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Abstract—This paper presents a technique inspired by the neg-
ative selection mechanism of the immune system that can detect
foreign patterns in the complement (nonself) space. In particular,
the novel pattern detectors (in the complement space) are evolved
using a genetic search, which could differentiate varying degrees of
abnormality in network traffic. The paper demonstrates the useful-
ness of such a technique to detect a wide variety of intrusive activ-
ities on networked computers. We also used a positive characteri-
zation method based on a nearest-neighbor classification. Experi-
ments are performed using intrusion detection data sets and tested
for validation. Some results are reported along with analysis and
concluding remarks.

Index Terms—Artificial immune system, biological systems
modeling, detector generation, genetic algorithms, intrusion
detection.

I. INTRODUCTION

T HE NATURAL immune system is a subject of great re-
search interest because of its information processing capa-

bilities [9], [19]. In particular, it performs many complex com-
putations in a parallel and distributed fashion. Like the nervous
system, the immune system can learn new information, recall
previously learned information, and perform pattern recognition
tasks in a decentralized fashion. Rather than relying on a central
controller, the immune system, however, uses a distributed de-
tection and response mechanism in order to respond to foreign
invaders.

The security in computing may be considered as analogous
to the immunity in natural systems. In computing, threats and
dangers (of compromising privacy, integrity, and availability)
may arise because of a malfunction of components or intrusive
activities (both internal and external). The idea of using im-
munological principles in computer security [8], [10], [19], [20]
has progressed since 1994. Forrest and her group at the Uni-
versity of New Mexico have worked toward a long-term goal
of building an artificial immune system for computers. In their
approach, the problem of protecting computer systems from
harmful viruses was viewed as an instance of the more general
problem of distinguishing self (legitimate users, uncorrupted
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data, etc.) from dangerous other (unauthorized users, viruses,
and other malicious agents). This method (called the negative-
selection algorithm) was used to detect changes in the protected
data and program files. In another work, they applied the algo-
rithm to monitor UNIX processes, where the purpose was to de-
tect harmful intrusions in a computer system. Kephart [20] sug-
gested another immunologically inspired approach (decoy pro-
gram) for virus detection. In this approach, known viruses were
detected by their computer-code sequences (signatures) and un-
known viruses by their unusual behavior within the computer
system. Most of these methods tried to address security issues
with immunological approaches.

The problem of characterizing the normal and abnormal be-
havior of a system in network environment is very complex.
The general assumption is that the normal behavior of a system
can often be characterized by a series of observations over time.
Also, normal system behavior generally exhibits stable patterns
when observed over a period of time. There are multiple ap-
proaches to such anomaly detection [5], [7], [13]–[15], [22],
[23], [26] and most of them work by building a model or pro-
file of the system that reflects its normal behavior. A simple ap-
proach is to define thresholds (upper and lower) for each mon-
itored parameter of the system and, if a parameter exceeds this
range, it is considered an abnormality. The most common ap-
proach uses a statistical model [13], [15] to calculate the proba-
bility of occurrence of a given value; the lower the probability,
the higher the possibility of an anomaly. In general, statistical
approaches model individually different variables that represent
the state of the system.1 This approach, however, ignores two
important facts.

1) Normalcy depends on time:A value that might be con-
sidered normal at a given time might be abnormal at a
different time. In general, we must discuss normal (or
abnormal) temporal patterns instead of normal (or ab-
normal) values [23].

2) The notion of normalcy depends on correlations among
different parameters:The independent values of two dif-
ferent parameters might be considered normal, but their
combination might show abnormality or otherwise [25].

Other approaches also build models to predict the future be-
havior of systems or processes based on the present and past
states [4], [5], [14], [17], [23]. Accordingly, if the actual state
of the system differs considerably from the predicted state, an
anomaly alarm is raised. These approaches are more successful
in capturing temporal and multiple-variable correlations. How-
ever, more time is needed for training the model and, in some

1Despite the posibility for using multivariate distributions, the assumptions
are too restrictive to be applied to real problems.
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cases, its application can be infeasible because of the size of data
sets involved (generally, this is the case with network security).

Therefore, the challenge is to build an anomaly detection
system that can capture multivariable correlations and is ca-
pable of dealing with the large amount of data generated in a
computer network environment. Data-mining techniques have
been applied with some success to this problem [22], [24], [25].
This approach has the advantages of dealing with large data sets
and being able to garner useful knowledge (generally expressed
in terms of rules). For these techniques, it is important that
the data have some degree of structure. In several works, the
network traffic data (packet level) is processed to get connection
information (type, duration, number of bytes transmitted, etc). In
somecases, informationaboutwhichconnectionsarenormaland
which connections are attacks is necessary for some algorithms.

This paper proposes an approach that does not rely on struc-
turedrepresentationof thedataandusesonlypositivedatatobuild
a normal profile of the system. It is applied to perform anomaly
detection fornetworksecurity,but it isageneralapproach thatcan
be applied to different anomaly detection problems.

First,apositivecharacterization (PC) technique ispresented. It
is applied to different data sets and the results are analyzed. Later,
a negative characterization (NC) technique is proposed that alle-
viates the efficiency issue of the PC technique. This technique is
inspired by artificial immune systems ideas and it attempts to ex-
tend Forrest’s (self–nonself) [14], [16] two-class approach to a
multiclass approach. Specifically, the nonself space will be fur-
ther classified in multiple subclasses to determine the level of ab-
normality. Experiments are performed and the results are com-
pared with the ones produced by the PC technique.

A. Anomaly Detection Problem Definition

The purpose of anomaly detection is to identify which states
of a system are normal and which are abnormal. The states of a
system can be represented by a set of features.

Definition 1—System State Space:A state of the system
is represented by a vector of features

. The space of states is represented by the set
. It includes the feature vectors corresponding

to all possible states of the system.
The features can represent current and past values of system

variables. The actual values of the variables could be scaled or
normalized to fit a defined range [0.0, 1.0].

Definition 2—Normal Subspace (Crisp Characteriza-
tion): A set of feature vectors represents the normal
states of the system. Its complement is called and is
defined as . In many cases, we will define
the (or ) set using its characteristic function

if
if

The termsselfandnonselfare motivated by the natural immune
system. In general, there is no sharp distinction between the
normal and abnormal states; instead, there is a degree of nor-
malcy (or, conversely, abnormality). The following definition
reflects this:

Definition 3—Normal Subspace (Noncrisp Characteriza-
tion): The characteristic function of the normal (or abnormal)
subspace is extended to take any value within the interval

. In this case, the
value represents the degree of normalcy: “1” indicates normal,
“0” indicates abnormal, and the intermediate values represent
elements with some degree of abnormality.2

The noncrisp characterization allows a more flexible distinc-
tion between normalcy and abnormality. However, in a real
system, it may be necessary to decide when to raise an alarm or
not. In this case, the problem becomes again a binary decision
problem. It is easy to go from the noncrisp characterization to
the crisp one by establishing a threshold

if
if

Definition 4—Anomaly Detection Problem:Given a set of
normal samples , build a good estimate of the
normal space characteristic function (or in the non-
crisp case). This function should be able to decide whether or
not the observed state of the system is anomalous.

In the following, we will describe a PC approach (using the
nearest neighbor distance) and a negative approach, respec-
tively.

II. PC APPROACH

In this approach, we used the positive samples to build a char-
acterization of the space. In particular, we did not assume
a model for the set. Instead, we used the positive sample
set itself3 for a representation of the space. The degree of
abnormality of an element is calculated as the distance from it-
self to the nearest neighbor in the set. We chose to define
the characteristic function of the set, since its definition
is more natural, and the derivation of the set characteristic
function is straightforward

Here, is a Euclidean distance metric (or any
Minkowski metric4 ). is the nearest neighbor dis-
tance, i.e., the distance fromto the closest point in . Then,
the closer an elementis to the self set, the closer the value of

is to zero.
The crisp version of the characteristic function is the fol-

lowing:

if
if

if
if

2This definition is basically a fuzzy-set specification. In fact, the function
� is a membership function. However, we chose not to refer to it directly,
because of the different emphasis of this paper.

3This approach is known aslazy learningand it is used commonly in classi-
fication algorithms.

4In our experiments, we also used theD metric defined byD (~x; ~y) =
max(jx � y j; . . . ; jx � y j).
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Fig. 1. Network attacks on the second weekend.

In a dynamic environment, the parameter values that charac-
terize normal system behavior may vary within a certain range
over a period of time. The term represents the amount
of allowable variability in the self space (the maximum distance
that a point can be from the samples to be considered as
normal).

This PC can be implemented efficiently using spatial trees. In
our implementation, a KD-tree [2], [3], [18] was used. A KD-tree
represents a set of-dimensional points and it is a generalization
of the standard one-dimensional binary search tree. The nodes of
a KD-tree are divided into two classes: 1) internal nodes partition
thespacewithacutplanedefinedbyavalue inoneof thedimen-
sions2)andexternalnodes (leaves)define “buckets” (resulting in
hyperrectangles), where the points are stored.

This representation allows answering queries in an effi-
cient way. The amortized cost of a nearest neighbor query is

[3]. We used a library (that implements the KD-tree
structure) developed at the University of Maryland [27].

A. PC Experiments

We performed experiments with real intrusion data obtained
from the Lincoln Laboratory of the Massachusetts Institute
of Technology[21]. These data represent both normal and
abnormal information collected in a test network, where
simulated attacks were performed. The purpose of these data
is to test the performance of intrusion detection systems. The
data sets (corresponding to the year 1999) contain complete
weeks with normal data (not mixed with attacks). This provides
enough samples to train our detection system.

The test data set is composed of network traffic data (tcp-
dump, inside and outside network traffic), audit data (bsm), and
file systems data. For our initial set of experiments, we used
only the outside tcpdump network data for a specific computer
(e.g., hostname: marx) and then we applied the tooltcpstatto get
traffic statistics. We used the first week’s data for training (at-
tack free) and the second week’s data for testing, which include
some attacks. Some of these were network attacks, the others
were inside attacks. Only the network attacks were considered
for our testing. These attacks are described in Table I and the
attack timeline is shown in Fig. 1.

Three parameters were selected to detect some specific type
of attacks. These parameters were sampled each minute (using
tcpstat) and normalized. Table II lists six time seriesand
for training and testing, respectively.

The set of normal descriptors is generated from a time se-
ries in an overlapping sliding window
fashion

TABLE I
SECOND WEEK ATTACKS DESCRIPTION

TABLE II
DATA SETS AND PARAMETERS USED

where is the window size. In general, from a time series with
points, a set of of -dimensional descriptors can be

generated. In some cases, we used more than one time series to
generate the feature vectors. In those cases, the descriptors were
put side by side in order to produce the final feature vector. For
instance, if we used the three time series S1, S2, and S3 with
a window size 3, a set of nine-dimensional feature vectors was
generated.

In each experiment, the training set was used to build a
KD-tree to represent the self set. Then, the distance (nearest
neighbor distance) from each point in the testing set to the self
set was measured to determine deviations.

For this set of experiments, the variables were considered in-
dependently, i.e., the feature vectors were built using only one
variable (time series) each time. Fig. 2 shows an example of
the training and testing data sets for the parameternumber of
packets per second. Fig. 3(a) represents the character-
istic function , i.e., the distance from the test set to
the training set for the same parameter. In this case, the window
size used to build the descriptors was 1. Figs. 3(b) and (c) show

for using a window size of 3. In Fig. 3(b), the Eu-
clidean distance is used and in Fig. 3(c) the distance is used.

The plots of the nonself characteristic function show some
peaks that correspond to significant deviations from the normal.
It is easy to check that these peaks coincide with the network
attacks present on the testing data (see Table I and Fig. 1). We
conclude the following from the results.

1) Using only one parameter is not enough to detect the five
attacks. Fig. 3 shows how the function detects
deviations thatcorrespond toattacks.However,noneof the
parameters is able to detect, independently, all five attacks.
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(a)

(b)

Fig. 2. Training and testing sets for the parameter number of packets per
second. (a) Training (self) set corresponding to the first week. (b) Testing set
corresponding to the second week.

2) A higher window size increases the sensitivity; this is re-
flected in the higher values of deviation.

3) A higher window size allows for the detection of tem-
poral patterns. For the time series and , increasing
the window size does not modify the number of detected
anomalies, but, for the time series , when the window
size is increased from 1 [see Fig. 3(a)] to 3 [see Fig. 3(b)
and (c)], one additional deviation (correspondent to attack
5) is detected. Clearly, this deviation was not caused by a
value of this parameter (number of bytes per second) out
of range; otherwise, it would be detected by the window
size 1. There was a temporal pattern that was not seen in
the training set and that might be the reason why it was
reported as an anomaly.

4) The change of the distance metric from Euclidean [see
Fig. 3(b)] to [see Fig. 3(c)] does not modify the
number and type of the deviations detected.

From the previous discussion, to detect the four attacks, it is
necessary to take into account more than one parameter. In the
following experiments, we used the three parameters to build
the feature vector and test the ability of the system to detect the

(a)

(b)

(c)

Fig. 3. Distance from the testing set(T2) to the self set(S2) (� (~x)).
(a) Window size 1. Window size 3 for (b) Euclidean distance (c)D distance.

attacks. We performed two experiments varying the size of the
sliding window:

1) Window size 1:Feature vector structure ,
where , is taken from the time series .

2) Window size 3: Feature vector structure
, where

, is taken from the time series .
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(a)

(b)

Fig. 4. Distance from test sets to the self set(� (~x)) usingS1; S2; S3.
(a) Window size 1. (b) Window size 3.

Fig. 4 shows the nonself characteristic function for features vec-
tors conformed by samples of the three time series. In all the
cases, there are five remarkable anomalies that correspond to
the five attacks. Like the previous experiments, an increase on
the size of the window increases the sensitivity of the anomaly
detection function. However, this could generate more false pos-
itives. In order to measure the accuracy of the anomaly detection
functions, it is necessary to convert them to the crisp version. In
this case, the output of the functions will be normal or abnormal.
This output can be compared with the information of the attacks
to calculate how many anomalies (caused by an attack) were de-
tected accurately.

According to Definition 3, the crisp version of the anomaly
detection function is generated by specifying
a threshold . This threshold indicates the frontier between
normal and abnormal. Clearly, the value ofwill affect the
capabilities of the system to detect accurately. A very large
value of will allow large variability on the normal (self),
increasing the rate of false negatives; a very small value of
will restrict the normal set causing an increase on the number of
detections, but also increase the number of false positives (false
alarms). In order to show this tradeoff between false alarm rate
and detection rate, receiver operating characteristics (ROCs)

(a)

(b)

Fig. 5. ROC diagrams for the� (~x) function shown on Fig. 4. (a) Full
scale. (b) Detail of the upper left corner.

[28] diagrams are drawn. The anomaly detection function
is tested with different values of, the detection

and false alarm rates are calculated, and this generates a set of
points that constitutes the ROC diagram.

Fig. 5 shows ROC diagrams for the functions
shown in Fig. 4. In general, the behavior of the four functions is
very similar: high detection rates with a small false alarm rate.
The anomaly detection functions that use window size 3 show a
slightly better behavior in terms of detection rates. This could be
attributed to the higher sensitivity, produced by a larger window,
to temporal patterns. However, this causes more false alarms.
We think it is explained by the fact that after an attack, some
disturbance is still present in the system and the function with
larger window size is able to detect it.

The PC technique has shown to work well on the performed
experiments. The main drawback of this technique is its memory
requirements, since it is necessary to store all the samples that
constitute the normal profile. The amount of data generated by
network traffic can be large and this can make this approach un-
feasible. This is the main motivation for the NC approach, com-
pressing the information of the normal profile without a signi-
ficative loss of accuracy.
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III. NC A PPROACH

A. Background and Previous Works

The main role of the immune system is to distinguish
between self (all cells or molecules in the body) and nonself
(others). The nonself elements are further categorized in order
to determine specific response for protection and recovery from
different diseases. In particular, the self–nonself discrimination
is achieved in part by T cells, which have receptors on their
surface that can detect foreign proteins (antigens). During the
generation of T cells, receptors are made by a pseudorandom
genetic rearrangement process [11], [14], [29]. Then, they
undergo a censoring process, called negative selection, in
the thymus, where T cells that react against self-proteins are
destroyed, so only those that do not bind to self-proteins are
allowed to leave the thymus. These matured T cells then circulate
throughout the body to perform immunological functions to
protect against foreign antigens. Rather than relying on a central
controller, the immune system, however, uses a distributed
detection and response mechanism for their survival from
foreign invaders.

Forrestet al. [16] developed a negative selection algorithm
based on the principles of self–nonself discrimination in the im-
mune system. The negative-selection algorithm can be summa-
rized as follows.

1) Define self as a collection of strings of lengthover a
finite alphabet, a collection that needs to be monitored.
For example, may be a normal pattern of activity, which
is segmented into equal-sized substrings.

2) Generate a set of detectors, each of which fails to match
any string in .

3) Monitor for changes by continually matching the de-
tectors in against . If any detector ever matches, then
a change is known to have occurred, as the detectors are
designed to not match any of the original strings in.

There are many versions of the algorithm with varying degrees
of computational complexities to generate detectors efficiently;
they used a binary representation and run in linear time with the
size of self, dependent on the choice of matching rule [11], [14],
[16], [19], [29].

B. Extension of Negative Selection Approach

Instead of using binary encoding in the negative selection al-
gorithm [16], our approach uses real-valued representation to
characterize the – space and evolve a set of detec-
tors that can cover the ( ) complementary subspace (as
shown in Fig. 6). The basic structure of these detector rules is
as follows:

If then
...

...
...

If then

where
and... and

;
feature vector;

(a)

(b)

Fig. 6. (a) Approximation of the nonself space by rectangular interval rules.
(b) Levels of deviation from the normal in the nonself space.

lower and upper values for the feature in
the condition part of the rule .

The condition part of each rule defines a hypercube in the de-
scriptor space . Then, a set of these rules tries to
cover the nonself space with hypercubes. For the case ,
the condition part of a rule represents a rectangle. Fig. 6(a) il-
lustrates an example of this kind of cover for .

The nonself characteristic function (crisp version) generated
by a set of rules is defined as follows:

if such that
otherwise

We used a genetic algorithm (GA) to evolve rules to cover
the nonself space. These rules constitute the complement of the
normal values of the feature vectors. A rule is considered good
if it does not cover positive samples and its area is large. These
criteria guide the evolution process performed by the GA.

As was described previously, a good characterization of the
abnormal (nonself) space should be noncrisp. Then, the non-
self space is further divided in different levels of deviation. In
Fig. 6(b), these levels of deviation are shown as concentric re-
gions around the self zones.

In order to characterize the different levels of abnormality,
we considered a variability parameter (called) to the set of
normal descriptors samples, whererepresents the level of
variability that we allow in the normal (self) space. A higher
value of means more variability (a larger self space); a lower
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(a)

(b)

(c)

Fig. 7. Set of normal samples is represented as points in a 2-D space. Circle
around each sample point represents the allowable deviation. (a) Rectangular
rules cover the nonself (abnormal) space using a small value ofv. (b)
Rectangular rules cover the nonself space using a large value ofv. (c) Level of
deviation defined by eachv, where level 1 corresponds to nonself cover in (a)
and level 2 corresponds to nonself cover in (b).

value of represents less variability (a smaller space).
Fig. 7 shows two sets of rules that characterize self spaces with
a large and small value of. Fig. 7(a) shows a covering using
a small variability parameter. Fig. 7(b) shows a covering
using a larger value of . The variability parameter can be
assumed as the radius of a hypersphere around the self samples.
Fig. 7(c) shows the levels of deviation defined by the two
coverings.

In the nonself space, we use a GA with different values of
to generate a set of rules that can provide complete coverage. A

set of rules looks like

If then
...

...
...

If then
If then
...

...
...

If then
...

...
...

The different levels of deviation are organized hierarchically
such that level 1 contains level 2, level 2 contains level 3, and
so forth. This means that a descriptor can be matched by more
than one rule, but the highest level reported will be assigned.
This set of rules generates a noncrisp characteristic function for
the nonself space

and

where represents the deviation level reported by the
rule .

C. Genetic Algorithm in Detection Rule Generation

The GA, attempts to evolve “good” rules [6], [7], [12] that
cover the nonself space. The goodness of a rule is determined
by various factors: the number of normal samples that it covers,
its area, and the overlapping with other rules. This is clearly
a multiobjective multimodal optimization problem. We are not
interested in one solution, but a set of solutions that collectively
can solve the problem (covering of the nonself region).

A niching technique is used with GAs to generate different
rules. The input to the GA is a set of feature vectors

, which represents samples of the normal behavior
of the parameter. Each elementin is a -dimensional vector

.
The algorithm for rule generation is shown in Fig. 8, where

normal descriptors training set;
level of variability;

maxRules maximum number of rules in the solution set;
minFitness minimum allowed for a rule to be included in the

solution set;
maxAt-
tempts:

maximum number of attempts to try to evolve a
rule with a fitness greater or equal tominFitness.

Each individual (chromosome) in theGArepresents thecondi-
tion part of a rule, since the consequent part is the same for all the
rules (the descriptor belongs to nonself). However, the levels of
deviation in nonself space are considered by the variability factor

. Each element of the chromosome is represented by a fixed
number of bits (in our case, 8 bits). In order to decode the chro-
mosome, the string of bits is mapped to the interval [0.0, 1.0].

1) Fitness Evaluation:Given a rule with condition part
, we

say that a feature vector satisfies the rule
(represented for ) if the hypersphere with center
and radius intercepts the hyperrectangle defined by the points

and .
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Fig. 8. NC rule generation using a GA.

The raw fitness of a rule is calculated taking in account the
following two factors:

1) the number of elements in the training setthat belongs
to the subspace represented by the rule

2) the volume of the subspace represented by the rule

The raw fitness is defined as

where is the coefficient of sensitivity. It specifies the amount
of penalization that a rule suffers if it covers normal samples.
The bigger the coefficient, the higher the penalty value. The raw
fitness can take negative values also.

Since a covering of the nonself space is accomplished by a
set of rules, it is necessary to evolve multiple rules. In order to
evolve different rules a sequential niching algorithm is applied.

2) Sequential Niching Algorithm:The idea is to run the GA
multiple times [1] to generate different rules so as to cover the
entire nonself region. In each run, we want to generate new rules,
that is, rules that cover the rest of the nonself region. The raw
fitness of each rule is modified according to the overlap with

the previously chosen rules. The following pseudocode segment
shows how the final fitness of the rule is calculated.

�tness  raw �tness

for eachR 2 ruleSet do

�tness  raw �tness � volume(R \ R )

end-For

calculates the volume of the subspace specified in
the argument.

D. Experimentation and Results

In order to test the NC approach, we used the data sets from
[21], as in Section II-A. We used as training set the time series

, and and as testing set the time series , and
, with a window size of 3 and 1, respectively (the time series

are described in Table II).
The parameters for the GA were the following: population

size 100, number of generations 1500, mutation rate 0.2,
crossover rate 1.0, and coefficient of sensitivity 1.0 (high
sensitivity).

The GA was run with variability parameter equal to 0.05,
0.1, 0.15, and 0.2, respectively. Then, the elements in the testing
set were classified using rules generated for each level (different
value of ). This process was repeated ten times and the results
reported correspond to the average of these runs.
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TABLE III
NUMBER OF GENERATEDRULES FOREACH DEVIATION LEVEL

(a)

(b)

Fig. 9. Indicates the deviations in the testing set detected by evolved rule set.
(a) Window size 1. (b) Window size 3.

Table III shows the number of rules generated by the GA
for each level. There is a clear difference between the number
of rules when the window size changes: the number of rules
changes with the window size as the pattern space becomes
larger.

Fig. 9 shows two typical attack profiles produced by the ap-
plication of the genetic generated rules to the testing set. With a
window size of 1, three of five attacks are detected, while with
a window size of 3, four of five attacks are detected.

NC is clearly more efficient (in time and space) compared to
the PC. In the case of a window size of 1, the PC needs to store

floating-point values; the NC only has to
store floating-point values, so the compression ratio

(a)

(b)

Fig. 10. Comparison of the true positives rate of the detection function
� (~x) generated by PC and NC for different values oft. (a) Window
size 1. (b) Window size 3.

is approximately 1000:1.5. In the case of the window size of 3,
the ratio is 46 728:1 698,5 approximately 100:8. It seems to be
a tradeoff between compactness of the rule set representation
and accuracy. Validity of these arguments is observed on our
results. Fig. 10 shows how the rate of true positives (detection
rate) changes according to the value of the threshold. In both
cases, The PC technique has better performance than NC, but
only by a small difference. In general, the NC technique shows
detection rates similar to the more accurate (but more expensive)
PC technique. Table IV summarizes the best true positive rates
(with a maximum false alarm of 1%) accomplished by the two
techniques.

The results in Table V suggest that the NC approach better
approximates the deviation reported by PC using distance.
To support this claim in a more exact way, we measured the
number of testing samples for the all possible differences be-
tween the PC reported level and the NC reported level. A dif-
ference of zero means that the reported levels are the same, a

5The number of floating point numbers needed by the PC is equal to
(5192 samples) � (9 dimensions) = 46 728. The number of floating points
numbers needed by the NC is(94 rules) � (18 floating values per rule) =
1 698.
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TABLE IV
BEST TRUE POSITIVE RATES FOR THEDIFFERENTTECHNIQUESWITH A MAXIMUM FALSE ALARM RATE OF 1%.

TABLE V
CONFUSIONMATRIX FOR PCAND NC REPORTEDDEVIATION

Values of the matrix elements correspond to the number of testing samples in each class. Diagonal values
represent correct classification.

TABLE VI
DIFFERENCEBETWEENPCAND NC REPORTEDLEVELS FORTESTDATA SET

It is expressed as a percentage of the abnormal feature vectors (distance greater than 0.05).
A difference of zero means that the level reported by PC and NC are the same, a difference
of one means that the results differ by 1 level, etc.

difference of one means that the results differ in one level, etc.
The results for the two distances and two windows size are re-
ported in Table VI.

The results are very different when the different distances are
used for the PC algorithm. Clearly, when the distance is
used in the PC, the results of the comparison improve. Despite
the fact that only 50.3% of the outputs from the NC algorithm
are the same to the PC algorithm, 100% of the NC outputs are
in the range of zero or one level of difference from the PC. The
distance metric determines the structure of a metric space. For
instance, in a Euclidean space, the set of points that are at the
same distance from a fixed point corresponds to a circle (a hy-
persphere in higher dimensions). In the metric space, this
set of points corresponds to a rectangle (hyperrectangle). There-
fore, the rectangular rules used by the NC approach are better
suited to approximate the structure of the metric space and
this is reflected in the experimental results.

IV. CONCLUSION

As was mentioned before, the proposed NC technique pro-
duces a good estimate of the level of deviation. In order to eval-
uate this estimate, a detailed comparison of the NC output level
and PC distance range was performed. The results are illustrated
in Table V in the form of a confusion matrix. For each element
in the testing set, the function generated by the NC
is applied to determine the level of deviation. This level of devi-
ation is compared with the distance range reported by the PC al-
gorithm. Each row (and column) corresponds to a range or level
of deviation. The ranges are specified on square brackets. A per-
fect output from the NC algorithm will generate only values in
the diagonal. The immune system has the property that foreign
invaders (i.e., the nonself) are recognized easily with few false
positives. This process proceeds in two stages: in the first stage,
the nonself is identified as a novelty (novelty detection) and the
immune system then preserves a long-term memory for this pat-
tern. By understanding the dynamics of the immune system, it
is possible to implement a pattern recognition mechanism in the
complement space where false positives and false negatives can
be traded off as shown by ROC curves.

We investigated an immunocomputing technique to evolve
novel pattern detectors in the complement pattern space to iden-
tify any changes in the normal behavior of monitored behavior
patterns. This technique (NC) is used to characterize and iden-
tify different intrusive activities by monitoring network traffic
and compared with another approach (PC). We used a real-
world data set [21] that has been used by other researchers for
testing different approaches. The following are some prelimi-
nary observations.
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1) When PC and NC approaches are compared, PC appears
to be more precise, but it requires more time and space re-
sources. NC is less precise, but requires fewer resources.

2) Results demonstrate that the NC approach to detector
generation is feasible. It was able to detect four of the five
attacks detected by the PC (with a detection rate of 87.5%
and a maximum false alarms rate of 1%), while only using
10% of the space.

3) The best results were produced when we used a window
size of 3. We observed that a larger window size makes
the system more sensitive to deviations.

Our future research includes the testing of different covering
strategies of the nonself space (for instance, using hyper-
spheres), experimentation with other intrusion detection data
sets (both online and offline), and the development of new
algorithms to generate nonself covering rules.
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