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An Immunity-Based Technigue to Characterize
Intrusions in Computer Networks
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_Abstract—This paper presents a technique inspired by the neg- data, etc.) from dangerous other (unauthorized users, viruses,
ative selection mechanism of the immune system that can detectand other malicious agents). This method (called the negative-
foreign patterns in the complement (nonself) space. In particular, ge|action algorithm) was used to detect changes in the protected

the novel pattern detectors (in the complement space) are evolved f .
using a genetic search, which could differentiate varying degrees of data and program files. In another work, they applied the algo-

abnormality in network traffic. The paper demonstrates the useful- ~ fithm to monitor UNIX processes, where the purpose was to de-
ness of such a technique to detect a wide variety of intrusive activ- tect harmful intrusions in a computer system. Kephart [20] sug-
itie_s on networked computers. We alsp used a pogi_tive_ character!- gested another immunologically inspired approach (decoy pro-
zation method based on a nearest-neighbor classification. Experi- 4.4 m) for virus detection. In this approach, known viruses were
ments_are_performed using intrusion detection data sets and_ tested detected by their computer-code sequences (signatures) and un-
for validation. Some results are reported along with analysis and ) - . '\
concluding remarks. known viruses by their unusual behavior within the computer
Index Terms—Artificial immune system, biological systems systgm. Most of_ these methods tried to address security issues
modeling, detector generation, genetic algorithms, intrusion With immunological approaches.
detection. The problem of characterizing the normal and abnormal be-
havior of a system in network environment is very complex.
The general assumption is that the normal behavior of a system
can often be characterized by a series of observations over time.
HE NATURAL immune system is a subject of great reAlso, normal system behavior generally exhibits stable patterns
search interest because of its information processing capdien observed over a period of time. There are multiple ap-
bilities [9], [19]. In particular, it performs many complex com-proaches to such anomaly detection [5], [7], [13]-[15], [22],
putations in a parallel and distributed fashion. Like the nervo{&3], [26] and most of them work by building a model or pro-
system, the immune system can learn new information, recfli of the system that reflects its normal behavior. A simple ap-
previously learned information, and perform pattern recognitiggroach is to define thresholds (upper and lower) for each mon-
tasks in a decentralized fashion. Rather than relying on a centtaied parameter of the system and, if a parameter exceeds this
controller, the immune system, however, uses a distributed dange, it is considered an abnormality. The most common ap-
tection and response mechanism in order to respond to forenach uses a statistical model [13], [15] to calculate the proba-
invaders. bility of occurrence of a given value; the lower the probability,
The security in computing may be considered as analogabs higher the possibility of an anomaly. In general, statistical
to the immunity in natural systems. In computing, threats amgproaches model individually different variables that represent
dangers (of compromising privacy, integrity, and availabilitylhe state of the systemThis approach, however, ignores two
may arise because of a malfunction of components or intrusiveportant facts.
activities (both internal and external). The idea of using im- 1) Norma|cy depends on timé& value that m|ght be con-
munological principles in computer security [8], [10], [19], [20] sidered normal at a given time might be abnormal at a
has progressed since 1994. Forrest and her group at the Uni- different time. In general, we must discuss normal (or
versity of New Mexico have worked toward a long-term goal abnormal) temporal patterns instead of normal (or ab-
of building an artificial immune system for computers. In their normal) values [23].

approach, the problem of protecting computer systems from2) The notion of normalcy depends on correlations among
harmful viruses was viewed as an instance of the more general djfferent parametersThe independent values of two dif-

problem of distinguishing self (legitimate users, uncorrupted  ferent parameters might be considered normal, but their
combination might show abnormality or otherwise [25].
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cases, its application can be infeasible because of the size of dataefinition 3—Normal Subspace (Noncrisp Characteriza-
sets involved (generally, this is the case with network securityjon): The characteristic function of the normal (or abnormal)
Therefore, the challenge is to build an anomaly detecti@ubspace is extended to take any value within the interval
system that can capture multivariable correlations and is d&:0,1.0] : psas : [0.0,1.0]* — [0.0,1.0]. In this case, the
pable of dealing with the large amount of data generated irvalue represents the degree of normalcy: “1” indicates normal,
computer network environment. Data-mining techniques hal@' indicates abnormal, and the intermediate values represent
been applied with some success to this problem [22], [24], [2€lements with some degree of abnormality.
This approach has the advantages of dealing with large data sefBhe noncrisp characterization allows a more flexible distinc-
and being able to garner useful knowledge (generally expressieth between normalcy and abnormality. However, in a real
in terms of rules). For these techniques, it is important thaystem, it may be necessary to decide when to raise an alarm or
the data have some degree of structure. In several works, ttme. In this case, the problem becomes again a binary decision
network traffic data (packet level) is processed to get connectiproblem. It is easy to go from the noncrisp characterization to
information (type, duration, number of bytes transmitted, etc). the crisp one by establishing a threshold
some cases, information aboutwhich connections are normal and
which connections are attacks is necessary for some algorithms. (@) = { Lo if peeis(%) > ¢
This paper proposes an approach that does not rely on struc- Hsell,t 0, if preerr(¥) <t°
turedrepresentation ofthe dataand uses only positive data to build
a normal profile of the system. It is applied to perform anomaly Definition 4—Anomaly Detection ProblenGiven a set of
detection for network security, butitis ageneral approach that da@mal sampleself’ C Self, build a good estimate of the
be applied to different anomaly detection problems. normal space characteristic functigtyyr (Or ziserr in the non-
First, apositive characterization (PC) technique is presenteiSP case). This function should be able to decide whether or
is applied to different data sets and the results are analyzed. Laf the observed state of the system is anomalous.
anegative characterization (NC) technique is proposed that alleln the following, we will describe a PC approach (using the
viates the efficiency issue of the PC technique. This techniqudi@arest neighbor distance) and a negative approach, respec-
inspired by artificialimmune systems ideas and it attempts to dively.
tend Forrest’s (self-nonself) [14], [16] two-class approach to a
multiclass approach. Specifically, the nonself space will be fur- II. PC APPROACH
ther cIa_ssified in multiple subclasses to determine the level of aby, ihis approach, we used the positive samples to build a char-
normality. Experiments are performed and the results are COQxerization of théelf space. In particular, we did not assume
pared with the ones produced by the PC technique. a model for theSelf set. Instead, we used the positive sample
) o set itself for a representation of thgelf space. The degree of
A. Anomaly Detection Problem Definition abnormality of an element is calculated as the distance from it-
The purpose of anomaly detection is to identify which stateelf to the nearest neighbor in tBelf set. We chose to define
of a system are normal and which are abnormal. The states dfie characteristic function of ti¢onself set, since its definition

system can be represented by a set of features. is more natural, and the derivation of thelf set characteristic
Definition 1—System State Spaca:state of the system function is straightforward
is represented by a vector of featureg's = (a7,...,2%) €

[0.0,1.0]". The space of states is represented by the set finonselt(%) = D(Z,Self) = min{d(Z,5): § € Self}.

S C [0.0,1.0]™. It includes the feature vectors corresponding

to all possible states of the system. Here, d(x,s) is a Euclidean distance metric (or any
The features can represent current and past values of systimkowski metri¢t). D(Z, Self) is the nearest neighbor dis-

variables. The actual values of the variables could be scaled@nce, i.e., the distance frapto the closest point ifelf. Then,

normalized to fit a defined range [0.0, 1.0]. the closer an elementis to the self set, the closer the value of
Definition 2—Normal Subspace (Crisp Characterizagmonseit(Z) i to zero.

tion): A set of feature vectorSelf C S represents the normal The crisp version of the characteristic function is the fol-

states of the system. Its complement is calashself and is lowing:

defined aNonself = S — Self. In many cases, we will define

the Nonself (or Nonself) set using its characteristic function fimonselt ¢ (F) = {

Xselt : [0.0,1.0]" — {0,1} ’

17 if uself(f) >t
0, fif Nself(f) <t
L . {1, if D(Z,Self)) > ¢
Xoeur(%) = {(1): :lt 2’2 lS\I(irflself ’ 0, W D(E8lf)) <
2This definition is basically a fuzzy-set specification. In fact, the function
The termsselfandnonselfare motivated by the natural immune..r is @ membership function. However, we chose not to refer to it directly,
system. In general, there is no sharp distinction between ftfause of the different emphasis of this paper.

normal and abnormal states; instead, there is a degree of q@iggf :{;‘(’)ﬁﬁﬂs‘s known dazy learningand it is used commonly in classi-

malcy (or,. conversely, abnormality). The following definition 4, o, experiments, we also used the. metric defined byD ... (T, 7) =
reflects this: max(|ar — 1], 2 — yal).
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Fig. 1. Network attacks on the second weekend.
In a dynamic environment, the parameter values that charac- TABLE |

terize normal system behavior may vary within a certain range SECOND WEEK ATTACKS DESCRIPTION

over a period of time. The terfl — ¢) represents the amount P,y [ Attack Name | Attack Type | Start | Duration
of allowable variability in the self space (the maximum distanc —1 Back DOS 0:39:16 00:59
that a point can be from thgelf samples to be considered as™ 3 Portsweep PROBE 8:44:17 26:56
normal). 3 Satan PROBE 12:02:13 02:29
This PC can be implemented efficiently using spatial trees. | 4 Portsweep PROBE 10:50:11 17:29
ourimplementation, a KD-tree [2], [3], [18] was used. AKD-tree 5 Neptune DOS 11:20:15 |  04:00
represents a set 6fdimensional points and itis a generalization
ofthe standard one-dimensional binary search tree. The nodes of TABLE I
aKD-tree are divided into two classes: 1) internal nodes partition DATA SETS AND PARAMETERS USED
the spacewithacutplane defined by avalueinone dftlimen- Name Description Week | Type
sions 2) and external nodes (leaves) define “buckets” (resulting__S1 Number of bytes per second 1 | Training
hyperrectangles), where the points are stored. 52 Number of packets per second 1 | Training
This representation allows answering queries in an ef 53 | Number of ICMP packets per second | 1 | Training
cient way. The amortized cost of a nearest neighbor query —~- Number of bytes per second 2| Testing
. . T2 Number of packets per second 2 Testing
O(log N) [3]. We used a library (that implements the KD-tree T3 T Number of ICMP packet q 5 Tooti
. . packets per secon esting
structure) developed at the University of Maryland [27].
A. PC Experiments wherew is the window size. In general, from a time series with

We performed experiments with real intrusion data obtainngOInts’ a setoh —w-+1 of w-dimensional descriptors can be

from the Lincoln Laboratory of the Massachusetts Institul%enerated' In some cases, we used more than one time series to

of Technology[21]. These data represent both normal al(_;Ignerate the feature vectors. In those cases, the descriptors were
abnormal ingfjc))/rmaﬁon collected inpa test network wher%m side by side in order to produce the final feature vector. For

. OmFtance, if we used the three time series S1, S2, and S3 with
simulated attacks were performed. The purpose of these data. . . . :
window size 3, a set of nine-dimensional feature vectors was

is to test the performance of intrusion detection systems. The
data sets (corresponding to the year 1999) contain compIanerated' . - .
n each experiment, the training set was used to build a

weeks with normal data (not mixed with attacks). This Iorovid(?ED-tree to represent the self set. Then, the distance (nearest

enough samples to train our detection system. . . o :
The test data set is composed of network traffic data (tcg_mghbor distance) from each point in the testing set to the self

dump, inside and outside network traffic), audit data (bsm), angt was _measured to (_jetermme devu_atlons. . .
! L . For this set of experiments, the variables were considered in-
file systems data. For our initial set of experiments, we use . ; X

) o ependently, i.e., the feature vectors were built using only one
only the outside tcpdump network data for a specific computer

i . Variable (time series) each time. Fig. 2 shows an example of
(e.g., hostname: marx) and then we applied thettpisitatto get E[le training and testing data sets for the parametenber of

traffic statistics. We used the first week’s data for training (a ackets per secon@ig. 3(a) represents théonself character-

0
tack free) and the second week’s data for testing, which inclul . T :
some attacks. Some of these were network attacks, the otri%%rlg function finonseir (%), 1.€., the distance from the test set to

were inside attacks. Only the network attacks were considereg training set }‘lor thhe same parameter. In'th|s case, the wmﬁow
for our testing. These attacks are described in Table | and fe: usegl to bui O.It € descnptor_s was 1. Flgs_. 3(b) and (c) show
attack timeline is shown in Fig. 1 Lnonselt (Z) for using a window size of 3. In Fig. 3(b), the Eu-

... clideandistance is used and in Fig. 3(c) Ihg distance is used.
Three parameters were selected to detect some specific typ‘Ia'he plots of the nonself characteristic function show some

of attacks. These parameters were sam pled eac_h minute (U%'ngs that correspond to significant deviations from the normal.
tcpsta) and normalized. Table 1l lists six time seri8sandZ;

;o . . It is easy to check that these peaks coincide with the network
for training and testing, respectively.

. . . ks present on th in Table | and Fig. 1). Wi
The setS of normal descriptors is generated from a time sé’l-ttac S present on the testing data (see Table | and Fig. 1). We

. . . - . tonclude the following from the results.
riesR = {r1,7a,...,7,} in an overlapping sliding window i , i
fashion ' 1) Using only one parameter is not enough to detect the five

attacks. Fig. 3 shows how the functip,,s.1e(¥) detects
deviations that correspond to attacks. However, none of the
S={(r1,. - s7w)y (2, o s Twt1)y e ooy Pt ly - - -2 Tn) } parametersis able to detect, independently, all five attacks.
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Fig. 2. Training and testing sets for the parameter number of packets
second. (a) Training (self) set corresponding to the first week. (b) Testing ¢
corresponding to the second week. 02t _
g
. . . . ey . . . I
2) A higher window size increases the sensitivity; thisis reS 15 | ‘
flected in the higher values of deviation. 8
3) A higher window size allows for the detection of tem- <
. . . . [ - -
poral patterns. For the time seri€$ and7’3, increasing  § 0.1
the window size does not modify the number of detecte 8
anomalies, but, for the time seri#g®, when the window 0.05 ]
size is increased from 1 [see Fig. 3(a)] to 3 [see Fig. 3(l
and (c)], one additional deviation (correspondent to attac 1 " L, N
5) is detected. Clearly, this deviation was not caused by o 1000 2000 3000 4008 5000 6000
value of this parameter (number of bytes per second) @ Time (minutes)
of range; otherwise, it would be detected by the window ©

size 1. There was a temporal pattern that was not Seerﬂ& 3. Distance from the testing S&F2) to the self set.52) (ftnonseir (Z))-
the training set and that might be the reason why it wa&s) Window size 1. Window size 3 for (b) Euclidean distancel{c) distance.
reported as an anomaly.
4) The change of the distance metric from Euclidean [Segacks. We performed two experiments varying the size of the
Fig. 3(b)] to D, [see Fig. 3(c)] does not modify thesliding window:
number and type of the deviations detected. . Lo
1) Window size 1:Feature vector structurérj,rj,r;"? ,
From the previous discussion, to detect the four attacks, it is Whererj, is taken from the time seriési.
necessary to take into account more than one parameter. In th@) Window  size 3. Feature vector  structure
following experiments, we used the three parameters to build ~ {r}, v, 1,7} o 78,70 1, 72 0 1o, ra 1,72 o}, Where

the feature vector and test the ability of the system to detect the 73 is taken from the time seriéki.
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Fig. 4. Distance from test sets to the self§etonscic(7)) usingS1, 52, .53. ) ) . ) )
(a) Window size 1. (b) Window size 3. Fig. 5. ROC diagrams for the,,onsc1c(Z) function shown on Fig. 4. (a) Full

scale. (b) Detail of the upper left corner.

Fig. 4 shows the nonself characteristic function for features vec-
tors conformed by samples of the three time series. In all ti#8] diagrams are drawn. The anomaly detection function
cases, there are five remarkable anomalies that correspondtanscit,:(¥) is tested with different values af the detection
the five attacks. Like the previous experiments, an increase @id false alarm rates are calculated, and this generates a set of
the size of the window increases the sensitivity of the anomapints that constitutes the ROC diagram.
detection function. However, this could generate more false pos¥ig. 5 shows ROC diagrams for th&,cnseir(Z) functions
itives. In order to measure the accuracy of the anomaly detect&hown in Fig. 4. In general, the behavior of the four functions is
functions, it is necessary to convert them to the crisp version.\ary similar: high detection rates with a small false alarm rate.
this case, the output of the functions will be normal or abnormdthe anomaly detection functions that use window size 3 show a
This output can be compared with the information of the attackightly better behavior in terms of detection rates. This could be
to calculate how many anomalies (caused by an attack) were d#ributed to the higher sensitivity, produced by a larger window,
tected accurately. to temporal patterns. However, this causes more false alarms.
According to Definition 3, the crisp version of the anomalyVe think it is explained by the fact that after an attack, some
detection functionmen_seit(Z) IS generated by specifying disturbance is still present in the system and the function with
a thresholdt. This threshold indicates the frontier betweetarger window size is able to detect it.
normal and abnormal. Clearly, the value ofvill affect the The PC technique has shown to work well on the performed
capabilities of the system to detect accurately. A very largxperiments. The main drawback of this technique is its memory
value of ¢ will allow large variability on the normal (self), requirements, since it is necessary to store all the samples that
increasing the rate of false negatives; a very small value otonstitute the normal profile. The amount of data generated by
will restrict the normal set causing an increase on the numbenaftwork traffic can be large and this can make this approach un-
detections, but also increase the number of false positives (faflsasible. This is the main motivation for the NC approach, com-
alarms). In order to show this tradeoff between false alarm rgigessing the information of the normal profile without a signi-
and detection rate, receiver operating characteristics (RO@sative loss of accuracy.
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I1l. NC APPROACH

A. Background and Previous Works S /\

The main role of the immune system is to distinguish ;
between self (all cells or molecules in the body) and nonself 4
(others). The nonself elements are further categorized in order ‘ ' Self
to determine specific response for protection and recovery from i
different diseases. In particular, the self-nonself discrimination
is achieved in part by T cells, which have receptors on their ,
surface that can detect foreign proteins (antigens). During the ~ : o Self
generation of T cells, receptors are made by a pseudorandom EEEREEE B O '
genetic rearrangement process [11], [14], [29]. Then, they , I B ]
undergo a censoring process, called negative selection, in
the thymus, where T cells that react against self-proteins are
destroyed, so only those that do not bind to self-proteins are
allowedto leave the thymus. These matured T cells then circulate
throughout the body to perform immunological functions to
protect against foreign antigens. Rather than relying on a central
controller, the immune system, however, uses a distributed
detection and response mechanism for their survival from
foreign invaders.

Forrestet al. [16] developed a negative selection algorithm
based on the principles of self-nonself discrimination in the im-
mune system. The negative-selection algorithm can be summa-
rized as follows.

1) Define self as a collection of strings of lengtlover a
finite alphabet, a collection that needs to be monitored. (b)

For exampleS may be a normal pattern of activity, which _ o )
s segmented imo equal-sized substrings. £ () Aerocmaton of e tonsespece by fectanger el s
2) Generate a sét of detectors, each of which fails to match
any string inS.
3) Monitor S for changes by continually matching the de- o p
tectors inR againsts. If any detector ever matches, then the condition part of the rulé’.

a change is known to have occurred, as the detectors gng condition part of each rule defines a hypercube in.the de-
designed to not match any of the original stringssin scriptor spacé[0.0, 1.0]™). Then, a set of these rules tries to

Th . fthe algorith ith ina d cover the nonself space with hypercubes. For the pase?2,
ere are many versions ot the algorithm with varying egreﬁ-§e condition part of a rule represents a rectangle. Fig. 6(a) il-

of computational complexities to generate detectors efficientl strates an example of this kind of cover foe= 2.

;?Zeggfseedl fa(;Jelrr]Jaerri/ dreeﬁtrsietrqteagr?gigg?)frlr;naltr(]:#;Zarruﬁlgq[ir]”t{]ltég%he nonself characteristic function (crisp version) generated
' ' fruleR = {R',..., R™} is defi follows:
[16], [19], [29]. y asetofrulek = {R',..., R™} is defined as follows

[low?, high?] lower and upper values for the featurgin

(7) = 1, if 3R’ € Rsuch thatt € R/
B. Extension of Negative Selection Approach Xnonsell, R\L) = 0, otherwise :

Instead of using binary encoding in the negative selection aI—We used a genetic algorithm (GA) to evolve rules to cover

gorithm [16]’ our approach uses real-valued representatlontﬁ% nonself space. These rules constitute the complement of the
characterize th8elf—Nonself space and evolve a set of detec-

normal values of the feature vectors. A rule is considered good
tors that can cover thépnself) complementary subspace (a§ t yoes not cover positive samples and its area is large. These
shown in Fig. 6). The basic structure of these detector rUIeSc'ﬁteria guide the evolution process performed by the GA.
as follows: As was described previously, a good characterization of the
abnormal (nonself) space should be noncrisp. Then, the non-
self space is further divided in different levels of deviation. In
: : : Fig. 6(b), these levels of deviation are shown as concentric re-
R™:If Cond,,, thennonself gions around the self zones.
In order to characterize the different levels of abnormality,
where ‘ ‘ we considered a variability parameter (calledto the set of
Cond; = a1 € [lowj,highi] and.. and normal descriptors samples, whererepresents the level of
T, € [low),, highy[; variability that we allow in the normal (self) space. A higher
(x1,...,2,) feature vector, value ofv means more variability (a larger self space); a lower

R':If Cond;, thennonself
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set of rules looks like
R :If Cond;, thenLevel 1

R :If Cond;, thenLevel 1
R If Cond;q;, thenLevel 2

R If Cond;, thenLevel 2

The different levels of deviation are organized hierarchically
such that level 1 contains level 2, level 2 contains level 3, and
so forth. This means that a descriptor can be matched by more
than one rule, but the highest level reported will be assigned.
This set of rules generates a noncrisp characteristic function for
the nonself space

Hnonself (-/f)
=max({l| 3R’ € R, 7 € R/ andl = level(R/)} U {0})

wherelevel(R?) represents the deviation level reported by the
rule R/.

C. Genetic Algorithm in Detection Rule Generation

The GA, attempts to evolve “good” rules [6], [7], [12] that
cover the nonself space. The goodness of a rule is determined
(b) by various factors: the number of normal samples that it covers,
its area, and the overlapping with other rules. This is clearly
a multiobjective multimodal optimization problem. We are not
interested in one solution, but a set of solutions that collectively
can solve the problem (covering of the nonself region).

A niching technique is used with GAs to generate different
rules. The input to the GA is a set of feature vectSrs=
{z!, ..., =™}, which represents samples of the normal behavior
of the parameter. Each elemeitin S is an-dimensional vector
of = (z],...,7).

The algorithm for rule generation is shown in Fig. 8, where

S normal descriptors training set;

v level of variability;

maxRules maximum number of rules in the solution set;

© minFitness minimum allowed for a rule to be included in the
solution set;
Fig. 7. Set of normal samples is represented as points in a 2-D space. Circlgpngy At- maximum number of attempts to try to evolve a
around each sample point represents the aIIowe_lbIe deviation. (a) Rectangulatr . . .
rules cover the nonself (abnormal) space using a small value. otb) empts rule with a fitness greater or equalanFitness
Rectangular rules cover the nonself space using a large valugofLevel of
deviation defined by each, where level 1 corresponds to nonself cover in (a) Egchindividual (chromosome)inthe GArepresents the condi-
and level 2 corresponds to nonself cover in (b). . . .
tion part of arule, since the consequent partis the same for all the
rules (the descriptor belongs to nonself). However, the levels of
value of v represents less variability (a smallgelf space). deviationin nonself space are considered by the variability factor
Fig. 7 shows two sets of rules that characterize self spaces witf). Each element of the chromosome is represented by a fixed
a large and small value ef. Fig. 7(a) shows a covering usingnumber of bits (in our case, 8 bits). In order to decode the chro-
a small variability parametes. Fig. 7(b) shows a covering mosome, the string of bits is mapped to the interval [0.0, 1.0].
using a larger value ofi. The variability parameter can be 1) Fitness Evaluation:Given a ruleR with condition part
assumed as the radius of a hypersphere around the self samplgs.c [low,high,] and .. .and z, € [low,,high,]), we
Fig. 7(c) shows the levels of deviation defined by the twsay that a feature vecta¥ = (x7,...,z) satisfies the rule
coverings. (represented for? € R) if the hypersphere with center’

In the nonself space, we use a GA with different values ofand radius; intercepts the hyperrectangle defined by the points

to generate a set of rules that can provide complete coverag€léw,, . .., low,) and(high,, ..., high,).
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( Rule Generation )

'

ruleSet <—— {}
numAttempts <-— 0

[ruleSet| < énaxRules no

an
numAttempts < maxAttempt

RunGA(S,v)
R <—- best evolved rul

Fitness(R) > minFitness

ruleSet <— ruleSet \-/ {R} numA ttempts <—- numAttempts +1

numAttempts <— 0

() ]

( return ruleSet )

Fig. 8. NC rule generation using a GA.

The raw fitness of a rule is calculated taking in account the previously chosen rules. The following pseudocode segment
following two factors: shows how the final fitness of the rulé is calculated.

1) the number of elements in the training Sethat belongs
to the subspace represented by the rule

fitnessp « raw fitnessg
¢ i for eachR? € ruleSet do
num_elements(R) = {z' € S|z’ € R}; ruleSe

fitnessg «— raw fitnessg — volume(R N R7)
2) the volume of the subspace represented by the rule ~ end-For

n

volume(R) = H(highi — low;). volume( ) calculates the volume of the subspace specified in
i=1 the argument.
The raw fitness is defined as D. Experimentation and Results
raw_fitnessg = volume(R) — C - num_elements(R) In order to test the NC approach, we used the data sets from

[21], as in Section II-A. We used as training set the time series
whereC is the coefficient of sensitivity. It specifies the amounf1, 52, andS3 and as testing set the time serigs$, 72, and
of penalization that a rule suffers if it covers normal sample®.3, with a window size of 3 and 1, respectively (the time series
The bigger the coefficient, the higher the penalty value. The raawe described in Table II).
fitness can take negative values also. The parameters for the GA were the following: population

Since a covering of the nonself space is accomplished bygiae 100, number of generations 1500, mutation rate 0.2,
set of rules, it is necessary to evolve multiple rules. In order twossover rate 1.0, and coefficient of sensitivity 1.0 (high
evolve different rules a sequential niching algorithm is appliedensitivity).

2) Sequential Niching AlgorithmThe idea is to run the GA  The GA was run with variability parametér) equal to 0.05,
multiple times [1] to generate different rules so as to cover titel, 0.15, and 0.2, respectively. Then, the elements in the testing
entire nonselfregion. In each run, we want to generate new rulsst were classified using rules generated for each level (different
that is, rules that cover the rest of the nonself region. The raalue ofv). This process was repeated ten times and the results
fitness of each rule is modified according to the overlap witteported correspond to the average of these runs.
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1 7 T T
TABLE 1l Negative characterization
NUMBER OF GENERATED RULES FOREACH DEVIATION LEVEL % Positive characterization (Eculidean) —-—-
T Positive characterization (D_inf) -~
Level | Radius | Avg. Num. Rules | Avg. Num. Rules 08 || .
(Window size = 1) | (Window size = 3) |
1 0.05 11 19.5 @ j
2 01 11 20.7 g 068 4 1
3 0.15 1 26 % ‘
D
4 0.2 1.1 28 2 o4l L__= i
e %
4--0.20 . : . : : oz | | |
3--0.15 | 1 0 ' ' ' '
: 0 0.2 0.4 0.6 0.8 1
3 Threshold (1)
2 @
2 a
O 2-010F . ]
k] I Negative' characterization
F Positive characterization (Eculidean) -
- : Positive characterization (D_inf) -
1--0.05 | | 08F N\ i |
[
T© 06 ¢ J
O -— 0 1 1 1 i 1 c
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2 04r 1
@
4--0.20 T T T T T
0.2 F 4
3--0.15 | . 0 . ; . . :
° 0 0.2 0.4 0.6 0.8 1
g Threshold (t)
>
o 2--0.10 J (b)
F': Fig. 10. Comparison of the true positives rate of the detection function
§ Hnonselr,+(T) generated by PC and NC for different valuestofa) Window
size 1. (b) Window size 3.
1--0.05 F 1
is approximately 1000:1.5. In the case of the window size of 3,
the ratio is 46 728:1 698 approximately 100:8. It seems to be
0--0 ! 1 L ! 1 .
0 1000 2000 3000 4000 5000 eooo @ tradeoff between compactness of the rule set representation

Time (minutes) and accuracy. Validity of these arguments is observed on our
®) results. Fig. 10 shows how the rate of true positives (detection
_ _ o _ rate) changes according to the value of the threshdid both
'(:all?Vei‘ndgr:/slgiiteei.ﬁ(]g)dV?/\i/rI%t(IZ)(\)/\rllssi?etg(.e testing set detected by evolved rule $lgas The pC technique has better performance than NC, but
only by a small difference. In general, the NC technique shows
detection rates similar to the more accurate (but more expensive)

Table IIl shows the number of rules generated by the GBC technique. Table IV summarizes the best true positive rates
for each level. There is a clear difference between the ”Umt{ﬁﬁth a maximum false alarm of 1%) accomplished by the two
of rules when the window size changes: the number of rU'?&:hniques.
changes with the window size as the pattern space becomegpe resylts in Table V suggest that the NC approach better
larger. approximates the deviation reported by PC udihg distance.

Fig. 9 shows two typical attack profiles produced by the ag support this claim in a more exact way, we measured the
plication of the genetic generated rules to the testing set. With,amper of testing samples for the all possible differences be-
window size of 1, three of five attacks are detected, while Withyeen the PC reported level and the NC reported level. A dif-
a window size of 3, four of five attacks are detected. ference of zero means that the reported levels are the same, a

NC is clearly more efficient (in time and space) compared to

the PC. In the case of a window size of 1, the PC needs to st rg'he number of floating point numbers needed by the PC is equal to
5192 sample$ = (9 dimension$ = 46 728. The number of floating points

5202 % 3 = 15 606 f'oati”Q'POi”t values; the NC Only_has tQnumbers needed by the NC (84 ruleg = (18 floating values per rule =
store4 x 6 = 24 floating-point values, so the compression ratio 698.
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TABLE IV
BEST TRUE POSITIVE RATES FOR THEDIFFERENT TECHNIQUESWITH A MAXIMUM FALSE ALARM RATE OF 1%.
Detection Technique Window size 1 | Window size 3
Positive Characterization (Euclidean) 92.8% 96.4%
Positive Characterization (D) 92.8% 92.8%
Negative Characterization 82.1% 87.5%
TABLE V
CONFUSION MATRIX FOR PC AND NC REPORTEDDEVIATION
PC output level NC output level
No deviation | Level 1 Level 2 Level 3 | Level 4
Euclidean [0.0,0.05] [0‘05,0.1] [0.1,0.15] [0.15,0.2] [0.2,..]
0.0,0.05 5131 0 0 0 0
0.05,0.1 4 1 0 0 0
0.1,0.15 0 2.9 2.1 0 0
0.15,0.2 0 22 2 0 0
[0.2,..] 0 0 6.9 10.5 9.6
Deo
0.0,0.05 5132 0 0 0 0
0.05,0.1 3 7.8 0.2 -0 0
0.1,0.15 0 18.1 3.9 0 0
0.15,0.2] 0 0 6.9 9.5 0.6
[0.2,..] 0 0 0 1 9

Values of the matrix elements correspond to the number of testing samples in each class. Diagonal values
represent correct classification.

TABLE VI IV. CONCLUSION
DIFFERENCEBETWEEN PCAND NC REPORTEDLEVELS FORTEST DATA SET i .
As was mentioned before, the proposed NC technique pro-

Difference betweenPC | Euclidean distance | D distance duces a good estimate of the level of deviation. In order to eval-
and NC reported level uate this estimate, a detailed comparison of the NC output level
0 20.8% 50.3% and PC distance range was performed. The results are illustrated
1 31.8% 49.7% in Table V in the form of a confusion matrix. For each element
2 47.3% 0.0% in the testing set, the functiQ,en.cie(Z) generated by the NC
j g'gzz g'ggz is .app_lied to determi_ne the Igvel of deviation. This level of devi-
' - ation is compared with the distance range reported by the PC al-

Itis expressed as a percentage of the abnormal feature vectors (distance greater than :
A difference of zero means that the level reported by PC and NC are the same, a diﬁere&g’?nhm' Each row (and column) corresponds toa range or level

of one means that the resuilts differ by 1 level, etc. of deviation. The ranges are specified on square brackets. A per-
fect output from the NC algorithm will generate only values in

. e he diagonal. The immune system has the property that foreign

difference of one means that the results differ in one level, etc. . . L
. . . invaders (i.e., the nonself) are recognized easily with few false

The results for the two distances and two windows size are re- . . . ; o )

ported in Table VI positives. This process proceeds in two stages: in the first stage,

The results are very different when the different distances &%Fr:]eemnuonnessIfsltselrcrjﬁﬂten:ledr:sse?vneosv;||%/n(nf:\e/frlrt1yn?:rtﬁgtlogg)r?r?ig thaet_
used for the PC algorithm. Clearly, when the, distance is Y P 9 ry P

used in the PC, the results of the comparison improve. Desptﬁén‘ By unde_rstandmg the dynamics of t_h_e immune s_yst(_em, It
IS possible to implement a pattern recognition mechanism in the

the fact that only 50.3% of the outputs from the NC algorithm L .
) complement space where false positives and false negatives can

are the same to the PC algorithm, 100% of the NC outputs are
e traded off as shown by ROC curves.

in the range of zero or one level of difference from the PC. The . . . . .
. . . . \We investigated an immunocomputing technique to evolve
distance metric determines the structure of a metric space. For . X
novel pattern detectors in the complement pattern space to iden-

instance, in a Euclidean space, the set of points that are at the : . . .
P P tify any changes in the normal behavior of monitored behavior

same dlsta_nce_from a fixed pomt corresponds_to a circle (_a f atterns. This technique (NC) is used to characterize and iden-
persphere in higher dimensions). In the, metric space, this

set of points corresponds to a rectangle (hyperrectangle). Th élrfé(_dlfferent intrusive activities by monitoring network traffic

fore, the rectangular rules used by the NC approach are be’t"fn?j compared with another approach (PC). We used a real-

e
suited to approximate the structure of the, metric space and world data set [21] that has been used by other researchers for
this is reflected in the experimental results.

testing different approaches. The following are some prelimi-
nary observations.
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1) When PC and NC approaches are compared, PC appeats] J.H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for finding
to be more preC|Se, but it requ”'es more time and space re- best matches in logarithmic expected timACM Trans. Math. Soft-

NCis | . b . f ware, vol. 3, no. 3, pp. 209-226, 1977.
sources. Is less precise, but requires fewer resourceﬁQ] S. A. Hofmeyr and S. Forrest, “Architecture for an artificial immune

2) Results demonstrate that the NC approach to detector system,”Evol. Comput.vol. 8, no. 4, pp. 443-473, 2000.
generation is feasible. It was able to detect four of the five20l g-u tgfs ff?r?g?ége;gmbé?%gf'CAétltlisf/ic:glsleierdlvlrFr;mélrnoeokssy-:sypfol\rﬂ ::;n
attacks def[ected by the PC (with adetecnon_rate of 87_.5% Eds. ’Cambridge, MA: MIT Press, 1994, pp. 130—139. '
and a maximum false alarms rate of 1%), while only using21] DARPA Intrusion Detection Evaluation (1999). [Online]. Available:
10% of the space. http://www.ll.mit.edu/IST/ideval/index.html

3) The b | d dwh d ind \%2] T. Lane, “Machine learning techniques for the computer security,” Ph.D.

) . e best results were produced when We use_ a winao dissertation, Purdue Univ., West Lafayette, IN, 2000.

size of 3. We observed that a larger window size makeg3] T. Lane and C. Brodley, “Temporal sequence learning and data reduc-

the system more sensitive to deviations. tzigrs‘ fggin‘ig“;;y detection ACM Trans. Info. Syst. Securitgo. 2, pp.
Our future research includes the testing of different coveringzs) 1. Lane and C. E. Brodley, “Data reduction techniques for instance-

strategies of the nonself space (for instance, using hyper- based learning from human/computer interface dateProteedings of

spheres), experimentation with other intrusion detection data the_17th International Conference on Machine Learningan Mateo,
. . CA: Morgan Kaufmann, 2000, pp. 519-526.
sets (both online and offline), and the development of newos; w. Lee and S. Stolfo, “Data mining approaches for intrusion detection,”
algorithms to generate nonself covering rules. in Proc. 7th USENIX Security Symgan. 1998, pp. 26-29.
[26] W. Lee and D. Xiang, “Information-theoretic measures for anomaly de-
tection,” in Proc. 2001 IEEE Symp. Security and Privadjay 2001,
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