosuppressive therapy has not been evaluated. Pilot
trials with antibodies directed against TNF-α have not
shown a beneficial effect on insulin action, in contrast to the
observations in mice [161–164]. However, it is not known
whether sufficiently high concentrations of TNF-α antag-
onist were reached in target tissues, or whether immune
mediators other than TNF-α are more important for the
induction of insulin resistance in humans. Recent studies
with TNF-α infusion demonstrated its ability to cause in-
sulin resistance in vivo [165]. The results of therapeutic
studies on high-dose aspirin in type 2 diabetes patients are
more encouraging: in parallel with a reduction of systemic
CRP levels there was a 25% reduction in fasting blood
glucose and an even larger decrease in serum triglyceride
levels [166].

A clinical trial has been launched to investigate the
importance of proinflammatory cytokines in the generation
of insulin resistance and beta cell failure in type 2 diabetes.
This will test the effect of subcutaneous human recombi-
nant IL-1 receptor antagonist (100 mg/day) vs placebo in
patients with type 2 diabetes (collaboration between M.
Donath, Division of Endocrinology and Diabetes, Univer-
sity Hospital, Zurich, Switzerland and The Steno Diabetes
Centre, Denmark).

Low-grade inflammation and health

Cross-sectional and prospective studies in the general
population, the elderly, and centenarians have shown that
mildly elevated levels of CRP and proinflammatory cy-
tokines are associated with, or predict, atherosclerosis,
myocardial infarction, stroke, depression and Alzheimer’s
disease, and that longevity is associated with decreased
systemic inflammation [105, 167–171]. Here, again, po-
lymorphisms in immune genes modulate risk, implying
a pathogenetic significance for immune gene products

Table 4 Interventions that have an impact on the inflammatory state

Inflammatory mediators whose concentrations are reduced
by weight loss and/or physical exercise [190–207]
CRP, TNF-α, soluble TNF-α receptor 2, IL-6, IL-18, MCP-1,
PAI-1, t-PA, soluble ICAM-1, soluble VCAM-1, P-selectin
Inflammatory mediators whose concentrations are reduced by
glucose-lowering drugs [186, 188, 208–217]
Sulphonylurea: TNF-α
Metformin: CRP
Glitazones: CRP, SAA, TNF-α, soluble CD40 ligand, PAI-1
Insulin: CRP, IL-1, IL-6, TNF-α, soluble ICAM-1, MCP-1, PAI-1

SAA Serum amyloid A, t-PA tissue plasminogen activator, VCAM-1
vascular cell adhesion molecule-1
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[171–173]. Where studied, the upregulation of inflamma-
tory mediators was linked to increased oxidative stress,
impaired mitochondrial function and abnormal cholesterol
metabolism [174–176]. Interventions targeting cholesterol
metabolism or oxidative stress also ameliorated inflamma-
tion [167, 177–182]. We therefore conclude that the meta-
bolic concept and the immunological concept are simply
two views of the same process, seen from different angles.
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