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Abstract—The human immune system is a complex system of
cells, molecules, tissues, and diverse organs that can provide us
with primary defense against pathogenic organisms. These com-
ponents are highly interactive and execute the immune response in
a coordinated and specific manner. This paper presents a formal
mathematical model of an artificial immune system (AIS)-based
control framework. The framework aims to provide an inte-
grated solution to control and coordinate complex distributed
systems with a large number of autonomous agents such as auto-
mated warehouses, distribution centers, and automated material-
handling systems. The control framework consists of a set of AIS
agents working in response to the changing environment and the
occurrence of tasks. The AIS agents manipulate their capabilities
to derive appropriate responses to tackle different problems. A
methodology describing the response-manipulation algorithm of
the AIS agents and their ability to generate new capabilities
is discussed in this paper. Through response manipulation and
knowledge building, a self-organized and fully distributed system
with agents that are able to adapt and accommodate in a dynamic
environment via distributed decision making and interagent com-
munication is achieved.

Index Terms—Artificial immune system (AIS), complex distrib-
uted control, multiagent system.

I. INTRODUCTION

HE HUMAN immune system performs pattern recogni-
tion, learning, and retains memory of the antigens that it
has fought [1]. It is a highly distributed complex system with
a collection of independently operating agents. These agents
communicate via chemical signals, cell-to-cell contact, and
secretion of molecules. The immune system is a self-organized
and fully distributed multiagent system with properties of
specificity, diversity, memory management, self-organization,
and adaptive control. The properties of distributive control and
self-organization impart a high degree of robustness that has
created great interest in adopting the immune-system paradigm
to various engineering systems; and this engineering analog is
called artificial immune system (AIS).
AIS has been studied widely in the fields of artificial in-
telligence (AI) due to its deep inspiration to engineering sci-
ences. The essences of human immune system are imitated
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to perform complicated tasks, such as adaptive control, learn-
ing tactics, communication strategies, and memory manage-
ments. These special properties have been integrated and
adopted in various complex systems for problem solving. They
include parallel searching [2], detection systems [3], [4], au-
tonomous agents [5], [6], computing systems [7], [8], fault-
tolerance systems [9], [10], and decentralized mechatronic
control [11].

In [12] and [13], we proposed a control framework that
has the ability to manage, coordinate, and schedule a fleet of
agents by imitating the human immunity mechanism. The AIS-
based control framework operates various kinds of multiagent
systems. It addresses how agents of different intelligence levels
achieve tasks in a dynamic environment through communi-
cation and strategic behavioral control. Previous studies have
shown that an AIS-based control framework is more efficient
in operating a fleet of autonomous guided vehicles (AGVs) in
an automated warehouse than the traditional centralized control
[12]. This paper focuses on the development of strategic control
methods with AIS for these agents. AIS agents are employed
with full autonomy in decision making and communication.
Their internal behaviors provide mutual understanding among
them and allow them to cooperate strategically.

To quantify individual and group behaviors of AIS agents,
a formal mathematical model is presented in this paper. Being
a multiagent-control framework, cooperation is indispensable.
A cooperation model is presented with the aid of a behavior
study. One significant mechanism of the immune system is
its ability to fight against antigens with different immune
responses. Hence, the immune metaphor allows AIS agents
to operate autonomously in a dynamic environment by capa-
bility manipulation where different responses are exhibited.
The capability-manipulation methodology is described in detail
in this paper. Through capability manipulation, AIS agents
are able to determine appropriate responses towards different
problems and situations. Hence, agents under this AIS-based
control are fully autonomous and adaptive.

This paper proceeds as follows: Section II starts by giving
a brief overview of the human immune system. Section III
reviews our proposed AIS-based multiagent control. Section IV
presents a formal mathematical description of the AIS-based
control framework and Section V presents a cooperation model
in terms of communication and interaction between AIS agents.
Section VI presents the methodology of capability manipula-
tion of the AIS agents with an illustrative example to demon-
strate how to generate new capabilities. Section VII evaluates
the overall operational scheme of our control framework and
presents the results of a simulation study.
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Fig. 1. Architecture of the control framework for the individual AIS agent.

II. AN OVERVIEW OF HUMAN IMMUNE SYSTEM

The human immune system is a complex system consist-
ing of diverse organs, tissues, innate cells, and acquired cells
distributed throughout our body. These components are
interrelated, and act in a highly coordinated and specific man-
ner. Interactions between these components generate immune
responses of either innate or acquired immunity. Immunity
performs a number of vital functions, for example, the elimi-
nation of invading antigens and the activation of amplification
mechanisms in developing protective antibodies [14].

Innate immunity is inborn and unchanging. It provides re-
sistance to a variety of antigens during their first exposure to
a human body. This general defense operates nonspecifically
during the early phase of an immune response and is known
as primary immune response. On the other hand, acquired
immunity develops during the lifetime of a person and is based
partly on the person’s experiences. This immunity is antigen
specific and is activated during the first exposure to antigens.
The antibodies and immune cells eliminate the antigens follow-
ing activation. Some of the immune cells become memory cells
after the elimination and on subsequent reencounter of the same
antigen; the immune system is primed to destroy these antigens
more quickly [15]. This stronger and faster immune response is
known as secondary immune response.

To generate successful immune responses, immune cells play
a major role in destroying foreign antigens. Lymphocytes are
the main antigen killer among all the immune cells. They
have special binding areas, known as receptors, which can
structurally determine and react with specific foreign antigens.
The specificity of these cells is developed before the antigen
is introduced. An antigen does not induce the appearance
of immune cells; rather, it selects and stimulates preexisting
antigen-specific cells by interacting with their receptors [15].
The group of immune cells specific to an antigen is called a
clone of cells. Diversity and specificity are a result of having

millions of different clones that demonstrate unique antigen
specificity.

III. AIS-BASED MULTIAGENT-CONTROL FRAMEWORK

Specificity [16], inducibility, diversity [2], memory [17],
[18], distinguishing self from nonself [19], [20], and self-
regulation are the six major characteristics of the human im-
mune system. These characteristics enable the human immune
system to explore very high dimensions in solving engineering
problems. Various approaches have adopted the properties of
the immune system in the implementation of multiagent con-
trol. The cooperative controls in [5] and [21] use group behavior
mechanism of the immune system for autonomous mobile
robots. A distributed autonomous robotic system (DARS) that
utilizes the AIS techniques shows a noticeable improvement in
[22]. Autonomous navigation is developed in [23] to investigate
an autonomous control system of mobile robots, which is based
on the immune-network theory. Since AIS has founded its
popularity in developing various kinds of multiagent systems,
a control framework based on this biological metaphor is
proposed to operate a fleet of AGVs for automated material
handling with an architecture (Fig. 1) that defines the AIS-based
control strategies of an individual AIS agent [12].

The control framework organizes a fleet of agents in a
dynamic environment. It is developed based on the fully distrib-
uted mechanism of biological immunity. The immune system
is a special type of multiagent system where each agent or
immune element has specific behavior patterns and functions
for a particular antigen. The behavior of the AIS agents of the
control framework depends on the environment as well as indi-
vidual behavior. An AIS agent has a specific set of capabilities
that determine their fundamental intelligence. This intelligence
can be enhanced through interagent communication or via
explorations in the environment. A behavioral-based distributed
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network is adopted for controlling AIS agents. This is a distrib-
uted network based on the transition of agents’ behavior state.
The operations of AIS agents are not predefined in the planning
stage but are altered dynamically to adapt to the corresponding
working environment. This distributed and nondeterministic
control inherits the following characteristics and functions that
are offered by the human immune system.

1) Self-organization: AIS agents having the unique ca-
pability to determine responses to achieve common
tasks through independent decision making and commu-
nications.

2) Self-/Non-self-recognition: AIS agents identify tasks dur-
ing random exploration. Affinity function, an index for
non-self-identification, is used to evaluate the stimulation
of a specific task for an agent. This non-self-recognition
depends solely on the stimulation provided by a task,
which agents do not have any prior information on, such
as location and complexity of the task. Hence, with a sim-
ple set of capabilities predefined for each AIS agent, the
AIS agents are extremely flexible in addressing different
types of problems.

3) Adaptability: AIS agents adjust their behaviors when
tackling a problem. They manipulate the best response
to solve the problem by evaluating the specificity of
its capability. New knowledge or functionality is gained
when coping with variations of tasks and environment.

4) Robustness: Failure of any agent to execute an operation
will not cripple the overall system. Since the control
framework is aimed to be fully decentralized, no fixed
dependence is assigned between tasks and agents.

5) Diversity: AIS agents are able to learn from experiences.
These experiences allow the agents to manipulate their
capabilities and enhance their fundamental intelligence in
solving different problems.

The control framework provides a set of rules that guides and
determines the behavior of individual AIS agent in response to
the changing environment. Through the manipulations of the
rules, unknown events and dynamic variations of the workplace
can be investigated effectively. The control framework depicted
in Fig. 1 demonstrates how AIS agents can recognize the
task independently, tackle the task with specificity, manipulate
new capabilities spontaneously, and cooperate with each other
effectively. Each of the essential components given in Fig. 1 is
discussed in the latter part of this paper. A formal mathematical
model and cooperation model that specify the operation of AIS
agents in the control framework and a detailed analysis of the
response-manipulation algorithm that describes how the AIS
agents generate appropriate responses and new capability sets
in problem solving are described.

Fig. 1 shows the flow of control of an AIS agent under
our control framework. Upon deployment in a workplace,
AIS agents first explore their surrounding environment within
their sensory ranges (SRs). Based on the measure of binding
affinity, agents recognize and approach tasks. After a task
has been recognized by an agent, it will then manipulate its
capabilities by a function called specificity matching. Details
of both binding affinity and specificity matching are given

TABLE 1
EXAMPLES OF LONG-TERM AND SHORT-TERM MEMORIES

Long-term Memory

Pre-defined capabilities
Newly generated capabilities by specific response
Specificity matching function for encountered tasks

Short-term Memory

Instruction received from passive response
Teammates for tackling a cooperative task
Binding affinity function for sensed tasks

in Section IV. The capability manipulator allows agents to
perform appropriate responses in tackling tasks with different
complexities.

Four types of responses, in relation to the human immune
system, have been defined in the control framework. They
are nonspecific, specific, acquired, and passive responses. The
nonspecific response is a fast and straightforward response to
tackle simple and general tasks. Agents execute predefined
capability in performing the nonspecific response. For more
complicated tasks, agents require the generation of a new set
of capabilities that are specific to these complex tasks. The
specific response, which allows agents to generate new set
of capabilities by rearranging or recombining their fundamen-
tal capabilities, is therefore performed. The newly generated
capability is then stored in the agent’s memory in the form of
acquired response for future use. Passive response is solely for
cooperative tasks. Agents who are tackling a cooperative task
send stimulation to activate their surrounding agents to join
in if more agents are required. Activated agents who are not
capable of tackling the cooperative task will receive instructions
solely from the initiating agent for completing the task. This
is a passive response where agents are activated by others to
tackle a task instead of recognizing a task by them in the
first place. The relationships of the four responses and the
detail of the response-manipulation algorithm are discussed in
Section VI.

The memory of the AIS agents are divided into long-term and
short-term memories. Long-term memory stores information
that is essential in completing all the tasks in the workplace.
Short-term memory stores data for temporary use. Examples of
long-term and short-term memories are listed in Table I.

IV. MATHEMATICAL MODELING

The components of the distributed AIS-based multiagent-
control framework shown in Fig. 1 are formally described in
this section. As inspired from the mechanisms of biological
immunity, each AIS agent has its own behavior. The AIS agents
cooperate via communication and sharing of local information
in order to achieve common tasks. Agents employed in our con-
trol framework are abstracted as an independent agent that car-
ries local information, searches for solution space, and exhibits
robust behavior to accomplish different tasks.

The basic attributes of the AIS-based control framework
includes a set of agents that is operated in the system, a set
of tasks that is located in the workplace, an SR of an agent
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that enables it to gain or receive information of its surrounding
environment, and a communication range (CR) that allows the
agent to exchange information or message to each other.

A is a set of agents indexed by j

A={ai,a,...,a;5}, where j =1,2,...,n. (1)

G is a set of tasks indexed by ¢

G={g1,92,---,9i}, wherei =1,2,...,m. (2)

The workplace environment Env is defined as

Env = a; U g; Vi, J. 3)

A. Binding Affinity

AIS agents employ the measure of binding affinity (5) in
task recognition to identify and approach a targeted task in a
dynamic environment. The binding affinity is enumerated by
the distance between an agent and a particular task (d;;), task
occurrence frequency (f;;), and specificity-matching function
(ri7). The definition of binding affinity is given as follows:

Bij = f(dij, fij,riz) 4
Bij =wi(dij) " + wa(fij) + ws(rsy) (5)

where wy, wo, and w3 are the weightings for d;;, fi;, and ry;,
respectively.

Distance is an important element in measuring the affinity
between an antibody and an antigen in biological immunity.
Manhattan distance is chosen as part of the affinity function
in our framework to measure the distance between an agent and
a task. This is because Manhattan distance is computationally
more efficient than Euclidean distance especially in parallel
implementation of the algorithms as shown in [24] and [25].
Moreover, Freitas and Timmis [24] demonstrated that
Manhattan distance tends to be more robust to noisy data. As
Euclidean distance over emphasizes large differences in the
values of the coordinates by exponentiation or square root op-
eration, a single error in the value of one coordinate in the agent
or task vectors can be considerably amplified by the Euclidean
distance. Hence, Manhattan distance is more appropriate in
constructing the distance function for our framework due to its
advantages in computational efficiency and more importantly,
its suitability in the proposed domain.

Hence, d;;(g) is the Manhattan distance between an agent j
and a task ¢ in a two-dimensional plane

dijoy = |z — x5 + yi — y;l- (6)

In biological immunity, distance is not the only concern
for affinity. The affinity between an antibody and an antigen
involves several processes such as pattern recognition, hydro-
gen binding, and noncovalent and van der Waals interactions.
Hence, the binding affinity function of our framework consists
of three parameters between an agent and a task. Besides
Manhattan distance, the other two parameters are task occur-
rence frequency and specificity-matching function. Task oc-
currence frequency enumerates the task-achievement history of

every agent. Our framework is aimed for modeling automated
warehousing operations. It is common to have the same type
of tasks repeated in the workplace. Task occurrence frequency
can therefore increase the affinity between an agent and a
particular type of task by evaluating how many times the agent
has achieved that task successfully in the past. Hence, agents
have a tendency towards more familiar tasks.

fij is the frequency of occurrence of a task, where O; is the
number of occurrences of the task ¢

fij = . @)

A specificity-matching function is a function that follows
the concept of pattern recognition in biological immunity. This
function verifies the feasibility of an agent to handle a given
task. Since an immune cell recognizes an antigen structurally,
we transform task complexity into codes so that an agent can
match these codes with their capabilities. The closer is the
match, the higher is the affinity between the agent and the task.
Specificity matching is a crucial part of our framework since
it also determines which responses an agent should perform
to tackle a given task. A detailed description of agent—task
specificity matching is presented in Section VI.

r;; 1s the specificity-matching function that describes an
agent’s ability and familiarity with a task

1

= — 8
R @®)

Tij

Here, R; is the corresponding index for relative intelligence

between an agent and a task, Ry, is a measure of compatibility

of matching between the capability of an agent and the task,

and S is the relative score that highlights the efficiency between

the capability and the task specification. The details of this
specificity-matching function are given in the next section.

B. Specificity-Matching Function

The function r;; is the specificity-matching function that de-
termines the suitability of an agent to tackle a given task. Based
on a symbolic coding scheme for representing the capability
of an agent and the characteristics of a task, our framework
adopts a string-matching function to determine the best match
of a task to the set of available agents. Fig. 2 illustrates the
capability coding scheme adopted for an agent capability chain
and a task complexity chain. The detailed coding of these chains
are explained in Section V1.

Taking reference from Fig. 2, the components of (8), relative
intelligence (Rj), relative matching length (Ry,) and relative
score (S), are defined as

_ max|[[;]
Fi= max|C}]
Ls
Ry, :i
S,
S =1, 9
S 9
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Fig. 2. Parameters for evaluating the specificity-matching function based on
the agent capability chain and task complexity chain.

V. COOPERATION MODEL

Cooperation of AIS agents is a result of communications and
simple interactions. The design of the AIS-based cooperation
model is inspired from its biological counterpart. The core
idea of the model follows the cooperation of immune cells,
which involves no predefined plans to coordinate team activity.
Immune cells work together by mutual understanding through
simple signaling. Hence, the AIS agents interact and cooperate
with each other through communication.

A. Communications Among AIS Agents

The communication of the AIS-based control framework
includes exchanging local information, messaging cooperation
signals, and transferring capability between the agents. The
communications processes are primarily governed by the inter-
nal behavior of the agents. Different behavioral states and their
corresponding strategies of the AIS-based control are given in
Table II. These behavioral states are analogous to the character-
istics and mechanisms of the immune system. The behavioral
states allow agents to notify others strategies during operations.
Hence, these behavioral states form the basis for achieving a
cooperative task through interagent communication. The state-
transition diagram given in Fig. 3 underpins how an individual
AIS agent behaves and executes different actions in response to
the dynamic environment during operations.

AIS agents cooperate by signaling each other through the
“request for” and “respond to” help strategies. This signal trans-
mission is known as cooperation by activation and suppression.
An agent that is working on a cooperative task and requires help
from others is called an initiating agent. An agent that receives
a request signal from an initiating agent and responds to the
signal is called a responding agent. The initiating agents request
for help by sending a “help” signal to all the agents within its
CR regardless of whether the agent is capable of offering help.
On the other hand, there are no particular rules or algorithms
defined to guide and to restrict the agents in responding to the
“help” signal. This concept is similar to the human immune
system where the immune cells are activated regardless of the
type of antigens. The immune cells recognize a wide variety of

TABLE 1I
BEHAVIORAL STATES OF AIS AGENTS

Behavioral .

State Notation  Strategy

Achieve Ach To tackle the targeted task.

Agitate Ag A task has been found and the agent
approaches the targeted goal.

Cooperate Co To offer help and participate in a
cooperative work.

Disperse D To keep away from other agents if the
number of agents is higher than a threshold
value in a wandering zone. A wandering
zone is defined as a region where no tasks
can be detected.

Explore E To explore the surrounding environment
and search for tasks randomly.

To wait for other agents for help in tackling

Idle I . :

a task with cooperation.

Reply Rp To receive the ‘help’ signal from other
agents.

Request Rq To request for help from other agents.

antigens in the native conformation, without any requirement
for antigen processing or display by a specialized system [9].

The main motivation of cooperation among AIS agents is the
notification of behavioral states. The identification of the cur-
rent behavioral state of a responding agent is vital for verifying
the feasibility of that agent’s capability to offer help. An agent
who is in the explore or disperse state is capable of offering
help and will be activated by the “help” signal. Contrarily, an
agent who is neither in the explore or disperse state will ignore
the request and continue its current job. In the meantime, the
initiating agent of the cooperative work is being suppressed and
change to the idle state until other agents have responded to
the request. To allow such cooperation, communication among
AIS agents is vital. A formal mathematical description for
the communication mechanism of the proposed AIS control is
given below.

The jth agent ame that is within the CR of the agent 2(CR,)
is defined as

oS 2 |dyjn)| < CR, (10)

where d () is the Manhattan distance between agents = and
J, as given by (6).

The set of agents A“R= that is within the CR,, of agent x is
defined as

ACRs — {aj € a|a§3R‘”} (11)

JACR= cq, ™ A =(ag). (12)

The “help” signal h! sent by agent z for the ith goal is
defined as

hi = (az,g;) VACR= (13)
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Fig. 3. State-transition model of an AIS agent.

The “response” signal rj- sent by agent j with respect to agent
x request is defined as

CR,
Va;"" (EV D).

ri = (aj,9:, hl) (14)

B. Interaction Between AIS Agents

Interactions between AIS agents can be investigated through
the changes of their behavioral states strategically. There are
two types of interactions between AIS agents, namely concen-
tration constraint and cooperation. These two interactions are
explained in this section.

As mentioned in Table II, the number of agents that are
present in a wandering zone is restricted. In practice, this is to
maximize the searching efficiency and to avoid overcrowding of
agents at any instance. The concept of concentration constraint
is inspired by the self-regulation theory of the human immunity.
The theory provides a regulatory mechanism for controlling the
antibody concentration via stimulation and suppression to the
immune response [15]. The immune system produces anti-
bodies when an antigen is presented and returns to equilibrium
when antigens have been eliminated.

Assuming there are n number of agents exploring in the
environment, and the concentration threshold within a wander-
ing zone is 7, the strategic changes of behavior of the agents
under the concentration constraint are as follows

na(E) — (n —1)a(D) A Ta(E) ifn>r

na(E) — na(E)

15)

ifn<7. (16)

When the number of exploring agents is greater than the
concentration threshold within a wandering zone (15), only 7
number of agents is in the explore state and searches for a job
in their proximities. The reminding n — 7 number of agents will

Achieve |«
UWait until other agents respond
Work on the antigen

change to the disperse state and move away from the wandering
zone. On the other hand, if the number of exploring agents is
less than or equal to the concentration threshold, all the agents
will stay in the explore state, as given in (16).

Another significance of the introduction of the behavioral
states is to illustrate the cooperation between AIS agents.
The pervious section has defined cooperation of the AIS
agents through communication. With the aid of the notion
of behavioral state, strategic behavioral changes in an agent al-
low different actions to be preformed. For example, when agent
x cannot complete the targeted task and it needs to cooperate
with other agents, agent x will then send a “help” signal to
activate the agents within its proximity. Agent z is therefore
in the request state a,.(Rq). The mathematical definition of the
“help” signal is given in Section V-C below. In order to be
activated by agent z, responding agents must be within the CR
of agent = and in the explore or disperse state. The responding
agent a?RI that may offer help and reply to agent x is defined as

Va;(Rp) € aJCR‘”, a;(EV D). (17
The cooperation activity with strategic behavioral control
between the AIS agents are defined as

laz(Ra) A ay(Ry)] — [as(I) A ay(Co)]
laz(I) A ay(Ag)] — [az(Ach) A ay(Ach)].

(18)
(19)

Equation (18) describes the instance when a “help” signal is
transmitted by agent z. Agent x is in the request state when
the signal is being sent. Thereafter, agent = changes to the idle
state while waiting for help. The responding agent, agent y, is
in the reply state when it receives the signal and changes to
the cooperate state to offer help. Equation (19) describes the
instance when agent y participates in the cooperation activity.
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Initially, agent z is in the idle state while waiting for help,
whereas agent y is in the agitate state and approaches the
cooperative task. After agent y arrives in the task-tackling
area, both of the agents complete the task cooperatively in the
achieve state.

C. Affinity Threshold

The “help” signal, as mentioned in the previous sections, is
a signal transmitted by the initiating agents for the initiation
of cooperative work. Here, we define this signal analytically.
An initiating agent sends a “help” signal to all its surrounding
agents regardless of how many agents will respond to join the
cooperation activity. Hence, we introduced an affinity-threshold
function to determine whether a responding agent is qualified
for the participation of the cooperative work.

Affinity threshold (K;) is the value that determines whether
to activate or suppress a responding agent’s activity towards
a cooperative task 7. Once an exploring or dispersing agent
receives a “help” signal, the agent will change to the reply
state, as stated in Fig. 3. The agent will then enumerate the
binding affinity for the signaled cooperative task 7. The affinity
threshold is, therefore, a function of the following parameters.

1) fB;;—the binding affinity of agent j on task i.

2) n;j—the total number of qualified agents that has de-
tected task ¢. The qualified agent represents an agent that
is capable of tackling task 7. This is determined by the
computation of the associated binding affinity in which
specificity-matching function suggests the fitness of an
agent for tackling a particular task. Since all agents in the
reply state will respond to the “help” signal, only those
agents who are able to tackle task 7 will change to the
cooperate state. Hence, 7;; is the total number of agents
that are in the cooperate state due to task 7.

3) 7Mreq—the total number of agents that is required to tackle
task ¢. This parameter specifies the number of agents
required to tackle task ¢

Zﬁzj
K="

= (20)
nij * Nreq

In the proposed model, K; is a dynamic value that controls
the activation or suppression of an agent in dealing with task
i in accordance with its prevailing affinity index. When (3;; of
agent j exceeds the value of K, the activity is activated. Agent
J is said to be activated by the “help” signal. Agent j will then
change from the reply state to the cooperate state, approach task
1, and tackle the task cooperatively. On the contrary, if the value
of 3;; of agent j does not exceed the value of Kj;, the activity
is suppressed. Agent 5 will change from the reply state back to
the explore state and search for other tasks.

VI. RESPONSE MANIPULATION OF THE AIS-BASED
CONTROL FRAMEWORK

The AIS-based control framework presented in Fig. 1 follows
the idea of the biological immune responses. Generation of an

Heavy Chain
| | |
L Light Chain |
| I~ i
| | |
| | |
11 | abcde.....covuneenee..
Fig. 4. Capability chain.
Heavy Chain
| |
Light Chain

T | abcdd

Fig. 5. Task complexity chain.

immune response involves a sequence of actions. They include
antigen recognition, activation of lymphocytes, elimination of
antigen, and memory [26]. The core of the control framework
is to manipulate different responses towards various problems
encountered by an AIS agent. By drawing analogy from biolog-
ical immunity, four main responses have been identified in the
response-manipulation algorithm, as specified in Fig. 1. They
are nonspecific, acquired, specific, and passive responses.

A. Capability Chain

The basic structure of all antibodies consists of two pairs of
heavy and light chains. The heavy chains denote the class of
antibody, whereas the light chain is antigentically distinct and
only one type of light chain is present in any single antibody
molecule [27]. By imitating the structure of an antibody, a pair
of heavy and light chains is abstracted to form a capability chain
for each of the responses identified in the control framework.
The heavy chain specifies the class of responses and is used
as an indication for the respective response. The light chain
consists of a sequence of atomic abilities. This sequence is
distinct for every response. On the other hand, a task, such
as a parcel to be moved, is represented by a task complexity
chain. It has the same structure as the capability chain, where
the light chain defines the task complexity. The complexity
specifies the required capabilities of an agent to handle the task.
In order to verify the feasibility of an agent to handle a task, the
specificity-matching function of (8) is used to match the light
chains of both the capability chain and task complexity chain.
The structure of a capability chain and a task complexity chain
is shown in Figs. 4 and 5, respectively.

Fig. 6 defines how an AIS agent determines the appropriate
response autonomously when a task is encountered. Tasks are
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Fig. 6. Overview of the response-manipulation algorithm.

categorized into ordinary and cooperative tasks. An ordinary
task can be handled by a single agent, whereas a cooperative
task requires more than one agent to handle. In the response-
manipulation algorithm, the agent first determines whether it
is going to deal with an ordinary task or to respond to a
request sent by other agents. If the task requires cooperation, the
agent will communicate with the initiating agent and perform a
passive response. On the contrary, if the agent encounters an
ordinary task, the agent will first check the capability of the
nonspecific and acquired chains. If nothing can be matched, the
agent will then manipulate its atomic abilities in the nonspecific
chain to perform a specific response.

The interrelationship of the four capability chains is shown
in Fig. 7. The nonspecific response deals with general and
frequently occurring tasks. The sequence of atomic abilities
is predefined during system development. Different types of
systems will have different encodings for atomic abilities that
specify the agents’ actions. No capability manipulation is re-
quired for nonspecific response. This response is similar to an
innate immunity, which is the first general defense that provides
resistance to antigens. For a distinct and specific task, the
agents will generate a new set of capabilities through capability
manipulation. This manipulation includes recombination of
atomic abilities from the nonspecific response. The new set of
capabilities will then go to the acquired response chain. This
mechanism is equivalent to secondary immunity, where a faster

and stronger response will result in the next occurrence of the
same antigen.

B. Symbolic Coding Scheme for the Chains

Capabilities of AIS agents are classified into two main cat-
egories. They are simple capability and compound capability.
Simple capability enables basic and straightforward actions to
be performed whereas compound capability deals with more
complex and difficult tasks. Simple capability is represented
by fundamental atomic ability such as “a,” “b,” “c,” and “d.”
Compound capabilities are set of capabilities generated from
the simple capability. For example, a set of compound capabili-
ties generated from “a,” “b,” and “c” may include: {“aa,” “aaa,”
“abb,” “abc”} and {“bb,” “bbb,” “baa,” “bca”}, etc.

Every task assigned in a workplace is specified with a
complexity or a chain of complexities. This complexity is a
chain of code, similar to the capability chain that indicates what
capabilities are required by an agent to tackle the task.

Our control framework is designed for a range of multiagent
applications. The symbolic coding scheme is generic to dif-
ferent kind of applications. Since simple string representation
is used, the codes assigned for the agents’ capability and
the task complexity is interchangeable, which depends on the
requirements of the application. In order to better understand
the internal representations of capability chains and task com-
plexity chains, the symbolic coding scheme is illustrated with
examples of a material-handling system.

1) Material-handling task—{ Task complexity chain}

a) Grouping of goods—{g}

The complexity “g” notifies agents that the task
is a grouping task. Agents are programmed to group
all goods with a complexity “g” together in a given
workplace.

b) Counting of goods—{c}

The complexity “c” notifies agents that the task is a
counting task. Agents are programmed to count all the
goods with a complexity “c” at a given workstation.

¢) Goods reallocation—{aabf}

The first part of the complexity “aa” notifies agents
that the task is a goods reallocation task. The second
part “b” indicates that the goods need to be real-
located, and lastly, the third part “f” indicates the
location where the goods are going to be allocated.
This reallocation task is expected to be performed
within the same workstation. If goods are required
to be allocated to a different workstation, the task is
classified to be a goods-delivery task.

d) Goods delivery—{ddaabzE}

The first part of the complexity “dd” notifies agents
that the task is a goods-delivery task. The second part
“aa” specifies that the goods are going to be reallo-
cated. Combing the first two parts, we have “ddaa,”
which means the goods are going to be reallocated
in a different workstation. Hence, agents need to de-
liver those goods to another place. The third part “b”
specifies what goods are needed to be delivered and
the forth part “z” specifies where the goods are going
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to be delivered. Lastly, the capital letter at the end of
the complexity chain represents that the task requires
more than one agent to handle. In this case, a capital
letter “E” states that a total number of five agents are
required for this cooperative task.

Searching of goods—{ssqk}

The first part of the complexity “ss” notifies agents
that the task is a goods-searching task. The second
part “q” specifies which kind of goods is going to be
searched. The last part “k” specifies the workstation
area for this searching task to be performed. On the
other hand, if there is no specified location for search-
ing the goods, for example {ssq}, agents then search
for the goods anywhere within the workplace.

From the above material-handling examples, all the
tasks except task d are referred as ordinary tasks. This
is because they only require one agent to complete the
tasks. The capital letter at the end the chain indicates
that task d is a cooperative task. Hence, to specify a
task as a cooperative task, a capital letter is appended
at the end of a complexity chain indicating how many
agents are needed for that cooperative task. For exam-
ple, to assign two agents for the grouping task (task a),
the complexity chain is changed to {gB}. The capital
letter represents that the task is a cooperative task,
and for illustration purposes, the alphabetical order of
the letter is used to represent the number of agents
required to handle the task.

2) Capability chain

a)

b)

Agent x—{cg}

With atomic abilities “c” and “g,” agent x can
perform ordinary activities in the material-handling
workplace. Since the capability chain of agent x con-
tains only simple capabilities, it is an agent with low
intelligence level.

Agent y—{cgddaabfz}

In this example, agent y has a high intelligence
level. Agent y contains more capabilities than agent x.
The first two atomic abilities of agent y are the same
as agent x. Hence, agent y can handle both tasks a and
b. The rest of the capability chain represents two sets
of capabilities. First, {ddaa} represents that agent y is
able to perform a goods-delivery task. Second, {aa}
represents that agent y is able to perform a goods-
allocation task. The atomic ability “b” indicates the
type of goods. The last two atomic abilities “fz” indi-
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Fig. 8. Absolute string matching (I).

cate the locations for goods allocation or delivery. For
example, the set of capabilities {aabf} allows agent y
to perform task c. On the other hand, if agent y is asked
to perform task d, which requires a set of capability
{ddaabz}, capability manipulation is executed to
generate a new set of capabilities for agent y to tackle
task d. This capability manipulation recombines the
original set of capabilities {ddaabfz} of agent y to a
new set of capabilities {ddaabzf}. Hence, the new set
of capabilities that consists of {ddaabz} indicates that
agent y is now able to tackle task d. The procedures
for capability manipulation are given in Section VI-C.

C. Methodology of Specificity Matching

String representations and different kinds of string-matching
algorithms have been used extensively in the research of AIS
[28]-[31]. The specificity matching utilizes the string-matching
algorithm in [32]. This specificity function is used to determine
the feasibility of an agent to handle a given task. In immunol-
ogy, the activation of immune cells, namely lymphocytes, is
triggered by the recognition of antigens [26]. The lympho-
cytes recognize antigens structurally by their antigen receptors.
Following this pattern-recognition concept, a string-matching
algorithm is developed to match tasks with agents according
to the corresponding complexity and capability chains. Hence,
the light chains of both the agent and the task are compared to
determine if the agent is competent to handle the targeted task.

In specificity matching, nonspecific (00) and acquired (01)
capability chains are first being investigated since they pro-
vide faster responses by an absolute string-matching method,
as illustrated in Figs. 8 and 9. The absolute string-matching
algorithm determines if the whole string of a task-complexity
light chain can be found from an agent’s capability light chain
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and gives a definitive result of either the two chains are matched
or mismatched.

When a mismatch results from both nonspecific and acquired
responses, a specific response will then mediate to manipulate
new knowledge that is capable of tackling the task. The ca-
pability manipulation recombines or rearranges the elementary
atomic abilities of the nonspecific capability chain to generate
a new set of capabilities that is specific to the new task.
This process resembles immature lymphocytes having receptor-
editing function, where receptors with self-specificity can make
further rearrangements of their light chains [33]. Fig. 10 shows
the stages of the capability-manipulation process.

A set of capability-manipulation procedures are used to
determine how the atomic abilities in the nonspecific (00) ca-
pability chain are manipulated to form new sets of capabilities.
Not all generation of new capabilities will be successful. The
atomic abilities of the nonspecific capability chain should be
qualified for a recombination. All the capability-manipulation
procedures must be satisfied. The procedures for capability
manipulation are given as follows.

Step 1) Disjoin the antigen complexity light chain into sep-

arate required capabilities.

Compare the disjointed required capabilities of the

task complexity with the capability chain. Check if

all the disjointed capabilities are contained inside the
nonspecific (00) capability chain.

Generate all possible combinations of the required

capabilities. These combinations are in the simplest

form with minimum duplication of atomic ability.

Compare all the disjointed required capabilities gen-

erated by Step 3) with the capability chain. Extract

all the matched capability sets.

Step 5) Compute the matched sets by Dijkstra’s algorithm
to find out the shortest path to generate the new
capabilities set. This minimizes the computational
steps in rearranging or recombining a new set of
knowledge.

Step 2)

Step 3)

Step 4)

The new capability set developed by capability manipulation
is appended to the acquired (01) capability chain after the task
has been completed. The new string is concatenated to the
acquired (01) capability chain by an append-string algorithm.
The append-string algorithm is developed to attach the new
capability set to the end of the exiting chain without any du-
plication of atomic abilities. The algorithm is given as follows.

1) If the length of the new capability set newCap is equal to
n, get n characters (getChar) from the end of the existing
capability chain.

2) Match the strings getChar and newCap by absolute string
matching.

3) If nothing is matched, delete the first character of getChar.
This is done by shifting S;_1) the getChar pattern by
getChar = n — (¢ — 1), where ¢ = 1 is the first matching.

4) Match getChar with newCap by prefix string matching
until ¢ = n. This prefix string-matching function will
return true (matched) only if the whole getChar pattern
matches the prefix of the newCap.

5) When a matched is found, delete the first (n — S) charac-
ters of newCap and append the newCap to the end of the
exiting capability chain.

6) If no match is found, append the whole newCap to the
end of the existing capability chain.

The procedures of adding new capabilities by the append-
string algorithm are illustrated diagrammatically by Figs. 11
and 12. In Fig. 11, nothing has been matched till t = n =4,
therefore, the whole set of new capabilities is appended to
the end of the existing capability chain. On the other hand,
in Fig. 12, nothing has been matched when ¢ = 1. After the
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first shift (S7), getChar becomes an “ee” pattern. A match is
found when the getChar pattern is matched with the prefix
of the new capability set. Hence, the first two characters of
getChar, which are “ee,” are eliminated from the new capability
set. The remaining pattern of the new capability, which is
the “g” pattern, will then be appended to the existing capa-
bility chain.

D. An Illustrative Example of Response Manipulation

The response manipulation introduced in the previous sec-
tions is illustrated by an example. We focus on how an individ-

00 | alblc|d]|e]

01 ‘a’a‘b‘b‘c‘c\

10
Fig. 13. Capability chains of agent J.
T
T(D
(D
TaV)

Fig. 14. Task complexity chains of tasks (I)—(IV).

ual AIS agent determines the activation of different responses.
For simplicity, cooperation among agents, indicated by the
passive (11) capability chain, is not considered.

An example is presented to illustrate the operation of the
response manipulation under the proposed scheme. To consider
the generic operation of the response-manipulation scheme,
the actual domain of application of the capabilities is not
considered in this example. Assume the capability chains of
agent j and the task complexity chains of tasks I-IV are given
by Figs. 13 and 14, respectively.

To tackle a task, the AIS agent first investigates the non-
specific (00) and acquired (01) capability chains with absolute
string matching. For task I, a match is found in the nonspecific
(00) chain. A direct and simple nonspecific response “de” is
then carried out. task II requires a set of capabilities “bbcc”
to tackle the problem. As no match can be found on the
nonspecific (00) capability chain, the acquired (01) chain is then
examined. When a match is found, the AIS agents then execute
a direct and rapid “bbcc” acquired response. The pseudocode
for response manipulation is given in Fig. 15.

On the other hand, task III requires a set of capabilities
“ackk.” Since this capability set cannot be found in both non-
specific and acquired chains, the AIS agent needs to manipulate
its capability in order to complete the task. The capability-
manipulation procedures presented in Section VI-C are then
followed. The capabilities “ackk” are disjointed and becomes
“a,” “c,” “k,” and “k.” According to Step 2), all the disjointed
required capabilities are referenced from the nonspecific (00)
capability chain to allow capability manipulation. Atomic capa-
bilities “a” and “c” are found; however, there are no capability
“k”s available in the nonspecific (00) chain. Hence, this set
of capabilities “ackk” is not available to perform the required
response through specific capability manipulation. The AIS
agent has therefore failed to handle task III.
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nonChain

if match = TRUE
nonSpecificResponse ()
else

if match = TRUE
acquiredResponse ()

else
capabilityManipulation ()

= capabilities of the non -specific (00) capability chain
acqgChain = capabilities of the acquired (01) capability chain
taskChain = the capacities of antigen complexity chain

match = absocluteStringMatch (taskChain,nonChain)

match = absoluteStringMatch (taskChain,nonChain)

Fig. 15. Pseudocode of the response-manipulation algorithm,
goiChar getChar=n-(-1)
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Fig. 16. Acquired (01) capability chain of agent j after capability
manipulation.

Similar to task III, the required capabilities of task IV
“bcedd” need to be manipulated. The disjointed required
capabilities are “b,” “c,” and “d,” which is a legal set of
capabilities for manipulation. To rearrange a new set of capa-
bilities that is specific to task IV, the “bcd” pattern from the
nonspecific (00) capability chain is extracted for manipulation.
Newly rearranged patterns such as “bec,” “cd,” “bd,” “bbc,”
and “cdd” are generated. By applying Dijkstra’s algorithm,
patterns “bc” and “cdd” are recombined to form the new capa-
bility set “bcedd.” In this case, the new capability set provides
specific response to solve task I'V.

The new capability “bcedd” is then appended to the acquired
(01) capability chain. Following the append-string algorithm
given in Section VI-C, “bcedd” is the newCap with n equal to
5. When ¢t = 1 and S = 0, getChar is “abbcc” and a matching
string is found when ¢ = 3 and S = 2. As there is a match,
the first (n — S) characters, which are the first three characters
“bee,” are deleted from newCap. The finalized newCap “dd” is
then appended to the acquired (01) capability chain without any
duplication (Fig. 16).

00 | lalblcld]e]

01 |lajal/blblc|c|d]|d

10 | [blclcld[d

Capability chains of agent j after completing tasks (I)—(IV).

Fig. 17.

After completing tasks I-IV, the capability chains of agent
j are shown in Fig. 17. The new capabilities acquired from
handling task IV are added to the acquired (01) capability
chain. This leads to a stronger and faster response in future
reoccurrence of task IV. Having different capability chains to
perform response manipulation, AIS agents are able to perform
rapid responses by issuing corresponding actions to tackle a
wide range of tasks. An intelligent AIS agent that is adaptive
in tackling new problems can be achieved through the immuno-
logic response manipulation.

VII. OPERATIONAL SCHEME
A. Control Logic

Drawing parallels to the human immune system, the self and
nonself of our control framework correspond to the AIS agents
and tasks. AIS agents start the operation cycle by undergoing
pseudorandom motions. This “free” exploration mode allows
the AIS agents to identify and approach nonself. If the number
of exploring AIS agents exceeds a threshold that defines the
overcrowdedness within a wandering zone, the agents will
disperse to maintain efficient exploration. Once a nonself has
been sensed by the AIS agents, they utilize binding affinity
(5) to recognize and approach these tasks. The binding affinity
evaluates the physical factors and specificity of the agent to a
given task. The higher is the binding affinity, the better is the
suitability of the agent to tackle the task. The control logic of
the control framework is given in Fig. 18.

B. Behaviors of AIS Agents

AIS agents alter their behavior by monitoring the dynamic
environment. Different behavioral states and corresponding
strategies are given in Table II. To tackle a task, AIS agents
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Fig. 18. Control logic of the AIS-based control framework.

exhibit different behaviors. This is represented by the state-
transition model shown in Fig. 3.

The state transitions in the model are governed by a set
of event—condition—action rules. These rules allow AIS agents
to perform corresponding responses under different situa-
tions. According to these rules, AIS agents obtain information
through interagent communication. This information includes

task locations sensed by other agents, a “help” signal sent by
an initiating agent, and behavior states of other agents, etc. All
of these are useful information that allow agents to coordinate
plans of action for different kinds of tasks in a cognitive manner.
For example, when agent a is tackling a cooperative task, agent
a will send a “help” signal to all its surrounding agents. Only
agents that are in the explore and disperse states will reply
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Fig. 19. Decision tree defining the actions of the AIS agent in response to different situations.

to agent a. On the other hand, when the responding agents
have approached the cooperative task, they will change to the
achieve state and are ready to tackle the task. Hence, agent a
can evaluate if there are enough number of agents presented for
the cooperative work by taking information of their behavioral
states. When the number of agents that are in the achieve state
is enough for the cooperative task, agent a will stop sending
the “help” signal. The group of cooperating agents will then
complete the task together.

Fig. 19 shows the decision tree that defines the actions of the
AIS agents. The decision tree shows how the AIS agents will
adapt to the changing environment and behave autonomously
in tackling tasks.

C. Simulation Study

To demonstrate the effectiveness of the proposed control
framework, simulation studies are conducted. In the simulation,
groups of AIS agents are deployed in a warehouse. Tasks
assigned in the warehouse are predefined with different com-
plexity levels. For example, counting and building up of goods
in the warehouse are of simple complexities and regarded as
simple tasks. Other tasks in typical warehousing operations
include goods storage, retrieval, compartment assignment, etc.,
are of higher complexity levels and are regarded as more

difficult tasks. The performance of the control framework is
being studied in the following two aspects.

1) Binding Affinity—the AIS agents in the first simulation
are activated only by the nearest task. They only concern
the distance between the task and themselves. In the
second study, binding affinity is evaluated according to
(5) together with the affinity threshold (20), by which AIS
agents can either be stimulated or suppressed. In this case,
their activities depend on their specificity, distance, and
familiarity with the task encountered.

2) Intelligence of AIS agents—with the same set of tasks
being investigated in all the simulation cases, agents of
different capabilities are employed to handle the tasks.
This is to demonstrate the importance of response ma-
nipulation, which involves the consideration of specificity
between an agent and a task.

Three cases with different input parameters have been given
in Table III. The affinity measures of cases II and III follow
the model derived from the control framework. To highlight
the efficiency of the response manipulation, agents of different
intelligence levels are being tested. The intelligence levels are
determined by the simple and compound capabilities intro-
duced in Section IV. In this simulation, agents that are encoded
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TABLE III
THREE CASES WITH ASSOCIATED INPUT PARAMETERS FOR THE
SIMULATION STUDIES

Case Affinity Agents’ Agents with  Agents with
measures intelligence simple compound
level capability capability
I Distance Varied 75% 25%
Distance,
I specificity and Varied 75% 25%
affinity threshold
Distance,
i specificity and Same 0% 100%
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Fig. 20. Performances of the AIS-based control framework.

with compound capabilities are capable of tackling all the tasks
whereas agents that are encoded with simple capabilities may
not be qualified to do so. The agents in cases I and II have
different intelligence levels. In these two cases, only a few
agents have full capabilities to handle all the tasks. Some of
the agents need to perform specific responses by capability
manipulation in order to tackle tasks of higher complexities.
Agents who failed to perform specific response imply that
their nonspecific capabilities are not qualified to generate new
capabilities that are suitable to tackle the difficult tasks. On the
contrary, all agents in case III have the same set of compound
capabilities. They are able to tackle all the tasks assigned.
Hence, the overall intelligence level of the agents of case III
is higher than those in cases I and II.

Figs. 20-22 present some of the results obtained from the
simulation studies. The overall efficiency of the control frame-
work is shown in Fig. 20. All three cases have the same trend
in performance. As the number of agents increases beyond 10,
the performance of the three cases converges. However, cases
II and III are more effective than case I when a smaller number
of agents are deployed in the system. The main reason is that in
cases II and III, the proposed binding affinity measure is used
whereby agents target a task with the best specificity. Moreover,
the affinity threshold (20) is computed by taking into account
the binding affinities of all the agents that are qualified to tackle
a particular task. Looking at this from another viewpoint, the
task would attract the most appropriate agent(s), which is unlike
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case I, in which all the agents in the vicinity are being activated
once they have detected a task.

The average activation level of agents that are activated by
task detection for each case is shown in Fig. 21. From the
results, case I has the highest number of activation per agents.
Since the agents in case I are being stimulated regardless of
the affinity level, they are solely based on the measure of
distance in identifying targeted tasks. A suboptimal level of sti-
mulation that corresponds to unnecessary communication over-
heads for task detection, therefore, results in case I. A much
better stimulation approach is applied in both cases II and III,
which is based on the proposed affinity measures (5) and (20).
In the simulation study, (5) computes the affinity between a
specific agent and its corresponding task, whereas (20) provides
the threshold value that is obtained by taking account of all the
relevant agents’ affinity measures.

Fig. 22 shows the activation per AIS agent in completing
tasks. With the same set of tasks being tested, the activation
level per agent in case I is much higher than cases II and III
before the level of activation to achieve tasks converges (i.e.,
when the number of agents is more than 20). This is because
of the unconditional stimulation received by the agents in
case I. All the agents are being activated once a task is detected,
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TABLE 1V
INPUT PARAMETERS FOR CASES A AND B

Case A B

(1) Distance (1) Distance
Affinity Measures (2) Specificity Matching

(3) Affinity Threshold
Agents’ Intelligence Level Same Same

Agents’ initial positions

Centre of the x -axis

Centre of the x -axis

Task Complexity Same Same
No. of agents required for: 3
Task 1-(2,6)
Task 2 - (5,6) 4 4
Task 3 - (8,6)
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Fig. 23. Case A (i). Fig. 24. Case A (ii).

which leads to inefficient job allocation. On the other hand,
a stable activation level for task completion (Fig. 22) as well
as for task detection (Fig. 21) is obtained for both cases II
and III. According to the results, 1.5 activations per agent
were obtained in Fig. 22 and five activations per agent were
obtained in Fig. 21. This suggests an improved utilization and
management of the proposed AIS-based control, where agents
are stimulated according to their specificity and other agents’
affinity indexes. Unlike the nonspecific organization in case I,
where all qualified agents tend to crowd towards a specific task,
agents in the proposed AIS-based control framework exhibit
self-organized behavior with improved efficiency.

All the agents in case III have compound capabilities. They
are able to solve all the tasks assigned to them in the workplace.
While in case II, only 25% of the agents have full capabilities
to tackle all the tasks. However, the activation levels for task
detection and task completion per agent for cases II and III
are almost the same. This observation suggested that under the
AlS-based control, a system having only a few agents with
full capabilities performs comparably well with systems with
all agents having full capabilities. The effectiveness of the
response-manipulation scheme is therefore demonstrated.

To further investigate the operation of the proposed frame-
work, actual simulation outputs are captured from two new
sets of simulations that require cooperation. This study aims to
illustrate the effectiveness of the affinity measures as the affinity
functions can considerably enhance cooperation between AIS
agents. For illustration, a small number of agents and tasks are
used in the simulation studies. In these simulations, tasks are
represented by square objects and agents are represented by
circles, and the input parameters are given in Table IV. Since
all the tasks allocated in the workplace are cooperative tasks
and have the same complexity level, specificity matching has
no significance in this study.

Figs. 23-26 illustrate the distribution of agents at two in-
stances (i) and (ii). Instance (i) was captured in the beginning
of the simulation when all the tasks have not been tackled.
Instance (ii) was captured when the middle tasks have been
tackled. For case A, the agents were evenly distributed in the
workplace, whereas in case B, the agents were clustered around
one of the task initially. At instance (i), where all the tasks were
present in the workplace, all the agents of case B approached
task 2 at the same time. This is because the agents of case B only
took account of the measure of distance between agents and
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tasks as the affinity measure. On the contrary, the agents of case
A considered also the affinity threshold. This affinity threshold
allows effective means of cooperation. As only two agents were
required to tackle task 2, agents with a lower affinity with task 2
were therefore suppressed from taking part in the cooperation.
They will turn to other tasks as there was enough number of
agents approached task 2. At instance (ii), all the agents of
case B approached task 1 after task 2 was completed, while
the agents of case A approached both tasks 1 and 3 in a more
disperse manner. Specifically, a larger number of agents in case
A at instance (ii) approached task 3. This is because the agents
have considered that task 3 required four agents to serve. The
affinity between some of the agents and task 3 was therefore
higher than task 1. This further demonstrated the effectiveness
of the affinity threshold in cooperation.

VIII. CONCLUSION

This paper presents the development of an AIS-based control
framework for the effective control of a group of distrib-

uted agents with diverse capabilities. The control framework
encapsulates how an AIS agent operates autonomously in a
dynamic environment. A mathematical model is presented to
formally describe the AIS-based control framework. Through
the strategic behavioral study of AIS agents, cooperation is
achieved by mutual understanding and communication between
them. Furthermore, the response manipulation proposed in the
framework establishes the key concept of how an AIS agent can
determine its capability in different situations when tackling
problems. The work aims to develop a truly decentralized and
self-organized multiagent system where agents are adaptive,
autonomous, and intelligent in decision making. Simulation
studies are presented in the paper to verify the feasibility and
effectiveness of the control framework.
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