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The mathematical structure of the impact parameter formalism proposed by Kotani and 

Adachi is discussed. The formalism is regarded as a counterpart of the partial wave expan

sion of the scattering amplitude. An impact parameter amplitude is defined as a function 

of impact parameter and total energy. This amplitude has two characteristic features, cor

responding to particle-like and wave-like pictures. The latter nature has not been taken into 

account in previous impact parameter formalisms. 

In order to investigate the character of the impact parameter amplitude, our formalism 

is applied to high energy elastic scattering. A phenomenological analysis of the diffraction 

scattering is characterized by two parameters. Various expressions for the impact parameter 

amplitudes which are connected with the large angle proton-proton scattering are derived. 

The absorption coefficients for each partial waves are obtained. 

The Lommel function of two variables is widely used in the diffraction scattering, just 

as it has been employed in the diffraction theory of classical light waves. 

§ I. Introduction 

An impact parameter expansion of the scatte~ing amplitude has been formu

lated exactly in a previous paper.1
) (Hereafter we refer to this paper as I.) An 

impact parameter amplitude is defined as an integral transform of the (relativ

istically invariant) scattering amplitude by using the Bessel function in place of 

the Legendre polynomials in the definition of a partial wave amplit11de. The 

purpose of this paper is to disc'uss the character of our impact parameter 

amplitude, to clarify the mathematical structure of our formalism, and to offer 

examples of the application to the high energy elastic scattering of elementary 

particles. 

It is shown that our impact parameter amplitude has an oscillating character 

as a function of the impact parameter (b) for large values of b. This oscilla

tion, however, tends to disappear in general for increasing incident energies. 

This situation corresponds to the fact that, in quantum mechanics, we can con

struct a sufficiently localized wave packet at a very high energy. Thus, we 

may say that our impact parameter amplitude has two characteristic features., 

One of them corresponds to the semi-classical particle-like picture which is 

expected when the de Broglie wave length of the incident particle can be re-
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464 T. Adachi 

garded as zero. Another is the wave-like picture which is expected from the 

general character of the wave function. Such an oscillating character with re

gard to the impact parameter is a special feature of our formalism. 

Our formalism is constructed from several mathematical theorems which 

have been proved by mathematicians and by us. Within the mathematical 

framework, it is shown that our impact parameter for,malism can be regarded 

as the counterpart of the partial wave expansion of the scattering amplitude. 

As a feature of our formalism, our impact parameter amplitude must satisfy the 

Kapteyn integral equation and some integrability conditions. It is, however, 

shown that these restrictions are not too stringent for the purpose of physical 

applications. On the other hand, the restrictions which are required for the full 

scattering amplitude in our formalism are also quite natural, namely holomorphy 

in the Lehmann ellipse. 2
) 

At· the present stage, there is no complete dynamical theory of strong 

interactions. As an approach to the underlying dynamical theory of strong in

teractions, we shall try to investigate the theoretical significance of the experi

mental data along phenomenological lines and to observe what the data imply 

about the dynamics.· When the behavior of the scattering amplitude at high 

energies is discussed, the impact parameter expansion has several advantages. 

The main advantage is that the concept of the impact parameter is q:mvenient 

in formulating the intuitive semi-classical picture. 3
) Making use of this charac

teristic feature, we may expect to get some notion of the interaction region and 

to find a clue to the underlying dynamical theory of strong interaction physics. 

As a tool for our mathematical manipulations, it is useful to introduce the 

Lommel function of two variables. 4
) It is interesting to note that the Lommel 

function of two variables has been widely discussed in the diffraction theory of 

classical light waves. 5
) 

In § 2, we shall give a summary of our formalism and discuss the mathe

matical structure. In order to make the character of our impact parameter 

amplitude clear, a phenomenological analysis of high energy diffraction scattering 

is made in §§ 3 and 4. As the first step of the application, only the linear term 

in the t dependence in the exponential form of the scattering amplitude is re

tained in § 3. Our analysis is characterized by two parameters, namely the 

ratio of the elastic to total cross sections and an interaction radius. In this 

case, the contribution from the oscillating part of the impact parameter amplitude 

is not large. In § 4, we discuss the various impact parameter amplitudes which 

correspond to the scattering amplitudes introduced by Foley et al. 6
) and by 

Orear7
) for the analyses of large angle p-p scattering. 

Qualitative discussion of the absorption coefficients in the partial wave 

analysis is given in § 5. We shall compare our results with the expressions 

obtained by Minami. 8
) 

In the Appendix, we discuss the properties of the third type of solution of 
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An Impact Parameter Formalism. II 465 

the Kapteyn integral equation. It is shown that this solution IS inappropriate 

for the purposes of physical applications. 

§ 2. The impact parameter formalism 

In this section, for completeness, we shall summarize the mmn results 

obtained in our previous paper, I, and discuss the structure of our formalism 

and the mathematical restrictions on the impact parameter amplitude and the 

full amplitude. 

Consider the elastic scattering of two spinless particles with center-of-mass 

momentum p and scattering angle e. Let T(s, y) be a relativistically invariant 

scattering amplitude, where (sY/
2 = W is the total energy in the center-of-mass 

system andy= sin ({} /2). Throughout this paper, s is restricted to physical (real) 

values and can be treated as. a simple parameter. The invariant momentum 

transfer can be expressed as (- t y;2 = 2py. 

Our impact parameter amplitude a (s, /3) is defined by the relation 

1 

a(s, /3) = ( --
2
P ) \ y dy Jo(fJy) T(s, y), 
wo 

(2·1) 

where Jo (fjy) is the Bessel function of order zero. From this definition, the 

impact parameter amplitude must be an even function of the continuous parameter 

/3. The impact parameter (b) is introduced by setting /3 = 2pb in our formalism. 

Hereafter we shall use the notation a (s, b) in place of a (s, /3) for the discussion 

of physical problems. , 

The relation inverse to Eq. (2 ·1) can be expressed as 

00 

A(s, y) ~· ( -;)) {3 d{3 J,({3y)a(s, {3), (2·2) 

= l. T(s, y), for o<y<1, 

0, for 1<y<oo. 

The conditions on T (s, y) and a (s, /3), by which the inverse relation is guaran

teed, will be mentioned later. 

On the other hand, by using the Legendre polynomials in place of the 

Bessel function in Eq. (2 ·1), the usual partial wave amplitude al (s) is defined; 

1 

a,(s) ~ ( i:- ) ~ y dy P 1(l-2y') T(s, y), (2 ·3) 

and the mverse relation is 

T(s, y) = ( W) tC2l+ 1)Pl(1-2y2)al(s). 
P l=O 

(2·4) 
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466 T. Adachi 

As we shall prove later in Theorem-3, the relation between the impact 

parameter amplitude a (s, /3) and the partial wave amplitude az (s) is easily 

obtained as follows : 

and 

(2 ·5) 

az(s) = ~ daJ2z+1Ca)a(s, a). (2· 6) 

Eq.(2·6) 

--~ Eq.(2·5) 

Ju+1(ji) 

0 

Hence, it is instructive to show the relations 

between the full scattering amplitude T(s, y), 

the impact parameter amplitude a (s, /3) and 

the partial wave amplitude az (s). These 

relations are illustrated by the triangle 

shown in Fig. 1. 

In terms of the impact parameter am

plitude, the various cross sections are given 

In the following exact forms, 

4n 
Dtot (s) = --- Im T(s, 0) 

pW 

Fig. 1. The relations among three am

plitudes T(s, y), a(s, {3) and az(s). =87!~ bdb Im a(s, b), (2·7) 

0 

1 

Del (s) =-~2- ~ y dyJT(s, y) 1

2 

0 

CXl 

=8rr~ bdbla(s, b) j
2

, (2·8) 

0 

4n 
Dre(s) =-- F(s, 0) 

pW 

=8rr~ bdbf(s, b), (2·9) 

0 

where Dtot (s), Del (s) and IJ±e (s) are the total, elastic and reaction cross sections, 

respectively (see § 4 of I). *l According to Van Hove,9
l in the expression for 

*> The term "reaction cross section" is used, according to the usage of Blatt and Weiss

kopf.10> It is called the inelastic cross section in our previous paper, I, and the absorption cross 

section in much of the literature on nuclear physics.lD 
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An Impact Parameter Formalism. II 467 

Ore(s), the function F(s, y) is an overlap function which expresses all contri

butions from inelastic channels, and the opacity function f(s, b) IS defined by 

the relation 

1 

f(s, b)= ( ~ ) ) ydyJ,(Zpby)F(s, y). (2 ·10) 

In the same way as in Eq. (2 · 2), the inverse relation can be expressed in the 

following form 

( 

W ) ( j F(s, y), for o<y<1, 
- ) (3 d{3 Jo ((3y)f(s, {3) = l 
2p 0 l 0, for 1<y<oo. 

(2 ·11) 

We shall now discuss the mathematical structure of our formalism. The 

theorem establishing the inverse relations (2 · 2) and (2 ·11) 
1

has been proved 

by MacRobert. 12
) This theorem may be stated as follows : 

[Theorem--1]. lf T(s, y) is a holomorphic function in the region p<y<q and 

if a" (s, {3) be expressed in the form 

q 

a" (s, (3) = ( -~-) \ ydyJ" ((3y) T(s, y) 
p 

for o<p<q< oo, and Rev> -1, then, we find 

00 

A" (s, y) = ( _W ) ( d(3(3 J" ({3y) a" (s, {3) 
2p ) 

_ j T(s, y), for p<y<q, 

- l 0, for O<y<p, q<y< oo. 

(2 ·12) 

(2 ·13) 

In order to apply this theorem, it is required that the scattering amplitude 

T(s, y) is holomorphic at least in a region involving the interval O<y<1 in 

the y plane and for physical values of s. Actually, it has been proved by 

Lehmann2
l that the scattering amplitude T(s, y) is holomorphic inside an ellipse 

with foci -1 and + 1 in the cos f) plane. Since y 2 
= (1- cos(}) /2, the inverse 

relation (2 · 2) can certainly be defined. 

It should, however, be noted that the Bessel function J0 ({3y) with a weighting 

factor y does not form a complete orthonormal set for the region O<y<1 and 

O<f3< oo. We shall, therefore, expect to find some restrictions on a (s, (3), in 

addition to the simple one that a (s, (3) is an even function of (3. Such restric

tions are found by considering the possibility of the following integral equation 

which is obtained by substituting Eq. (2 · 2) into Eq. (2 ·1); 
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468 T. Adachi 

00 

a(s, {3) =~ydyJo(f3y)~ adaJo(ay)a(s, a). (2 ·14) 

0 0 

The validity of this integral equation is established by the following theorem: 

[Theorem-2]. Let a (s, {3) satisfy the following two conditions ; 

[I] The even function a (s, {3) has a continuous derivative for all positive 

values of {3, and the integral 

00 

~ d{3a (s, {3) {31!2-c (2 ·15) 

exists and is absolutely convergent, where c is a small positive number. 

[II] The function a (s, {3) should satisfy the Kapteyn integral equation4
> 

a (s, {3) + {3 da ~/J {3)_ 

00 

_ 1 ~ J1 (a) ---- da -----{(a+{3)a(s, a+{3) + (a-{3)a(s, a-{3)}. 
2 a 

0 

These are necessary and sufficient conditions to establish the integral equation 

(2·14) for a(s, {3). 

The proof of this theorem is given in I.*) From the condition [I], it is to be 

noted that a step function of {3 is not permissible for the amplitude a (s, {3) in 

our formalism. Moreover, the functional form of our impact parameter amplitude 

a (s, {3) must be restricted by the Kapteyn integral equation. It is, however, to 

be noted that ther~ is no such serious restriction on the full scattering amplitude 

T(s, y), except the analytic property of T(s, y) in the region O<y<1 (see the 

theorem-4). 

Hence, it is worthwhile to consider general solutions of the Kapteyn integral 

equation (2 ·16). The Kapteyn equation appears originally in the Webb-Kapteyn 

theory of the Neumann series.4
l Therefore, we have the following theorem: 

*) In course of the proof of Theorem-2, we have used the Lommel integral 

and the summation 

1 

Lf3a= {3a ~ ydyJoCf3y)Jo(ay), 

0 

OJ 

L 13a
1 = 2J2(2l+ 1)Ju+l ({3)Ju+l (a). 

~=0 

(2-17) 

(2 -18) 

In I, it was proved that L 13a=L13a'· After completion of the previous work, we discovered that 

this relation had been proved by Wilkins 13 l as part of a more general form. Furthermore, it was 

found that Bateman had proved it in 1907_14 ) The author would like to express his thanks to 

Professor K. Watanabe for making a copy of Bateman's paper available to him. 
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An Impact Parameter Formalism. II 469 

[Theorem-3]. In· order that a (s, B) should satisfy the Kapteyn integral equa

tion, it is necessary and sufficient that a(s, B) should be expressible for all 

real values of /3 by the Neumann series, 

a (s, /3) = :E2 (2l + 1) Jn+l (/3)- cn+l 
l=O /3 · 

(2 ·19) 

with the coefficient 

C2z+1 = \ da J2l+l (a) a (s, a). (2. 20) 

0 

Further, this theorem is true provided only that the integral 

00 

~ da a a(s, a) (1 +a) - 312 (2. 21) 

0 

is absolutely convergent. 

The proof has been given, for example, in Titchmarsh's book (p. 354) .15
),lB),

4
) 

It is easy to prove that the coefficient cn+l (s) is equivalent to the partial wave 

amplitude al (s), Eq. (2 · 3). This equivalence is derived by the use of various 

relations among J2l+l (/3), Jo ((3y) and Pl (1- 2y2
) given in the Appendix of I. 

Let us consider another type of solution of the Kapteyn equation. From 

the definition of the total elastic cross section O"el (s), Eq. (2 · 8), it is natural to 

require an integrability condition 

00 

~ /3\a(s, /3) \
2
df3<oo. (2. 22) 

0 

Under this requirement, one type of solution is derived by Hardy and Titch

marsh.16) This type is our definition of a (s, /3), Eq. (2 ·1) itself. 

[Theorem-4]. Suppose that /3\a (s, /3) j
2 is integrable over (0, oo). Then, in 

order that a (s, /3) should be a solution of the Kapteyn integral equation 

(2 ·16), it is necessary and sufficient that it should be of ~he form 

1 

a(s, B)= ( ~ ) ~ y dy Jo(f3y) A(s, y), 
0 ' 

(2. 23) 

where y\A (s, y) \2 is integrable over O<y<l. 

The proof of this theorem is given in Hardy and Titchmarsh's paper.16) In the 

course of the proof of this theorem, it is shown that a (s, /3) is independent of 

the values of A(s,y) for y>l. Comparing our definition of a(s, /3), we may 

choose A (s, y) = T (s, y). The integrability condition 

1 

~ y dy\T(s, y) j
2<oo, (2 ·24) 

• 
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470 T. Adachi 

is also the integral which appears in the definition of the total elastic cross 

section, Eq. (2·8). Thus, T(s,y) is restricted only byacondition quite natural 

for the purpose of physical applications. Let us suppose that the form of a (s, /3) 

is given first and it satisfies the Kapteyn integral equation. Then we can calcu

late A (s, y) by using Eq. (2 · 2). ·According to Theorem-1, the corresponding 

amplitude T(s,y) for O<y<1 is obtained by putting T(s,y) =A(s,y), but the 

expression for T (s, y) for 1 <Y is not derived directly, because A (s, y) = 0 for 

1<y. We may, however, define T(s, y) even in the region y>1 by the analytical 

continuation of T(s,y) defined for y<1, because the value of a(s,/3) is inde

pendent of the value of T(s, y) for y> 1, as stated in Theorem-4. 

In order to understand these theorems, let us consider an example such 

that the scattering amplitude T(s, y) is given by 

(2 ·25) 

where Pz (z) is the Legendre polynomials. In this case, our impact parameter 

amplitude a (s, /3) is given by 

1 
a (s, /3) = T J2l+l (/3). (2. 26) 

It is easy to show that this a (s, /3) sa.tisfies the conditions which are required 

in our formalism (see the Appendix of I). It should be noted that 

T(s,y)~O, for y~(l-c). (2·27) 

In this example, we see that our impact parameter amplitude oscillates in general 

as a function of the parameter /3. From the point of view of the general character 

of the wave function in quantum mechanics, such an oscillating behavior will 

be expected. Another type of solution of the Kapteyn equation will be discussed 

in the Appendix. 

By returning to our original transformation formulae and substituting Eq. 

(2·1) into Eq. (2·2), we get an integral equation for T(s,y) 

CD 1 

T (s, y) =. ~ /3 d/3 Jo (/3y) ~ y' dy' Jo (/3y) T (s, y') 

0 0 

for o<y<l. (2. 28) 

The condition for the existence of the last integral IS 

1 

~ y dyJT(s, y) J<oo. (2 ·29) 

0 

After interchanging the order of integrations, we have a convergent integral 

in the sense of Dirac's o function. 
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An Impact Parameter Formalism. II 471 

Thus, we can conclude that, in order to establish our impact parameter 

formalism, e.g. our transformation formulae (2 ·1) and (2 · 2), the impact pa

rameter amplitnde a (s, /3) should satisfy the integrability condition (2 · 22) which 

is the strongest one among the conditions (2 ·15), (2 · 21) and (2 · 22). Also, 

the full scattering amplitude T (s, y) should be analytic in the region involving 

O<y<l. The integrability conditions for T (s, y), Eqs. (2 · 24) and (2 · 29), are 

satisfied by this analyticity requirement. 

Finally, we shall give a brief summary of the unitarity condition on the 

impact parameter amplitude a(s, b).*l From the equality of Gtot(s) =Ge1Cs) +Grc(s), 

we can deduce the relation 

Im a(s, b)= !a(s, b) !2 +f(s, b) +K(s, b), (2. 30) 

where the correction factor K(s, b) must satisfy 

~ b db K(s, b) =0. (2•31) I 

0 

A detailed discussion of the properties of this correction factor K (s, b) is given 

in I. For example, the correction factor K(s, b) is given by 

ro ro 

K(s, b)=~ d/31/31 ~ d/32/32a*(s, /3I)a(s, /32)G(2pb; /31,/32; s), 

0 0 

where 
ro 

G (a ; /3, r ; s) = (2/ af3r) ~ (2! + 1) J2z+1 (a) J2z+1 (/3) J21+1 Cr) 
z~~o 

For special values of b, we have 

Ima(s, 0) =[a(s, O) !2 +f(s, 0), 

Im a ( s, oo) = I a ( s, oo) !2 + f ( s, oo) . 

(2. 23) 

(2. 33) 

(2. 34) 

(2. 35) 

These relations are similar to the unitarity relation for the partial wave amplitude 

(c.f. Eq. (4·9) of I). It should be noted that, as is clear from Eq. (2·5), the 

zero impact parameter amplitude is equal to the s-wave amplitude, 

a ( s, 0) = ao ( s) . (2. 36) 

§ 3. Forward elastic scattering 

We shall now apply our impact parameter formalism to the forward elastic 

*> In I, we wrote the condition l;:::o:la(s, b)! in Eq. (4·18a) of I. This upper limit seems to 

be too strong. What we can say now is that a(s, b) is an entire function of b for physical values 

of s. 
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472 T. Adachi 

scattering. The invariant scattering amplitude T (s, y) is, as is well known, a 

function of total energy squared s and momentum transfer t = - 4p2y 2
• In order 

to discuss the diffraction scattering, let us consider the scattering amplitude 

T(s, y) near the forward direction. The real part of the scattering amplitude 

and its imaginary part have in general different functional forms, so that we 

may assume that 

(3 ·1) 

where gl (s) and g2 (s) are real functions of s. 

In order to find the form of the impact parameter amplitude for the scat

tering amplitude given above, it is sufficient to treat only the imaginary part, 

since we have assumed that the imaginary and real parts have similar depend

ences on the variable t. The spin and isotopic-spin dependences and the 

Coulomb correction to the scattering amplitude are not considered, because our 

purpose is to find the qualitative features of the high energy forward scattering. *l 

The impact parameter amplitude Im a (s, b) corresponding to the imaginary 

part of the scattering amplitude (3 ·1) is expressed in the following form by 

substituting Eq. (3 ·1) into the definition (2 ·1); 

- ( 2p ) e-7(s) • . • 

Ima(s, b)- -W-- Im T(s, o)
2
ir_(

0
[ul(2zr, 2pb)-zUl2zr, 2pb)], (3·2) 

where r (s) is 

r(s) =4p2 gl(s), (3 ·3) 

and the Lommel function Un (w, z) is defined as4
) 

Un(w, z) = 'f
0

( -1)m( : ) n+
2
mJn+2m(z). (3 ·4) 

By using Eq. (3 · 4), we rewrite Eq. (3 · 2) in a different form: 

( 
2p ) e- 7 

oo 1 
Ima(s, b)= -- Im T(s, O)--L;r1

-- -z-- Jz+t(2pb). 
W 2 L=O (pb) +l 

(3. 5) 

If we assume that this expression for the amplitude a (s, {3) IS first given, 

the inverse of Ima(s, b) IS given by ImA(s,y), Eq. (2·1), which IS expressed 

as follows; 

( 

Im T (s, 0) eg1 (s)t, for O<y<l, 

Im A(s, y) = (1/2) Im T(s, O)eg1
(s)t, for y=1, 

0 , for 1<y<oo. 

(3. 6) 

Here we have used the following formula (see p. 48 of Bateman's book17
l): 

*> In case of proton-proton scattering, symmetrization of the angular dependence should be 

taken into account. We shall not consider it for brevity. 
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An Impact Pararneter Formalism. II 

co 

) {3"-"+
1 J" (a{3) J" ({3y) d{3 = 

0 

where a>O and Re v>Re fJ.> -1. 

. 0, 

for O<y<a, 

for a<y<oo, 

473 

(3·7) 

It is instructive to express Eq. (3 · 2) in a somewhat familiar form. For 

this purpose we use the relations between the Lommel functions of two variables ; 

(3 ·8) 

and 

( 
w z

2 

) U 2 (w, z)- Vo(w, z) =-cos ---+-- , 
2 2w 

(3 ·9) 

where Vn(w, z) is another Lommel function of two variables which is defined 

by a series4
l 

Vn(w, z) = f: ( -1)m(_2f! __ ) -n- 2m J-n-zm (z). 
m=O 2 

(3 ·10) 

It is now possible to rewrite Eq. (3 · 2), by using Eqs. (3 · 8) and (3 · 9), in the 

following form : 

Im a (s, b) = I~ _!_(s' _Ql_ {exp [- _!L_J -e- 4
v

2
g1 [V0 (2ir, {3) + iVr (2ir, {3)] } 

4p Wgr (s) 4gr (s) 
(3 ·11) 

From the definition of the V function (Eq. (3 ·10)) and the factor exp [- 4p2gr (s)], 

we can conclude that the second and third terms in Eq. (3 ·11) decrease rapidly 

and tend to zero in the high energy limit; so we can take only the first term 

for Im a (s, {3) as a good approximation. This is equivalent to discussing only 

the part corresponding to the semi-classical particle picture of our impact pa

rameter amplitude. The Gaussian distribution with respect to the impact· pa

rameter, the first term in Eq. (3 ·11), was previously obtained by Udgaonkar 

and Gell-Mann,I8
l who used the vacuum-trajectory hypothesis in Regge pole 

theory,I9
l and by Ida20

) and Gottfried and Jackson28
l in terms of different impact 

parameter formalisms. The real part of the impact parameter amplitude a(s, b) 

is easily obtained in the same way. 

In order to discuss the p-p diffraction scattering, let us assume, for simplicity, 

that Re T(s, y) =0, i.e. the elastic scattering is entirely due to a shadow scat

tering. Then we may interpret the following ratio as a parameter representing 

the degree of opacity of the target, 21
) 

(3 ·12) 
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474 T. Adachi 

We shall hereafter call this ratio r(s) the shadow parameter. 

If we assume the form of Im T(s, y) given by Eq. (3 ·1), the elastic cross 

section can be easily obtained as follows: 

Gel= _[0" t<J!r- (1- exp [- 8p 2gl (s)]), 
32ngl (s) 

(3 ·13) 

where we have used the optical theorem (2 · 7) . Then the shadow parameter 

is represented by 

r(s) =--Gtot(s) -(1-exp[ -8p2gi(s)]). 
32ngl (s) 

(3 ·14) 

We note here that the shadow parameter is well represented by the zero impact 

parameter amplitude a (s, O) as noted by Ida20
) and Serber. 22

) From Eq. (3 ·11), 

we have the following expression for Im a (s, 0) 

Im a (s, 0) =- O"tot~~) - (1- exp [- 4p 2gr(s)]), 
16ngl (s) 

where we have used the properties of the V function 

Va(w, O) = 1, V1 (w, O) = 0. 

(3 ·15) 

(3 ·16) 

By combining Eq. (3 ·14) with Eq. (3 ·15), the shadow parameter is expressed as 

(3 ·17) 

On the vacuum-trajectory hypothesis, if the total cross section approaches 

a finite constant, the elastic cross section Gel (s) decreases as 1/ln s at high 

energies. In that case the shadow parameter and the zero impact parameter 

amplitude must vanish like 1/ln s as S---'? oo. The experimental data on high 

energy p-p scattering may, however, show that the shadow parameter will ap

proach a definite constant value "--'0.22 in the high energy limit. It is possible 

within our approximations to explain this value if we assume that Im a (s, 0) 

approaches its maximum value 1/2 in the high energy limit, as noted previously 

by Frye.
23

) As we see from the unitarity condition for zero impact parameter 

amplitude, Eq. (2 · 34), this assumption mean.s that the opacity function f(s, 0) 

attains the maximum value 1/4, namely a central ray is totally absorbed. Of 

course, these conclusions are slightly modified if we remove the assumption 

Re T(s, y) =0. 

We now investigate the meaning of the parameter g1 (s). From the as

sumption on the scattering amplitude, Eq. (3 ·1), we have the relation 

gl (s) = [-
0

- Im T (s, t) J jrm T (s, O). 
at t=O 

(3 ·18) 

If the shadow parameter and the total cross section approach constant values 
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An Impact Parameter Formalism. II 475 

for increasing energies, the function gl (s) must approach a definite constant 

value in the high energy limit, as we see from Eq. (3 ·14). Then, we may 

consider its constant value as a measure of the radius of the interaction region. 

According to the detailed discussion of the interaction radius which will be 

given in a subsequent paper, the equivalent radius R can be expressed by the 

following relation, 

R = [8g1 (s) r12= [~t~)--]
112

. 
. 4rrr(~ 

(3 ·19) 

For example, we have the value R=1.2 X 10-13cm for p-p scattering, if we assume 

O"tot(oo)=40mb and r(oo)=0.22. It should be noted that the existence of the 

finite equivalent radius also contradicts the increasing radius predicted by the 

Regge pole theory. 

Let us now derive the opacity function f(s, b) for the amplitude (Eq. (3 ·1)) 

from the unitarity condition (2 · 31). In order to know the opacity function, 

we may calculate the correction factor (Eq. (2 · 32)) by using the impact pa

rameter amplitude or the scattering amplitude and find 

f(s, b) =___E"_tot(s)__{exp[---_b
2

--~J -exp[-4p2gl(s)] [Va(2ir, (3) +iV1(2ir, (3)] 
16rrgl(s) 4gl (s) 

_ O"tot(-D__exp [ _ Sp2g
1 
(s) J ~ _!_2z~J_(3) _ 

16rrg1 (s) l,ra,n (3 

X---- -- 2f2l-J:-})Tm+n+2tn_l~ ---- ------~ 
T(nz -l+ 1)T(m + l +2)T(n -l+ 1)T(n + l+ 2) J 

(3. 20) 

If we approximate the impact parameter amplitude by the first term in Eq. (3 ·11), 

the correction factor is equal to zero to a good approximation, as is proved 

generally in the high energy limit. In this approximation, the opacity function 

will be given in the form 

fCs, b)= (Jd~~)- {exp[- R~; 2 J-- (J~~X:--exp[- ; 2 ~
2

2 ]} (3. 21) 

This form was previously suggested by Van Hove, who used the umtanty con

dition for partial wave amplitudes. 24
) The first term of this expression corresponds 

to the Van Hove form for the uncorrelated jet model. 9
l Therefore, it should 

be emphasized that the Van Hove form is obtained from the extremely high 

energy approximation in our formalism under the assumption Eq. (3 ·1). 

§ 4. Various forms of impact parameter amplitudes 

In the previous section, we mainly discussed the term linear in t in the 

exponential form of the scattering amplitude. However, the analysis of the 

experimental data show that the t
2 term or a much more complicated form of 
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476 T. Adachi 

the 'scattering amplitude has to be taken into account. It will be useful to 

know in our formalism the forms of a(s, b) for various scattering amplitudes, 

which correspond to expressions given by Foley et al. 6
l or by Orear. 7

) 

Let us consider the case where the scattering amplitude 1s given by the 

expresswn 

T(s, t) =T(s, O)exp[g(s)t+h(s)t2
], (4 ·1) 

where g (s) and h (s) are function of s. Substituting this expression into the 

definition of the impact parameter amplitude, Eq. (2 ·1), we have the expression 

a(s, /3) = (_1-P~)T(s, O)exp[ ~r(s) +~(s)l2] (~~) 
W \2zr 

X~(-1/HL[i(r~~)l(2~) 112 ] (~l2r 2 / 12 ( 2 ~r r+ 1

Jn1 (/3), (4·2) 

where r (s) is given by the same definition as Eq. (3 · 3), the function ~ (s) 1s 

(4·3) 

and HL(z) are the Hermite polynomials. It is easily shown that when h(s) ~o, 

the expression ( 4 · 2) reduces to the expression (3 · 5), by using the following 

relation 

lim Hn [i (r ~~)I (2~Y 12 ] (~ l2)n12 = (i)nrn. (4·4) 
~-+0 

In terms of the Lommel function of two variables, the impact parameter amplitude 

(Eq. (4·2)) can be written as 

a(s, /3) = (_1_L) T(s, O)exp[ ~r(s) +~(s)l2] ( ?-) 
l1T 2zr 

x£(-1/Hl[i(r-~)I(2~Y 12 ] (__i-)r
12 

[Ul+1(2ir, /3) +Ul+3(2ir, /3)], (4·5) 
l=O 2r2 

. 

where we have used the relation 

(4· 6) 

From this expression, we can easily deduce the exponential form Eq. (3 ·11) 

for small h (s), by using the following relation between the Lommel functions: 

co 

Uz+l (2ir, /3) ~ iUZ+2 (2ir, /3) = :E ( ~ 1)n [Ul+n+l (2ir, /3) + Ul+n+B (2ir, /3)]. ( 4 · 7) 
n=O 

Experiments on high energy p-p elastic scattering near the forward direc

tion seem to show that the ratio r I (2~Y 12 is large. Accordingly, we can infer 

that the expression ( 4 · 5) is not different from the Gaussian function of b 

for practical physical situation. 
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An Impact Parameter Formalism. II 477 

We shall now find the expressions for the elastic cross section and the 

shadow parameter for the impact parameter amplitude (Eq. ( 4 · 2)) . For this 

purpose, we shall again assume that Re T (s, y) = 0. The elastic cross section 

is expressed in the following form: 

O"el (s) = [O"tot (s) r . 1 
32rrg(s) 1-8p2h(s)IY(s) 

X {1- exp [- 8p2g (s) (1- 4p2h (s) IY (s))] (4·8) 

X [1- ~ (- i)n+l ~Cn+ll/2 Hn-1 [i (r- ~)I ~lf2J -- 2n --]}. 
n=l (n+1)! 

The amplitude a (s, O) can be easily obtained ; 

Ima(s, O) =__Q"_tot(s)_. 1 

1
f1-exp[ -4p2g+16p2h] 

16rrg(s) l-8p 2hlg 

X [1- £ (- i)"+1 Hn-1 [i (r- ~)I (2~Y 12 ] (_1-) Cn+ll/ 2

- 2 ~-]} . 
n=l 2 (n + 1)! 

(4·9) 

In this approximation, the shadow parameter r(s) is expressed as 

1 
r(s) =- F(s) [2 Im a (s, O)], 

4 
(4 ·10) 

where F(s) is 

F(s) = F1 (s) I F2 (s), 

F1(s) =1-exp[ -8p2g(s) ( -4p2h(s)IY(s))] 

X [1- 'iS (- i)n+l ~Cn+1Jf2 Hn-1 [i (r- ~)I ~lf2J _ ____]-__'!___] ' 
n=1 (n+1)! 

( 4 ·11) 

F2(s) =1-exp[ -4p2g(s) (1-4p2.h(s)lg(s))] 

x 1-6( -i)n+1 - Hn-1[i(r-~)I(2~Y 12 ] . 
[ 

oo ( ~ ) (n+1)j2 2 J 
n=l 2 (n+1)! 

It is clear that F(s) tends to unity, as p increases. 

In order to describe the entire angular region of p-p elastic scattering, an 

expression for the differential cross section has been introduced by Orear.7
l His 

expressiOn IS 

d0"e1 _ B2 2 [ ( Rp 1_ ) 

2 J A
2 

[ J -dQ- P exp - -
2
-- +-;- exp -ap~ , (4 ·12) 

where A and B are constant quantities, R is the equivalent radius and the 

transverse momentum p1_ is 

( 4 ·13) 
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478 T. Adachi 

If we assume that the first and the second terms in this expression correspond 

to the. imaginary and real parts of scattering amplitude, respectively, the scat

tering amplitude T(s, y) can be expressed as 

T(s, y) =iBp W exp[- R
2

{j_
2 

J +A exp[ -~~j_ J . ( 4 ·14) 

The imaginary part of the amplitude is given by using the following substitution 

(4 ·15) 

Therefore, the impact parameter amplitude corresponding to Im T(s, y) can be 

written in the form 

Im a(s, {3) = ( {:; )B 

co ( p2 R2 ) z;2 ( 2 ) l+1 
xL,:(-iYHz[-ipR/8112

] --~ - Jl+1({3). 
l=O 2 {3 

(4 ·16) 

On the other hand, the real part of the impact parameter amplitude is much 

more complicated ; we have 

( 
p ) co ( _ a)n 

Re a(s-, {3) = - A~-- ---
W n=O n! 

X iS ( -1)m T(nj?-__ + 1) T__(?y_/2~-j--}!l_ + 1) ( ~. -) m+nj2+1 Jm+n/2+1 ({3). ( 4 ·17) 
m=o T(n/2- m + 1) IJ 

It is to be noted that these expressions for impact parameter amplitudes are 

expressed in terms of the Lommel function by using the formula ( 4 · 6) . 

The experience obtained in this section will be useful in discussing the dynamical 

theory when deciding the form of impact parameter amplitudes. Whenever the 

angular dependence of the full scattering amplitude is expressed in the exponential 

form assumed in this paper, our impact parameter amplitude includes the Lommel 

function. This fact is clearly understood on the basis of the integral represen

tation of Lommel's function. 

§ 5. Absorption coefficients 

A partial wave analysis of p-p diffraction scattering have been made by 

Minami 8
> by assuming a similar form of the scattering amplitude to Eq. (3 ·1), 

and by Krish25
> by using a similar form to Eq. ( 4 ·11). Both of them assumed 

that Re T(s, y) =0. In this section, we shall compare their results qualitatively 

with our results obtained through use of the impact parameter amplitude. 

In the partial wave expansion of the scattering amplitude, the absorption 

coefficient rJz (s) is defined by the relation 

az (s) = (r;z(s) exp [2iaz(s)] -1) /2i (5 ·1) 
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An Impact Parameter Formalism. II 479 

and 

o<r;l (s) < 1, (5 ·2) 

where al (s) is the real part of the phase shift. 

We shall assume again that al(s) =0 in Eq. (5·1) for the diffraction scat

tering. In this case, 1- r;l (s) can be expressed as 

CXJ 

1- r;l (s) = 2\ d(3J2l+l (/3) [Im a (s, /3)], (5 ·3) 

0 

by usmg Eqs. (2 · 6) and (5 ·1). 

We can now calculate the absorption coefficient for various impact parameter 

amplitudes for the diffraction scattering. For example, if we consider the impact 

parameter amplitude (Eq. (3 · 2)), we get 

1-r;l(s) = ( i;-) Im T(s, O)exp[ -r]Sz, 

where Sl IS defined by 

ro I 
Sl=2~ rn___ n · __________ , 

n=O T(n-l+1)T(n+l+2) 

and we have used the following formula : 

In the particular cases l = 0 and l = 1, we have 

2 
So=--(exp[r] -1), 

r 
2 4 

81=---Cexp[r] +1) ------(exp[r] -1). 
r · 7

2 

(5. 4) 

(5·5) 

(5 ·7) 

As Minami pointed out, the following recurrence formula can be proved for Sl: 

(5. 8) 

The expression (5 · 4) corresponds to the t;/ defined by Minami. 8
J 

The absorption coefficient for the scattering amplitude (Eq. ( 4 · 2)) can be 

expressed in terms of a combined series of known functions. We shall, for 

simplicity, assume that T(s, y) is purely imaginary, and we get 

where Sn, l is defined by the relation 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/3

5
/3

/4
6
3
/1

8
4
6
3
1
5
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



480 T. Adachi 

2n! 
Snl=----~ --~~-----~---

' T(n-l+ 1)T(n+l+2) 
(5 ·10) 

The recurrence formula for Sn, l has a similar property to Eq. (5 · 8), I.e. 

Sn,l-1- Sn,l+l = 2 (2l + 1) Sn+l,l· (5 ·11) 

§ 6. Discussion 

In many discussions of the behavior of the scattering amplitudes on the 

basis of the concept of impact parameter, the oscillating character of the impact 

parameter amplitude has never been discussed quantitatively. This oscillating 

part is characteristic of our formalism and will be discussed in detail in a sub

sequent paper. Let us consider it briefly here. 

Our definition of a (s, b), Eq. (2 ·1), is reduced to the following form by 

changing the variable y into x= 2py; 

2p 

a(s, b) =-
1
-( xdxJ0 (bx)T(s, x). 

2pW) 
(6 ·1) 

This expression is just the same as the definition used by Cottingham and 

Peierls. 26
) When the upper limit of this integration is simply extended to infinity, 

the following amplitude H(s, b2
) is defined: 

II(s, b') ~ 2 \v ~:dxJ 0 (bx) T(s, 'x). 
p 0 

(6·2) 

This definition is essentially what is introduced by Blankenbecler and Goldberger/7
) 

except for the kinematical factor. This expression is the Hankel-transform of 

T(s, y), and the inversion is just the inverse Hankel transform. The;efore, 

H(s, b2
) need not satisfy the Kapteyn integral equation. Only the integrability 

condition is required, as in the usual Hankel transform. Generally H(s, b
2
). 

need not have an oscillating part. As we discussed in § 3, the oscillating part 

of our impact parameter amplitude tends to zero for increasing energies. It 

has been shown in § 3 that there is a contribution from the oscillating part at 

finite energy, although it is not large. The definition of H(s, b2
), Eq. (6 · 2), 

seems to be unsuitable for a rigorous theoretical discussion of scattering problems 

at finite energy. 

Our formalism is not limited to forward scattering angles. As the first 

step towards discussion of the large angle scattering, we have tried to find 

the forms of a (s, b) for various assumptions on T (s, y). On the basis of this 

experience, we find that the impact parameter amplitude in our formalism can 

generally be expressed by a combination of the Lommel functions of two variables 

and other known functions. These properties may offer us a clue as to how to 
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An Impact Parameter Formalism. II 481 

construct a dynamical theory of strong interaction physics. The large angle 

p-p scattering was discussed by Cottingham and Peierls26
) who used a similar 

impact parameter formalism. They tried to fit the data by assuming the Vah 

Hove form of opacity function f(s, b) and adding a repulsive real part of a(s, b). 

In our formalism, such a treatment can be performed more precisely, because 

the correction factor appearing in the unitarity condition is given in a more 

compact form and an estimate of the ·contribution from the oscillating part of 

a(s, b) and f(s, b) can be made by a method which will be mentioned in § 3 

of the following paper. 

It is necessary to find a theory by which the dynamical calculation of the 

impact parameter amplitude can be performed. Such an approach was made. 

by Blanken beeler and Goldberger by using a dispersion relation. 27
) A discussion 

of the analyticity of our impact parameter amplitude will be given in the forth

coming paper. 
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Appendix 

In this appendix, we shall discuss the third type of solutions of ·the Kapteyn 

integral equation, which was also found by Hardy and Titchmarsh161 and was 

mentioned in the previous paper I (Eq. (3 ·13) of I). 

[Theorm-5]. Suppose that /1
2
la(s, /1)1

2 
is integrable over (0, oo). Then, in 

order that a (s, /1) should be a solution of the Kapteyn integral equation, it 

zs necessary and sufficient that a (s, /1) should be the form 

1 

/1a (s, /1) = ~ du sin (/1u) ¢ (u), (A·l) 

where 
1 

~ dul¢ (u) 1

2< oo. (A·2) 

0 

The proof of this theorem is given, for example, in Titchmarsh's book 

(p. 355) .15
)'

16
) This third type of solution is more restricted at infinity ((3~ oo) 

than the second type mentioned in Eq. (2 · 23), while the second one is more 

restricted at /3 = 0. 

We can show that this third type is an inappropriate solution for physical 

applications, although we mentioned it in I. *l In order to see this feature, let 

*J Professor T. Kotani and the author would like to express their thanks to Professor R. 

Utiyama for pointing out this error in I. 
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482 T. Adachi 

us substitute Eq. (A·1) into Eq. (2 · 2). Then we find 

1 

T(s y) = ·(· W_) (du---~-(u) -. 
' 2p j (zi- y 2Y12 

y 

(A·3) 

In general, if T (s, y) expresses the physical scattering amplitude, we may expect 

T(s, y) ~0 for y = 1, namely, non-zero backward scattering. In order to guarantee 

this property T (s, y = + 1) ~0, the behavior of ¢ (u) near u = 1 should be 

lim¢ (u) rvc;- 112
• (A·4) 

u~l-s 

This behavior of ¢ (u) is inconsistent with the integrability Eq. (A· 2) which 

is a result of theorem-5. Inversely, if this requirement is assumed, we get 

lim T(s, y) =0. (A·5) 
y~l-0 

Thus, we can conclude that, if we do not consider the case where there is no 

backward scattering, the impact parameter amplitude a (s, {3) should have the 

property that the integral 

CD 

~ /32
1 a (s, {3) l

2
df3 (A·6) 

0 

does not exist. 

Let us first consider some examples such that the function ¢ (u) is given 

by a power series of u. In this case, it is sufficient to consider the following 

integral with n>O. 

1 

( du unsin ({3u) = rz ! __ [Un+l (2{3, O) sin {3- Un+2 (2{3, 0) cos {3], 
j {3n+l 
0 

(A·7) 

where Un (2{3, 0) is a special case of the Lommel function of two variables.
4

) 

The function Un (2{3, 0) is defined by a series 

and especially . 

co ( -1Y~f3n+2m 

Un (2{3, O) =I>---- ------, 
rn=O T(n +2m+ 1) 

U2n(2p, 0) = ( -1) COS p- ~ ---·· , 
n[ n-1 ( _ 1)mp2»L J 

m=o (2m)! 

n[ . n-1 ( -1)m{32m+l J 
Uzn+l (2/1, 0) = ( -1) sm P-I: ( 

1 
• 

m=O 2m+ 1). 

(A·8) 

(A·9) 

(A·lO) 

In order to study the properties of a (s, p) and T (s, y) in this example, let us 

consider the cases where n = 0 and n = 1 in Eq. (A· 7). Then we have 

a (s, p) = (1- cos p) //12
, for n = 0, (A ·11) 
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and 

a (s, {3) = j1 ({J) / {3, for n = 1, (A·12) 

respectively, where j 1 ({J) is a spherical Bessel function of order one. Clearly, 

the integral, Eq. (A· 6), does exist for these examples. If we substitute Eqs. 

(A ·11) and (A ·12) into Eq. (2 · 2), the forms of A (s, y) will be given in the 

following forms; 

A (s, y) = (- ~-) j 
cosh- 1 (1/y), for O<y<1, 

l 0 for y=1, 

0 for 1<y<oo, 

(A ·13) 

and 

A(s, y) ~ (-~-) { 

(2y3) -1/2 (1- y2)lf2' for O<y<1, 

} 0 
' 

for y= l, 

0 for l<y<oo. 
' 

(A ·14) 

These properties are what is to be expected from the above general considera

tion. 

We shall now seek some examples such that the function ¢ (u) behaves like 

1/ve as u~l-s. As a simple example with the property T(s,y=1)=\:0, we 

shall consider the example given by Eq. (2 · 25). In this case, the amplitude 

A(s,y) is given in the form 

Pz(1-2y2), 

A(s,y)~( ~ ){ (-1)'/2, 

0 ' 

for O<y<1, 

for y=1, 

for l<y<oo. 
l (A ·15) 

The function ¢ (u) for the amplitude a (s, {J), Eq. (2 · 26), IS easily obtained: 

(A ·16) 

As another example, we choose the amplitude T(s, y) which was discussed in 

§ 3 in detail. The function ¢ (u) for the amplitude a (s, {J), Eq. (3 · 5), can be 

expressed in the following form 

[ J co n 
¢ (u) = -~xp -=-r _ :E----r~--- u (l- u2)n-1;2. 

TC
1

/
2 

n~~o r (n + 1/2) 
(A·17) 

It is easily shown that these examples do not satisfy the integrability condition 

(A· 2) in Theorem.,-5. Accordingly, these examples are not contained in the 

third type of solution. Thus, as we mentioned before in this appendix, the third 

type of solution is probably inappropriate for physical problems. 
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