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Abstract— This paper presents a new technique for generating
a set of fuzzy rules that can characterize the non-self space
(abnormal) using only self (normal) samples. Because, fuzzy logic
can provide a better characterization of the boundary between
normal and abnormal, it can increase the accuracy in solving
the anomaly detection problem. Experiments with synthetic and
real data sets are performed in order to show the applicability
of the proposed approach and also to compare with other works
reported in the literature.

I. INTRODUCTION

The detection of unusual behavior patterns is an important
problem in computer security as most security breaches exhibit
anomalous system behavior. However, anomalous patterns can
also be generated when normal behavior changes.

The problem of anomaly detection is also studied in other
contexts. Different terminologies are used in different appli-
cations, such as “novelty [1] or surprise [2] detection”, “fault
detection” [3], and “outlier detection”. Accordingly, many
approaches have been proposed which include statistical [4],
machine learning [5], data mining [6] and immunological
inspired techniques [7], [8], [9].

Artificial immune systems have been applied successfully in
anomaly based computer network intrusion detection [9], [10],
[11]. However, there are some problems that have prevented
this approach from being applied extensively:

� A large number of detectors is needed in order to guar-
antee good levels of detection, specially with binary rep-
resentation. For some problems the number of detectors
could be unmanageable [12].

� The low level representation of the detectors prevents, in
many cases, extraction of meaningful domain knowledge.
This makes it difficult to implement modules that explain,
using high level terms, the reasons to report an anomaly.

� A sharp distinction between the normal and the abnormal.
This divides the space into two subsets self (normal)
and non-self (abnormal) . An element of the space is
considered abnormal if there exists an antibody that
matches it. Clearly, the normalcy is not a crisp concept.
A natural way to characterize the normal is by defining
a degree of normalcy, that is, the set of normal elements
can be represented as a fuzzy set.

These issues were addressed with some success in [7] by
evolving the detectors (in the non-self space) with a genetic
search and dividing the non-self space into different levels. The
evolved detectors had hyper-rectangular shape that could be

interpreted as rules. The paper demonstrated the usefulness of
such a technique to detect a wide variety of intrusive activities
on networked computers.

An improvement of this technique was presented in [8].
Specifically, it used a different niching technique to generate
the rule detectors. The initial algorithm used a sequential
niching technique, whereas the new one [8] used deterministic
crowding, which proved to be more efficient in generating
good anomaly detectors.

The discrete division of the non-self space on levels of
deviation proposed in [7], [8] allows a non-crisp distinction
between self (normal) and non-self (abnormal). Then, it can be
considered as a first step to define a real fuzzy characterization
of non-self. So, this paper is an extension of these previous
works [7], [8] by using fuzzy logic. Specifically, fuzzy rules
will be used, instead of crisp rules, to cover the non-self space
(i.e. fuzzy detectors).

II. PREVIOUS WORK

Forrest et al. [13] developed a negative selection algorithm
(NSA) based on the principles of self/non-self discrimination
in the natural immune system (NIS). The NSA is as follows
([14]):

� Given a feature space U, list of features that represents
the system state, define self (normal states) as a collection
S of elements in U.

� Generate a set R of detectors, each of which fails to match
any string in S. An approach that mimics what happens
in the NIS would generate random detectors and discard
those that match any element in the self set. However, a
more efficient approach will try to minimize the number
of generated detectors while maximizing the covering of
the non-self space (abnormal).

� Monitor S for changes by continually matching the de-
tectors in R against S. If any detector ever matches, then
a change is known to have occurred, as the detectors are
designed not to match any of the original strings in S.

There are different variations of the NSA with different appli-
cation including: anomaly detection [9], [15], fault detection
[16], [17], detect novelties in time series [1], [18], and function
optimization [19].

A real valued negative algorithm was proposed by Dasgupta
and Gonzalez [7] (RNS) and improved with a deterministic
crowding in [8]. The main differences between the original
NSA [13] and RNS are:
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� The elements of self/non-self space are represented by� -dimensional real valued vectors.
� The detectors correspond to hyper-rectangles in

���
and

represent high-level rules.
� The detectors are evolved using a genetic algorithm that

maximizes the covering of the non-self space while min-
imizing the matching of self points. A niching technique
is used in order to evolve multiple detectors that cover
cooperatively the non-self space.

The basic structure of a rule detector is as follows:

�
: If ���	��
 ������������������������ � � ��
 �� � ����� � � then non_self

where,
�"! � � �#��������� �%$ is a feature vector
� 
 ���&'�(�%�)&*� specifies the lower and upper values for the

feature �+& in the condition part of the rule
�

.
The condition part of each rule defines a hyper-rectangle in
the feature space ( 
 ,��.-.� � ). Then, a set of these rules tries to
cover the non-self space with hyper-rectangles. For the case�0/21 , the condition part of a rule represents a rectangle.

This work also proposed a mechanism that allows to es-
timate the level of deviation from the normal. The non-self
space is further divided into different levels of deviation. The
genetic algorithm is run as many times as deviation levels are
needed. The difference between each run is determined by
a variability parameter which specify the degree of variation
from the normal set.

Other works also have proposed the use of hyper-rectangles
to characterize data in high-dimensional spaces. Simpson [20],
[21] proposed a fuzzy min-max neural network architecture for
classification and clustering of spatial data. In this technique,
the hyper-rectangles represent fuzzy clusters. A deterministic
procedure to place and size the hyper-rectangles was used;
however, its performance was very sensitive to the algorithm
parameters and the order of presentation of the data samples.
Fogel and Simpson [22] used evolutionary programming to
optimize the position of hyper-clusters to cluster data. This
work was extended [23] to support hyper-rectangles not nec-
essarily aligned with the coordinated axis; however, this work
was restricted to a 2-dimensional space. The main difference
between these approaches and the technique described at the
beginning of this section is that the generated hyper-rectangles
cover the input data (positive space), whereas in the previous
technique the hyper-rectangles cover the negative space.

III. PROPOSED APPROACH

Our idea is to extend the approach proposed in [7], [8] to use
fuzzy rules instead of crisp rules. That is, given a set of self
samples, generate fuzzy detector rules in the non-self space
that can determine if a new sample is normal or abnormal.
As it will be shown later, the use of fuzzy rules improves the
accuracy of the method and produces a measure of deviation
from the normal that does not need a discrete division of the
non-self space. Notice that, unlike the previous approach, the
fuzzy rules are not represented by hyper-rectangles.

A. Anomaly detection with fuzzy rules

In the self/non-self space 
 ,%�#-3� � , an element � in this space
is represented by a vector ! � � �#�.�#�.��� �%$ where xi �4
 ,%�#-3� . A
fuzzy detection rule has the following structure:

536 ���7�98:�;���.�.��� � �98 �9<�=?>�@ non_self �
where
! �A���#�.�#�'� � $ : element of the self/non-self space
8 & : fuzzy set
� : fuzzy conjunction operator (in our case, BDC�E ! $ )
The fuzzy set 8 & is defined as a combination of basic fuzzy
sets (linguistic values). Given a set of linguistic values F /G F � �.�#�.�.�(FAHJI and a subset K8A&MLNF associated to each fuzzy
set 8A& ,

8A& / O
P�QSR?TUWV FYX��

where Z corresponds to a fuzzy disjunction operator. We used
the addition operator defined as follows:

[]\]^�_ ! � $ / BDC�E G []\ ! � $a` []_ ! � $ �.-�Ib�
An example of fuzzy detector rules in the self/non-self space

with dimension �c/ed and linguistic values F / G�f ��g"�Yh�I :
536 ���	� f � �Yi	� ! fcj g $ � �+kl� ! g j h $ <#=a>m@ non_self

In our experiments, the basic fuzzy sets correspond to a
fuzzy division of the real interval 
 ,%� ,%�#-�� ,�� using triangular
and trapezoidal fuzzy membership functions. Figure 1 shows
an example of such a division using five basic fuzzy sets.

Fig. 1. Partition of the interval [0.0,1.0] in basic fuzzy sets.

Given a set of rules
� � � � i �#����� � H , the degree of abnor-

mality of a sample � is defined by

[
non_self

! � $ / Bonqp&�r �Ssututut H
G�v�w�x �zy VS! � $ I{�

where
v�wmx �*y VS! � $ represents the fuzzy true value produced

by the evaluation of the condition of fuzzy rule
� & , and[

non_self
! � $ represents the degree of membership of � to

the non-self set; thus, a value close to zero means that � is
normal and a value close to 1 indicates that it is abnormal.
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B. Evolving fuzzy detector rules

In our previous work [7], we used genetic algorithm (GA)
combined with niching technique to evolve a set of detector
rules that cover cooperatively the non-self space. In the present
work, we use the same algorithm, but using deterministic
crowding (DC)[24] as niching technique since it was shown
to perform better than sequential niching [25], as it was
demonstrated in [8]. The input to the GA is a set of n-
dimensional feature vectors F v ��� / G � � �.��������� H I , which
represents samples of normal behavior, the population size
and the number of generations. Details of this algorithm can
be found in the original work of Gonzalez et al. [8].

1) Chromosome representation: Each individual (chromo-
some) in the genetic algorithm represents the condition part
of a rule, since the consequent part is same for all rules (the
sample belongs to non-self). The condition is a conjunction
of atomic conditions. Each atomic condition, � & � 8 & , corre-
sponds to a gene in the chromosome that is represented by a
sequence !�� & � �#�.�#�3� � &H $ of bits, where � /�� F � (the size of the
set of linguistic values), and � &X / - if and only if F+X L 8�& .
That is, the bit � &X is ’on’ if and only if the corresponding basic
fuzzy set F X is part of the composite fuzzy set 8 X . Figure 2
shows the structure of a chromosome which is ��� � bits long
( � is the dimension of the space and � is the number of basic
fuzzy sets).

� �� �#�.�.�.� � �H �#�.� � � � �#�.�#�.� � �H
gene 1 gene n

Fig. 2. Structure of the chromosome representing the condition part of a
rule.

2) Fitness Evaluation: The fitness of a rule
�

is calculated
taking into account the following two factors:

� The number of elements in the training set F that belong
to the subspace represented by the rule is calculated as:

	  w�v�
 � �� ! � $ /
�
� RbP������

v�w�x � y ! � $
� F v ��� �

� The fuzzy measure of the volume of the subspace repre-
sented by the rule is calculated as:

w ������ v ! � $ /
��
&�r � �

v�x � � 
Wv ! 8�& $ �

where � vWx � � 
�v ! 8]& $ corresponds to the area under the
membership function of the fuzzy set 8:& .

The fitness is defined as:

�+��� � v ���m! � $ /���� ! -! 	  w�v�
 � �� ! � $�$%` ! -! � $ � w ������ v ! � $ �
where � , ,#" � " -b� is a coefficient that determines
the amount of penalization that a rule suffers if it covers
normal samples. The closer the coefficient to 1 the higher the
penalization. In our experimentation, we used values between
0.8 and 0.9.

3) Distance Measure: A good measure of distance between
individuals allows the DC to replace individuals with closer
individuals and to preserve niches. In this work, we use the
Hamming distance, because there is a strong relation between
each bit in the chromosome with a single fuzzy set of some
particular attribute in the search space. For example, if the � X &
bit (see Figure 2), in both parent and child fuzzy rule detectors
is set to one, both individuals include the atomic sentence
� & � � X , i.e., they use the $ th fuzzy set to cover some part of
the � th attribute. Then, higher the number of bits the parent
and the child have in common, higher common area they will
cover.

IV. EXPERIMENTATION

In order to determine the performance of the proposed
approach (Evolving Fuzzy Rules Detectors - EFR), experi-
ments were conducted on three different data sets, see table I.
Each individual performs a random sampling of the training
set for evaluating its fitness. The sampling size was fixed to
400. Also, two different algorithms were tested in order to
compare the performance of the proposed approach: Evolving
Rule Detectors (ERD), a non fuzzy method as explained in
section II, and Parallel Hill Climbing of Fuzzy Rules Detectors
(PHC).

PHC is an optimization algorithm based on random muta-
tions of potential solutions population. In each iteration, every
individual is changed randomly in one bit. If the produced
individual is better than the original, the last is replaced by
the new one. In other case the original is maintained in the
population. It is clear that individuals in the population of a
PHC do not exchange information (as in GA).

The algorithms were run for 1000 iterations with a popula-
tion size of 100 individuals. The mutation probability for the
ERD algorithm was fixed to 0.1 and the ERD was run four
times, each time with a different level of deviation (0.1, 0.2,
0.3, and 0.4). The crisp detectors (hyper rectangles) generated
by each run are combined to define the final set of detectors
produced by the ERD. Five fuzzy sets, as shown in figure 1,
were used for each feature extracted in the proposed approach
EFR and in the PHC algorithm.

TABLE I

DATA SETS USED FOR EXPERIMENTATION

Data Set Training Testing
Normal Abnormal

Mackey-Glass 497 396 101
Darpa 99 4000 5136 56

KDD-Cup 99 76222 19056 396745

There are two elements that define the cost function of
an anomaly detection system: the false alarm rate (FA), the
system produces an alarm in normal conditions, and the
detection rate (DR), the system detects an attack. A good
intrusion detection system is one that has low FA and high
DR. In order to compare the performance of the proposed
approach we generated an average ROC curve [26] for each of
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the algorithm tested. All the reported results (ROC curve and
DR values) are the average of ten different runs. The reported
DR is the average produced by each algorithm when the FA
is (2%).

A. Mackey-Glass Time series

We used the Mackey-Glass equation to generate time series
data. It is a non-linear, delay-differential equation whose
dynamics exhibit chaotic behavior for some parameter values:

� �� �
/ x � ! �  �� $
- ` ��� ! �  �� $  ��(� ! � $

1) Experimental settings: The Mackey-Glass parameters
used in the experimentation were

x / ,�� 1 , � / ,���- , and	J/ -#, . This set of parameters are the general choice in the
literature [1], [27]. The normal samples were produced from
a time series with 500 elements generated using � / d , and
discarding the first 1000 samples to eliminate the initial value
effect. The features are extracted using a sliding overlapping
window of size �c/�� .

2) Results and Analysis: It is clear that proposed ap-
proaches based on a fuzzy characterization (the proposed
approach and PHC) outperform the one with crisp characteri-
zation (ERD), see figure 3. The fuzzy algorithms generated a
higher DR than ERD for every given FA rate. Moreover, it is
possible to have a DR higher than 75% with 0% FA rate in
the fuzzy approaches while only a DR of 6% is reached by the
ERD algorithm in the same conditions. On the other hand, the
proposed approach (EFR) compares well with PHC. Besides,
PHC performs a litter better when the FA is varied between 0
to 7%, but the performance of both methods is similar. Also,
EFR performance is a little better when the FA rate is varied
between 7% to 10% and after 23%. It is possible that the low
dimensionality of the data set is allowing the PHC to reach a
good solution (each individual is 20 bits length only).

When the FA rate is fixed to 2%, the performance of the
proposed approach and the PHC algorithm are better than
the performance of the crisp one (ERD), see Table II. The
detection rate is increased in at least 4.5%. Moreover, the
standard deviation reached by the fuzzy approaches is very
low compared with the crisp one. The difference is almost
one order of magnitude. Clearly, the fuzzy approaches produce
more consistent results than the crisp one. Also, the number
of fuzzy rule detectors (rows 1 and 2) are considerably small
compared with the number of crisp detectors (row 3), almost
half of number of crisp detectors. Therefore, the fuzzyfication
of the search space allows a simple characterization of the
abnormal (non-self) space. On the other hand, the difference
in DR between EFR and PHC is lower than 0.4% in average. It
can be explained for the higher number of fuzzy detectors that
PHC generates compared with the number of fuzzy detectors
generated by EFR (more than 2 detectors in average).

B. KDD Cup 99

This data set is a version of the 1998 DARPA intrusion
detection evaluation data set prepared and managed by MIT
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Fig. 3. ROC curves generated by the three algorithms tested with the Mackey
Glass data set

TABLE II

COMPARATIVE PERFORMANCE IN THE MACKEY-GLASS PROBLEM

Algorithm DR% # Detectors
EFR 92.27 	 0.007 25.3
PHC 92.67 	 0.002 27.6
ERD 87.61 	 0.071 51.32

Lincoln Labs [28]. Experiments were conducted with the ten
percent that is available at the University of Irvine Machine
Learning repository1. Forty-two attributes, that usually char-
acterize network traffic behavior, compose each record of
the 10% data set (twenty-two of them numerical). Also, the
number of records in the 10% is huge (492021).

1) Experimental settings: We generated a reduced version
of the 10% data set including only the numerical attributes,
i.e., the categorical attributes were removed from the data set.
Therefore, the reduced 10% data set is composed by thirty-
three attributes. The attributes were normalized between 0 and
1 using the maximum and minimum values found. 80% of the
normal samples were picked randomly and used as training
data set, while the remaining 20% was used along with the
abnormal samples as a testing set. Five fuzzy sets were defined
for the 33 attributes. For reducing the time complexity of
the ERD algorithm, 1% of the normal data set (randomly
generated), was used as a training data set.

2) Results and Analysis: For this data set the proposed
approach outperforms the other two tested algorithms, PHC
and ERD, see Figure 4. The DR reached by EFR is 5% more
than the performance reached by PHC and 37% more than
ERD when the FA is fixed at 2%, see table III. Also, the
PHC of fuzzy rule detectors outperforms the crisp one (the
DR is increased in at least 32%). Amazingly, the number of
detectors using fuzzyfication is very small compared to the
number of detectors using the crisp characterization. It can be
due to the high dimensionality of the data set (33 attributes).
Moreover, the high dimensionality of the data set can be the
key factor in reducing the efficiency of the PHC algorithm.
Table III compares the performance of the tested algorithms
with some results reported in the literature. The performance

1http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.
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of EFR is comparable with the performance of approaches
reported in the literature and in many cases it performs better,
see table III. For example, when EFR is compared with
RIPPER-AA the detection rate is higher (4% more abnormal
samples detected) with almost the same FA rate. Clearly,
the fuzzy characterization of the abnormal space reduces the
number of false alarm while the detection rate is increased.
Compared with EFRID, the DR rate is almost the same but
the FA rate is lower (5% less of false alarms are generated
by EFR compared to EFRID). Finally, the number of fuzzy
rules detectors generated by EFR is smaller compared with
the number of detectors generated by PHC (47.4) and ERD
(331.35). Then fuzzy logic allows a better and more compact
characterization of the abnormal and normal boundaries.

C. Darpa 99

This data set, is also obtained from the MIT-Lincoln Lab
[28]. It represents both normal and abnormal information
collected in a test network, where simulated attacks were
performed. The data set is composed of network traffic data
(tcpdump, inside and outside network traffic), audit data (bsm),
and file systems data. We used the outside tcpdump network
data for a specific computer (e.g., hostname: marx), and then
we applied the tool tcpstat to get traffic statistics. The first
week’s data was used for training (attack free), and the second
week’s data for testing (this includes some attacks). We only
considered the network attacks in our experiments.

1) Experimental Settings: Three parameters were selected
(bytes per second, packets per second and ICMP packets
per second), to detect some specific type of attacks. These
parameters were sampled each minute (using tcpstat) and
normalized. Because each parameter can be seen as a time
series function, the features were extracted using a sliding
overlapping window of size � / d . Therefore, two sets of
9-dimensional feature vectors were generated: one as training
data set and the other as testing data set. Ten fuzzy sets were
defined for each feature extracted.
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Fig. 4. ROC curves generated by the three algorithms tested with the KDD-
Cup 99 data set

2) Results and Analysis: The performance reached by the
PHC and EFR algorithms are almost the same and also better
than the performance reached by ERD, see Figure 5. These
results confirm the hypothesis that a good fuzzyfication of the

TABLE III

COMPARATIVE PERFORMANCE IN THE KDD CUP 99 PROBLEM

Algorithm DR% FA% # Detectors
EFR 98.30 	 0.001 2.0 15
PHC 93.09 	 0.209 2.0 47.4
ERD 60.94 	 0.347 2.0 331.35

EFRID[29] 98.95 7.0 -
RIPPER-AA[30] 94.26 2.02 -

search space allows fuzzy rule based algorithms to reach a
higher performance level than the algorithm based on a crisp
characterization of the search space. Table IV compares the
performance of the tested algorithms over the Darpa 99 data
set. The EFR and PHC algorithms outperformed the ERD
algorithm, see Table IV. Also, the number of fuzzy rules is
small (near to 9) compared with the number of rules detec-
tors generated by EFR (almost 60). In this way, approaches
based on fuzzy logic generate simplest characterization of the
abnormal space than the one based on crisp (ERD).

TABLE IV

COMPARATIVE PERFORMANCE IN THE DARPA 99 PROBLEM

Algorithm DR% # Detectors
EFR 98.33 	 0.004 8.87
PHC 99.10 	 0.008 8.47
ERD 96.47 	 0.000 59.76
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Fig. 5. ROC curves generated by the three algorithms tested with the Darpa
99 data set

V. CONCLUSIONS

This paper presented a new technique that allows to generate
a set of fuzzy rules that characterize the non-self space
(abnormal) by just taking self (normal) samples as input.
This work extended our previous work that used crisp rules
as detectors. The experiments performed showed that the
proposed approach performs better than the previous one and
comparable with other results reported in the literature.

� It provides better characterization of the boundary be-
tween normal and abnormal. The fuzzy characteristics
of rules provide a natural estimate of the amount of
deviation from the normal.
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� It shows an improved accuracy on the anomaly detection
problem. This can be attributed to the fuzzy representa-
tion of the rules which reduce the search space, allowing
the evolutionary algorithm to find better solutions.

� It generates a more compact representation of the non-self
space by reducing the number of detectors. This is also
a consequence of the expressiveness of the fuzzy rules.
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