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In order to understand the physical meaning of an impact parameter amplitude, the 

formalism proposed by us is applied to various strong absorption models. A simple black 

disc model with a sharp boundary is not self-consistent; that is, the total elastic cross section 

derived from the angular di~tribution is not equal to what is calculated from the impact 

parameter amplitude. This inconsistency is expressed as the violation of the unitarity rela

tion. It disappears in the high energy limit, where the semi-classical particle picture is 

applicable. A general rule is given for getting consistent results even in the :finite energy 

region. It is observed that the model proposed by Fernbach, Serber and Taylor contains 

the same inconsistency. On the other hand, a sharp cutoff model with a sharp cutoff angular . 

momentum involves no such difficulty. The strong interaction region expressed by this 

model has a diffuse edge with respect to the impact parameter. Thus, the concept of a 

radius of this region is introduced .. It is pointed out that the so-called high energy app

roximation to the familiar partial-wave expansion of the scattering amplitude for large angular 

momenta does not inclu'de any limitation on the scattering angle. 

§ l. Introduction 

The high enery. collisions of nuclear particles are one of the important 

methods of obtaining information on nuclear properties. They furnish information 

about the interactions of the colliding particles. The study of low-energy col

lisions ordinarily tells us only a certain measure of the strength of an interaction. 

At high, energies, on the other hand, the shorter wave-length of the incident 

particles makes them sensitive probes of the region of interaction. When the 

wave-lengths are sufficiently short, the angular distribution of elastically scattered 

particles becomes, in a sense, a detailed map of the region of interaction. In 

nuclear physics, as the scattering involving complex nuclei represents a com

plicated quantum-mechanical many-body problem for any energy region, it is 

difficult to correlate the experimental data directly with the properties of funda

mental nuclear interactions. It has therefore been necessary to derive simpler 

methods which serve as an intermediary between the data and basic nuclear 

theory. Such methods are desirable even to analyze nucleon-nucleon scattering. 

In the cases of high energy elementary particle, scattering, complete angular 
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486 T. Adachi and T. Kotani 

distributions are being measured. Since the impact parameter formalism pro

posed in previous papers by the authors (Pl and IPl) contains no limitation on 

either incident energies or scattering angles, it is more useful than other impact 

parameter formalisms. 1l In this sense, our formalism plays the role of a counter

part to a partial wave treatment. The impact parameter expansion of the full 

scattering amplitude is sometimes more convenient than the partial wave ex

pansion, because. of its faster convergence. 

In order to understand the physical meaning of an impact parameter ampli

tude, we would like to apply our formalism to various strong absorption models. 

The formalism in which the concept of the impact parameter is used, is old ; 

in fact it is known as the eikonal method. The importance of this method was 

emphasized, for example by Moliere,3l Fernbach, Serber and Taylor,4l and 

Glauber. 5
l Their formulae, for example, the cross sections, are based on some 

approximations which are closely related to the WKB approximation. 5l' 6
) On 

the other hand, in our formalism, all quantities are expressed without using 

any approximation. We shall show that the eikonal method is an approxima

tion to our formalism in the high energy limit. 

In many nuclear collision problems, the incident particle is strongly ab

sorbed upon entering the target nucleus. It is customary and convenient to de

fine absorption as any process by which particles are removed from the entrance 

channel. One of the main advantages of elastic scattering in the presence of 

strong absorption is that the experimental data can be described without any 

knowledge of the details of the absorption mechanism. 

The concept of strong absorption is incorporated in the "phenomenological" 

models in such a way that the nucleus is assumed "black" or highly opaque 

to certain incident waves. This assumption can be expressed directly, for ex

ample, in terms of the imaginary parts of the complex phase shifts. On the 

other hand, in the "potential" models, absorption is described by adding an 

imaginary part to the average interaction potential. 

Historically, the first phenomenological model was the diffraction theory of 

Bohr, Peierls and Placzek and of Placzek and Bethe7l for high energy neutron 

scattering. Corrections due to the presence of the Coulomb interaction in 

charged particle scattering were derived by Akhiezer and Pomeranchuk.~l The 

concept of strong absorption is introduced in these papers by a semi-classical 

argument. The strong interaction zone is represented by an opaque spherical 

region of radius R with a sharp boundary. In the classical particle picture, 

particles moving with impact parameters b<R are partly absorbed (i.e. removed 

from the incident beam), and those with b>R are, in the absence of further 

interaction (for example, the Coulomb interaction), completely transmitted. Here 

R is the sum of target and incident particle radii. In the wave picture, this 

situation can be approximated by localizing the wave packet describing the in

cident particle along the trajectory corresponding to the partial wave with 
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An Impact Parameter Formalism. III 487 

l = pb, where p is the c.m. momentum (or wave number) . *) This implies the 

existence of a "cut-off angular momentum" L, which is defined as that for which 

the classical turning point is equal to R. In the case of incident neutral par

ticles, we have 

L=pR. (1·1) 

Thus, the scattering amplitude in Akhiezer-Pomeranchuk's work8
) is expressed 

by a finite summation from l=O to l=L over the partial-wave amplitudes and 

by assuming that all real phase shifts are equal to zero. Akhiezer and Pomer

anchuk made a further approximation by using MacDonald's expansion of the 

Legendre polynomials in terms of the Bessel function. 9) Thus, their results are 

restricted to the small-angle parts of the elastic scattering. Blair proposed that, 

if MacDonald's expansion is not used, this model can be applied to the heavier 

charged particle scattering even at larger scattering angles.10
) 

We have used two different concepts: a black disc with a sharp boundary 

b<R and a sharp cutoff angular momentum l<L. We can construct two models 

corresponding to these concepts. They are distinguished as the black disc model, 

and the sharp cutoff model, respectively. We shall discuss both of these models 

from the viewpoint of our impact parameter formalism in §§ 2 to 4. As there 

is no restriction on scattering angles in our formalism, the total elastic scatter

ing cross section can be obtained by integrating the absolute square of the 

impact parameter amplitude over b (i.e. by summing the absolute probability 

for the elastic scattering at the distance b). On the other hand, we can derive 

the angular distribution corresponding to this amplitude and calculate the total 

elastic cross section by integrating over angles. It will be pointed out in § 2 

that the elastic cross sections obtained by these two different methods are not 

equal for the simple black disc model. This means that this model with a sharp 

boundary cannot be consistent with our formalism. 

It is expected from the beginning that there is such an inconsistency in the 

black disc model, because such a sharp value of impact parameter, b<R, con

tradicts the uncertainty principle. In § 3, we shall consider a modified black 

disc model which is self-consistent. The general rule for getting models which 

are consistent with our formalism is also mentioned. On the other hand, the 

sharp cutoff model emphasized by Blair10
) is consistent with our formalism. It 

will be shown in § 4 that the concept of a sharp cutoff angular momentum 

corresponds to a strong interaction region with a diffuse edge rather than the 

sharp boundary with respect to the impact parameter. Therefore, a definition 

of the radius of the strong interaction region is introduced, which is similar to 

the root-mean-square radius. 

Fernbach, Serber and Taylor4
) tried, on the other hand, to calculate the 

real and imaginary parts of the phase functions by usmg the eikonal approxima-

*) We shall use units h = c = 1 in this paper. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/3

5
/3

/4
8
5
/1

8
4
6
5
3
5
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



488 T. Adachi and T. Kotani 

tion. 5
),B) A rough description is as follows: Consider a very high energy par

ticle moving through a region of interaction with a force center. As long as 

we can construct a sufficiently localized wave packet, it is reasonable to speak 

of the particle passing at a certain distance b fn?m the center. Assuming that 

the deflection is small, Fernbach, Serber and Taylor compute the approximate 

change in the phase of the wave function according to the given potential form 

(the so-called optical model potential) and, from this, they obtain the impact 

parameter amplitude, which is a function of b. It will be shown in § 5 that 

this impact parameter amplitude does not satisfy the unitarity relation, except 

in the high energy limit. There is an inconsistency with respect to the total 

elastic cross section. The origin of this inconsistency is the same as in the 

black disc model. From the mathematical point of view, these inconsistencies 

are due to the fact that the impact parameter amplitudes in these cases fail to 

satisfy not only the unitarity relation but also the Kapteyn equation. [See 

theorem 2 of II.] 

It has been pointed out by many authors4
),

5
),

5
)'

23
) that the eikonal approxima

tion is closely related to the familiar partial wave expansion of the scattering 

amplitude in the case that the number of angular momenta l is so large that the 

sum over l may be replaced by an integral. The impact parameter is intro

duced as 

b= ( l+~~--)!p. (1·2) 

This approximation has been regarded as a good one at small angles. It will 

be pointed out in § 6 that the only important assumption in this procedure is 

the high energy approximation, and, mathematically, there is no restriction on 

the applicable range of scattering angles. We shall call this approximation the 

high energy approximation. 

In order to simplify our discussion in this paper, we shall consider only the 

case of a spinless neutral· projectile incident on a spin-zero spherical target 

nucleus. 

§ 2. The black disc model 

The black disc model is the limiting case of a "black" nucleus whose 

radius R is much larger than the wave length 71= (1/p). In this paper, however, 

in order to make the compar"ison with other models easier, we assume that 

particles that strike the nucleus are partly but uniformly absorbed by it. This 

is the case of an absorptive (i.e. negative imaginary) potential which is con

fined to a disc of radius R and absorbs effectively enough that the disc may be 

considered almost opaque. 

In our impact parameter formalism, this model seems, at first glance, to cor

respond to the following assumptions concerning the impact parameter amplitude 
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An Impact Parameter Formalism. III 489 

a (s, b), where s IS the square of the total energy in the center of mass system: 

Re a(s, b) =0, 

\

1/2 (1- ~) for b<R, 
Im a(s, b)= 

0 for b>R. (2·1) 

Here, ~ is the amplitude of a transmitted wave of unit initial amplitude and is 

assumed to be constant (uniform absorption), though ~ is generally a function 

of b and s. There are only two parameters (R and ~) in this simple diffrac

tion theory. In the case where b<R and ~ = 0, there is no outgoing wave and 

the incident wave is completely absorbed. For h>R and ~=0, the amplitude 

of the outgoing wave is the same as for the ingoing wave; hence there is no 

absorption and no scattering. The only (elastic) scattering in this case (~ = 0) 

is shadow scattering. The assumption Re a (s, b) = 0 means that the real parts 

of all partial wave phase shifts are equal to zero. 

As stated in § 1, the use of a sharp value of the impact parameter b in 

the assumption (Eq. (2 ·1)) contradicts the uncertainty principle. Therefore, an 

inconsistency should be expected for this model in the finite energy region, but 

this inconsistency may disappear in the high energy limit. This is because the 

semi-classical particle picture can be adopted in this limit, where the de Broglie 

wave-length of the incident particles is regarded as zero. In this section, these 

matters will be discussed quantitatively. 

In our formalism, the definitions of a total cross section (O"tot) and elastic 

(scattering) cross section (O"e1) are expressed in the following forms [see Eqs. 

(2 · 7) and (2 · 8) of II], 

O"tot(s) =871'~ bdbima(s, b) (2·2) 

0 

and 
00 

O"el(s) =871'~ bdbJa(s, b) !
2
. (2 ·3) 

0 

It should be noted that these definitions are derived exactly, without using any 

approximation, as proved in § 4 of I. With our assumptions (Eq. (2 ·1)), we 

find the well-known results for these cross sections, 

O"tot (s) = 2nR2 (1- ~), 

O"el (s) = nR2 (1- ~) 
2. 

The reaction cross section,*) of course, is derived as follows : 

(2·4) 

(2·5) 

*> In our first paper (I) ,o the reaction cross section (O're), the impact parameter opacity 

function f(s, b), and the partial-~ave opacity function fL(s), were called the inelastic cross section 

(O'in), the impact parameter inelastic amplitude f(s, b), and the partial wave inelastic amplitude 

fL(s), respectively. 
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490 T. Adachi and T. Kotani 

(2·6) 

In our previous paper (I), this (Jre is also defined exactly by using an impact 

parameter opacity function f (s, b) as follows : 

00 

(Jre (s) = Srr \ bdbf(s, b). (2·7) 

0 

On companng the formal definition of 6re (Eq. (2 · 7)) with the result (2 · 6), it 

is natural to assume that 

J (1-e)/4, for b<R, 
f(s, b)= l 

0, for b>R. (2·8) 

We shall show that these assumptions for a(s,b) and f(s,b), Eqs. (2·1) and 

(2 · 8), do not satisfy the unitarity relation, except in the high energy lin1it. Be

fore considering this point in detail, we shall calculate the differential cross 

section. 

The full scattering amplitude T (s, y) is expressed in the following form:*) 

. [See Eq. (2 · 2) of II.] 

00 

T(s,y) = (2pW) \ bdb.lo(2pby)a(s, b), for o<y<I, (2 ·10) 

where y=sin(B/2) and W= (s) 1
1

2
, e and p being the scattering angle and the 

momentum in the c.m. system, respectively. The function .fa (2pby) is the 

Bessel function of zeroth order. According to our assumptions (Eq. (2 ·1)), 

we find that 

Re T(s,y)=O, 

R 

Im T(s,y) = (2pW) \ bdbJo(2pby) (1-n/2, 

0 

=RW(1-~) .h(2pRy)/2y. 

The differential cross section for the elastic scattering IS, therefore, 

!f,_C[_ el = __!__ J T (s ) J2 
dQ W 2 ,y ' 

(2 ·11) 

(2 ·12) 

(2 ·13) 

*l This invariant amplitude T(s, y) is related to the ordinary definition of the scattering 

amplitude f(6) as follows: 

T(s, y) = Wf(6). (2·9) 
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An Impact Parameter Formalism. III 491 

which is familiar in optics as characterizing, the diffraction scattering from a 

black sphere. 7
> The total cross section is obtained by integration; 

1 

O"el(s) =2rrR 2 (1-~) 2 ~ydy[.I;_(2pRy)/y] 2 , 
0 

= nR2 (1- ~) 
2 [1- J 0

2 (2pR) - J1
2 (2pR)], 

~rrR 2 (1-~) 2 [1-- 1 -J, for pR~l. 
npR 

(2 ·14) 

(2·15) 

(2 ·16) 

This result, Eq. (2 ·15), is not equal to the previous one, Eq. (2 · 5), which is 

derived from the integration over the impact parameter. This discrepancy dis

appears in the high energy limit (p---'? oo), as shown in Eq. (2 ·16). This may 

be understood more naturally In the following form; by changing the variable 

y into x=2py, we have 

2p 

O"el = 2nR2 (1- ~) 2
\ d~ .I;_ (xR) .I;_ (xR), 
o X 

(2 ·17) 

and when the upper limit of this integration is assumed to be infinity, we get 

Eq. (2 · 5), because of the following property [p. 533 of Watson
9>J, 

00 

( _tlx .fzz+l (x) .hm+l (x) = 
1 

Oz,m. 
l X . 2(2l+1) 
0 

(2 ·18) 

The mathematical reason why such a discrepancy appears except in the high 

energy limit is as follows: Our assumptions for the impact parameter amplitude 

a (s, b), Eq. (2 ·1), and the impact parameter opacity function f(s, b), Eq. (2 · 8), 

do not satisfy the unitarity relation within the finite energy region. According 

to the general theory in § 5 of I, f(s, b) should be related to a (s, b) through the 

following unitarity relation: . 

Im a ( s, b) = I a ( s, b) I 2 + f ( s, b) + K ( s, b) , 

where the correction factor K(s, b) should have the property, 

co 

(2 ·19) 

~ bdbK(s, b) =0. (2·20) 

The explicit form of J<(.(s, b) is given in § 5 of I. It was proved generally that, 

in the high energy limit [p---'? oo] ,l) 

limK(s, b) =0. (2·21) 
s~co 

We shall call this assumption [K(s, b)= 0] the high energy approximation. It 

is easy to confirm that our assumptions, Eqs. (2 ·1) and (2 · 8), are consistent 
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492 T. Adachi and T. Kotani 

with the unitarity relation in the high energy limit, but inconsistent in the finite 

energy region, where K(s, b) =/=0. [c.f. Eqs. (5 ·1) and (5 · 2) of this paper.] 

The above inconsistency is clearly due to our assumptions for a (s, b) and 

f(s, b). Let us consider another additional requirement on them. According to 

the general theory of our impact parameter formalism, the impact parameter 

amplitude a(s, b) is defined by the following transformation of the full ampli

tude T(s,y) [Eq. (2·1) of II], 

1 

a(s, b)= ( 
2
P )} ydyJ0 (2pby)T(s,y). 
wo 

(2. 22) 

In order that this definition be consistent with the inversion formula, Eq. (2 ·10), 

the impact parameter amplitude a(s, b) should be a continuous function of b 

and satisfy the Kapteyn equation [Theorem 2 of II]. The assumption 

Im a (s, b) = 1/2 · (1- f) fJ (R- b), Eq. (2 ·1), does not satisfy either of requirements, 

because of the character, of its sharp cutoff on b. [Here fJ (x) is a step function ; 

fJ (x) = 1 for x>O and fJ (x) = 0 for x<O.] 

In the high energy limit, however, the situation is rather different. In order 

to see this situation directly, it is convenient to use the variable x= 2py again, 

instead of y itself; in fact, the definition of a (s, b), Eq. (2 · 22), can be reex

pressed in the form 

2p 

a(s, b)= (~ 1 -) (_x dx .fo(bx) T(s, x). 
2pW J 

(2. 23) 

The appearance of x in the full amplitude T(s, y) is rather natural, because 

. T(s, y) is a relativistic-invariant quantity and should therefore be a function of 

the invariant squared energy (s) and the invariant momentum transfer 

[t=- (2py) 2
= -x2

], instead of y alone. Now, let us first assume the form of 

T(s,y) given by Eqs. (2·11) and (2·12). Then, we shall get a new impact 

parameter amplitude; namely 

Re a(s, b) =0, 
2p 

Ima(s, b) =-
1
-R(1-f)( dxJo(xb).h(xR). 

. 2 ) 
0 . 

(2. 24) 

This new Im a(s, b) has no sharp cut such as the old Im a(s, b) has, but in 

the high energy limit, the new one reduces to the old one, which is to be ex

pected from the semi-classical particle. picture. The latter result is proved on 

the basis of the following formula [p. · 406 of Watson's book~>] ; 

ro { -

1
-, for o<b<R, 

} dx .fo ( xb) J 1 ( xR) = · R 

0 0, for R<b. 
(2 ·25) 
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An Impact Parameter Formalism. III 493 

This is due to the fact that, in the high energy limit (Eq. (6 · 2) of II), the 

definition of a(s, b), Eq. (2·23), is mathematically the Hankel transform of 

T(s, y), and the inversion, Eq. (2 ·10), is just the inverse Hankel transform. 

[This limiting case is another impact parameter formalism considered by Blank

enbecler and Goldberger. 11l] As is well known, in the Hankel transform, the 

amplitude a(s, b) need not satisfy the complicated Kapteyn equation, but it is 

required that a(s, b) and T(s, y) satisfy a simple integrability condition, which 

is also, of course, required for our general case. [See § 2 of II.] 

On the other hand, it is worthwhile to note that there is no such discre

pancy for the absorption cross section, although our impact parameter opacity 

function f(s, b) does not satisfy the Kepteyn equation either : This f(s, b) is 

related to the overlap function F(s, y) by a transformation similar to that for 

a(s, b) and T(s,y). [See Eqs. (2·10) and (2·11) of II.] For example, we 

have 

00 

F(s, y) = 2p W~ b db Jo (2pby )f(s, b). (2. 26) 

0 

By using this F(s, y), the reaction cross section is defined as follows [Eq. (2 · 9) 

of II]: 

4n 
O"re(s) =- F(s, O). 

pW -
(2 ·27) 

It is easy to see that this O"re due to F(s,' O) is equal to the prevwus definition 

of O"re due to the integration over b, Eq. (2 · 7). 

A modification of this simple black disc model has been used by Cork, 

Wenzel and Causey12
) to analyze the high energy proton-proton scattering data. 

They assume the real and imaginary parts of a(s, b) as functions of b. Their 

assumed forms still satisfy neither the unitarity relation nor the Kapteyn equa

tion. Their assumed forms, however, may be used to analyze the data for 

small scattering angles as the original simple black disc model does in the sense 

of the high energy approximation, which will be discussed in § 6. 

§ 3. The modified black disc model 

We shall consider a simple modification of the black disc model, which 

gives rise to no such inconsistency as that mentioned in § 2. It is assumed 

again that the real part of th~ scattering amplitude is equal to zero. Let us 

assume the angular distribution characterizing the familiar diffraction theory, 

namely, Eq. (2·13). Then, the full amplitude Im T(s, y) and the impact para

meter amplitude Im a (s, b) are determined by Eqs. (2 ·12) and (2 · 24), respec

tively. The latter can be expressed in the following alternative form, 
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494 T. Adachi and T. Kotani 

Im a(s, b)=~~ (1- ~) gl (2pR, b/R), (3 ·1) 

where 

(3 ·2) 

This new impact parameter amplitude Im a(s, b) has an oscillating part with 

respect to the large impact parameter, except in the high energy limit. [See Eq. 

(A ·14) of the Appendix.] This character is what to be expected from the 

general principles of quantum mechanics. An example of this type of oscilla

tion will be shown in Fig. 1 for the sharp cutoff model in the next section. 

At first glance, we might consider the following impact parameter opacity 

function, 

Im a(s,b) 

0.5 
L 3 5 

f 

[L(L+1)}2 3.46 5.48 

0.4 1 
--

pR =[L(L +2)]2 3.87 5.92 

0.3 

0.2 

0.1 

0 

-0.1 

-0.2 
0 3 5 10 pb 15 20 25 

Fig. 1. The impact parameter amplitude Ima(s, b), Eq. (4·19), as a 

function of pb for the cases of L=3 and L=5 . .The numerical values 

are shown for the equivalent radius R times the c. m. momenta p. 

It is assumed that 1J = 0. 

2p 

f(s, b) =_}-R(1-~ 2 ) ~ dxJo(xb) .h(xR). 
4 0 

(3. 3) 

This f(s, b) is reduced to Eq. (2 · 8) in the high energy limit and satisfies the 

Kapteyn equation. However, the unitarity relation is not satisfied by these 

forms of Im a(s, b) and f(s, b). 

Let us consider the overlap function F(s, y) which is consistent with the 

unitarity relation [Eq. (4·2) of I] for the full amplitude T(s, y) given by Eqs. 

(2·11) and (2·12). We get the following form, 
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An Impact Parameter Formalism. Ill 

F(s,y)= (pW/2)R 2
(1-~) (1/pRy) .h(2pRy) 

- (p w I 4) R
2 
(1-~) 

2
G2 (2pR, y)' 
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(3 ·4) 

(3·5) 

which is derived from Eq. (A ·15) of the Appendix. The impact parameter 

opacity function is obtained easily, 

f(s, b) =-
1 (1-~)g1(2pR, b/R) 
2 

-~ 1 ~(1-n 2 g2(2pR, b/R), 
4 

where gl is defined by Eq. (3 · 2) and 

( 
1 )' 2 g2 ({3, k) = S~z (2l + 1) (3k J2l+l ({3k) [L:m J2l+2m+2 ({3)] . 

This f(s, b), of course, satisfies the Kapteyn equation. 

(3· 6) 

(3 ·7) 

According to the definitions of Ore (s), Eq. (2 · 7) or Eq. (2 · 27), we find 

(Jre = nR2 (1- ~
2
) + nR2 (1- ~) 

2 [Jo2 (2pR) + .h2 (2pR)], (3 · 8) 

(3 ·9) 

The total elastic cross section (Je1 (s) is derived from its definition (Eq. (2 · 3)) 

by substituting Im a (s, b) given in Eq. (3 ·1). It is not difficult to confirm 

that the expression calculated in this way is equal to (Jel (s) obtained from the 

angular distribution, Eq. (2 ·15). The sum of these elastic and reaction cross 

sections is consistent with the total eros~ section derived from the optical 

theorem for the full scattering amplitude, Eq. (2 ·12); 

(]'tot= (4n/pW)Im T(s, 0), 

= 2nR2 (1- ~). 

(3 ·10) 

(3 ·11) 

Thus, we have established a modification of the black disc model, which 

is consistent with our impact parameter formalism and gives the familiar angular 

distribution of diffraction scattering. It is clear that this m.odified black disc 

model is reduced to the simple black disc model in the high energy limit. 

[See Eqs. (A ·14) and (A· 22) of the Appendix.] 

Finally, let us summarize a general rule for finding values of a(s, b) and 

f(s, b), which are consistent with our formalism. If the expression for the full 

scattering amplitude T (s, y) or the partial wave amplitude az (s) is given experi

mentally or theoretically, there exists, in principle, no problem in determining 
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496 T. Adachi and T. Kotani 

a(s, b), because of its definition, Eq. (2·22) or Eq'. (4·16). If neither _of them 

is known, let us first determine ac(s, b) from the viewpoint of the semi-classical 

particle picture, for example, the black disc model or the Fernbach-Serber

Taylor model mentioned in § 5. Of course, this ac (s, b) should satisfy the 

unitarity relation with K(s, b) =0, but need not satisfy the Kapteyn equation in 

general. Then, according to the definition (Eq. (2 ·10)), we can calculate 

T(s, y), which gives the angular distribution of the elastic scattering. An 

expression for a(s, b) which satisfies the Kapteyn equation is obtained from the 

calculated T (s, y) by using the defni tion (Eq. (2 · 22)), as was proved in § 2 

of II. This calculated a(s, b) is reduced to ac(s, b) in the high energy limit. 

The opacity function f(s, b) or the overlap function F(s, y) can be calculated by 

using the unitarity relation. The functionf(s, b) obtained in this way is consistent 

with the Kapteyn equation. If the semi-classical opacity function fc(s, b) is 

given first, we must, of course, assume either Re ac(s, b) or Im ac(s, b). The 

remaining procedure is the same. It should be noted that we have had an ex

ample in this section of the fact that7 even when both the impact parameter 

amplitude a(s, b) and the opacity function f(s, b) satisfy the Kapteyn equation, 

it is, of course, not guaranteed that they satisfy the unitarity relation. 

Another example of this rule is the sharp cutoff model mentioned in the 

next section. 

§ 4. The sharp cutoff Model 

The sharp cutoff model is essentially based on the partial wave formalism. 

The usual partial wave expansion of the full amplitude T(s, y) 1s 

T(s, y) = (~):E (2!+ l)Pz (1-2y2)az(s). 
p ~=0 

(4·1) 

The l-th partial wave amplitude is related to the corresponding scattering 

(complex) phase shift by the following relations [c.f., Eq. (2 · 3) of I], 

(4·2) 

1 
Im az (s) = ~ (1- rJz cos 2az). 

2 
(4·3) 

Here az is the real part of the phase shift Oz = az + i/3z 'and the l-th partial wave 

absorption coefficient rJz is rJz = exp (- 2/3z). 

We first recall that the sharp cutoff model is expressed by the following 

assumptions, 

az (s) = 0, for all l, (4·4) 

and 
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An Impact Parameter Formalism. III 

IJz (s) = { r;, 

1, 

for z<L, 

for Z>L. 

497 

(4·5) 

Here r; is assumed to be constant and, in the case of r; = 0, the incident 

(spherical) waves with z<L are completely absorbed. The corresponding partial 

wave opacity function fz (s) is given by 

fz (s) = _1_ (1- r;/), 
4 

~ j ! (1-- 7/) ' 

0, 

because of the unitarity relation 

for z<L, 

for Z>L, 

Im az (s) = Jaz (s) 1

2 + f(s). 

(4·6) 

(4·7) 

(4·8) 

Then, in our sharp cutoff model, the cross sections and the full scattering ampli

tude can be obtained without using any further approximations: 

O'tot = 2mP (1- r;) (L + 1) \ 

O'el = mP (1-r;) 2 (L+ 1) 2, 

(} re = 7Clt2 (1- 'l/
2

) (L + 1) Z, 

Im T(s, y) [ (2p/W) (l;-r;)] - 1 

L 

= ~ (2l+ 1) Pz (1- 2y
2
), 

L=O 

~ ( _ ~ )[_<iPL(~:Yl + dl'L~-2i!_], 

= (L+1) 2F(L+2, -L; 2 ;y2
), 

(4·9) 

( 4 ·10) 

(4·11) 

(4 ·12) 

( 4 ·13) 

( 4 ·14) 

=(L+ 1)z[1 - L(L
2
+2) yz+(L-1)L(~;2)(L+3) -y4 - ... J' 

for y~1, (4·15) 

where 1c is a wavelength (71 = p- 1
) and F(a, b: c; x) are hyper geometric poly

nomials. 

Our impact parameter amplitude a(s, b) and the impact parameter opacity 

function f(s, b) are related to the corresponding az (s) and fz (s) in the follow

ing forms [Eq. (2 · 5) of II], 

00 

a (s, b) = ~ (2l + 1) (2/ (3) Jzz+1 {(3) az (s), ( 4 ·16) 
l=O 

00 

f(s, b) = ~ (2l + 1) (2/ (3) Jzz+I ((3)fz (s), (4·17) 
L=O 
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498 T. Adachi and T. Kotani 

where 

{3=2pb. (4 ·18) 

Therefore, In the sharp cutoff model, we have 

Re a(s, b) =0, 

1 L ( 2 ) Ima(s, b) =-(1-ij)~(2l+1) - J;l+ 1 ({3), 
2 ~=0 {3 

( 4 ·19) 

1 L ( 2 ) f(s, b) =-(1-ij2)L:;(2l+1) - J;z+I((J). 
4 ~=0 (J 

(4·20) 

This a(s, b) can, of course, be obtained from the other definition in terms of 

T(s,y), Eq. (2·23), by substituting Eq. (4·12). It is not difficult to see that 

these forms of a (s, b) and f(s, b) each satisfy the Kapteyn equations. 

We can easily prove that the cross sections obtained from the integrations 

over the impact parameter, Eqs. (2 · 2), (2 · 3) and (2 · 7), are the same as those 

cited above, Eqs. ( 4 · 9) to ( 4 ·11). These consistencies among various cross 

sections mean that the unitarity relation (2 ·19), is satisfied by our a (s, b) and 

f(s, b) obtained above. In order to see this situation directly, it is convenient 

in this case to write the expression for K(s, b) in terms of the partial wave 

amplitudes, namely [Eq. (5 · 4) of I], 

K(s, b)= ~z(2l+ 1) (2/{3) J;z+I((J) laz(s) 1

2
-la(s, b) 1

2
• (4·21) 

In the case of our assumption (Eq. ( 4 · 5)) , we have 

1 L ( 2 ) K(s, b) =-(1-ij) 2
~(2l+1) - J;t+l((J) -la(s, b)l 2

• 

4 ~=0 {3 
(4 ·22) 

It is, therefore, clear that our expressions a(s, b) andf(s, b) satisfy the unitarity 

relation. 

Thus, we have confirmed that the sharp cutoff model is consistent with our 

impact parameter formalism. Therefore, it is interesting to see the variation of 

Ima(s, b) as a function of b. This is shown in Fig. 1. The function Ima(s, b) 

shows a sharp decrease near L + 1~pb and has an oscillating part. The transi

tion from the almost constant part of Im a(s, b) to the oscillating part corres

ponds to a measure of the interaction region of non-uniform strength. Thus, 

we get some idea of the surface region in which the forces change with the 

increasing impact parameter, b. 

In analogy to electron-nucleus scattering/3
) is expected that, at energies 

only just high enough to detect finite size effects, we shall be able to define 

some single parameter which will give an indication of the size of the nucleus. 

Let us define the following quantity:*) 

*) The authors wish to express their thanks to Professor R. Glauber and Professor N. Naka

nishi for kind comments on this part. 
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An Impact Parameter Formalism. III 

<b2)= 4 [(8/8t) Im T(s,y)]t=o, 

Im T(s, O) 

1 [(1/y) (8/8y)Im T(s, y)Jv=o 

2p2 Im T(s, O) 

499 

(4. 23) 

For convenience, we shall express <b2
) by using the partial wave and impact 

parameter amplitudes, 

<b2) = (__l_)J:d (l + 1) (2l + 1) Im az (s) , 

p 2 
~z (2l + 1) Im az (s) 

(4. 24) 

= H'b
3
db Im a(s,_{7)_ 

HJb db Im a(s, b) · 
(4. 25) 

These are similar to the definitions used by Baiquni14
) and Ida/5

) respectively. 

The last expression may suggest that we call <b2
) a "root-mean-square" impact 

parameter, although there are negative values of Im a (s, b) for large values of b, 

as seen in Fig. 1. 

Related to this r.m.s. impact parameter is the radius of the equivalent uni

form absorption (R), which we shall call the equivalent radius. 1
a) This is the 

radius of the constant absorption distribution (the black disc model) which will 

give the same total cross section as the actual distribution in the high energy 

limit. It must therefore have the same r.m.s. radius, i.e. by substituting the 

assumptions (Eq. (2 ·1)) into the definition of <b2
), 

<b2> = s~ b
3 

db = _1__R2. 
u: b db 2 

(2. 26) 

In the modified black disc model, we find, of course, that 

(4. 27) 

In the sharp cutoff model, the r.m.s. impact parameter is 

(4 ·28) 

According to these definitions, we can write, for example, 1n the sharp cutoff 

model, 

(4· 29) 

and 

_d,_oel = ( drJ,1) [F(L + 2 _ L. 2 . y2)] 2 
dQ dQ e = o ' ' ' ' 

(4· 30) 

where 
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500 T. Adachi and T. Kotani 

This sharp cutoff model itself, for example, has been applied by Matthews and 

Salam17
) and Simons18

) to the process of elementary particle scattering. Simons 

analyzed the data for the 2 Ge V proton-proton scattering and his estimate of the 

radius of proton is smaller than what is obtained from Eq. ( 4 · 28). Also, the 

empirical partial wave analysis of 7r + p elastic scattering above 1 Gev / c has 

been done by Perl and Corey using a similar idea. 19
) 

Generalizations of the sharp cutoff model were given by Greider and Glass

gold20) for high energy neutron scattering, by Mcintyre, Wang and Becker21
) for 

heavier charged particle scattering, and by Frahn and Venter for both.
22

) The 

essential point in their work is the assumption of smooth functions for r;z (s) and 

at (s); namely, (i) a gradual, rather than sharp, transition of r;z from maximum 

to zero absorption and (ii} finite values for the real part of the scattering 

amplitude. From the viewpoint of our impact parameter formalism, the former 

generalization means that the diffuseness of the boundary of interaction region 

becomes large, and that the oscillating part of Im a (s, b) in Fig. 1 is smooth

ed, because of the decrease of contributions from the Bessel functions of higher 

order. But the oscillating part never disappears in the finite energy region. 

In their generalization, it was necessary to assume continuous values of l, in

stead of discrete values, for the purpose of making the analytical calculation 

possible and employing an approximation based on the Euler-McLaurin formula 

connecting summation to integration over l. On the other hand, our impact 

parameter amplitude a(s, b) and opacity function f(s, b) are .continuous func

tions of b from the beginning. Therefore, the generalization of the simple sharp 

cutoff model should be easier in our impact parameter formalism. 

§ 5. Tbe Fernhach-Serher-Taylor model 

In analogy to the eikonal approximation, Moliere
3

) and Fernbach, Serber 

and Taylor1
) assume the following forms for a (s, b) and f(s, b): 

a(s, b) =_l_[exp(2ix(s, b)) -1], 
2i 

=--~[~ (s, b) exp (2i¢ (s, b)) -1], 
2i 

1 
f(s, b) =-[1-f2 (s, b)]. 

4 

(5 ·1) 

(5·2) 

(5·3) 

Here ~ and ¢ are real functions of s and b. In general, these forms do not 

satisfy the unitarity relation, Eq. (2 ·19), except in the high energy limit [Eq: 

(2 · 21)] or for the special case where the special form of the eikonal phase 

function x (s, b) is chosen so that K (s, b) = 0. 

If we assume the forms of a(s, b) and f(s, b) given by Eqs. (5·1) and 

(5 · 3), we may get an inconsistency. One such example is the simple black disc 
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An Impact Parameter Formalism. III 501 

model, as shown in § 2. We exhibit another example, which IS the model con

sidered by Fernbach, Serber and Taylor (the FST model) .4
> In this FST model, 

a spherical nucleus with the radius R is assumed and the following forms of 

~. and ~ are proposed, 

1 exp [- ~ (R'- b') '1'], for b<R, 
~(s,b)= 

1, for b>R, 
(5·4) 

and 

1 k (R'- b') '
1
', for b<R, 

¢(s,b)= 
0, for b>R. 

(5· 5) 

Here the absorption coefficient JC is interpreted as the inverse of a mean free 

path inside the nucleus, and the propagation vectors of the waves outside and 

inside the nucleus are p and p + k, respectively. If our problem is considered 

as the scattering by a complex square-well potential whose radius is R and if 

the eikonal approximation is used, these JC and k can be related to the imaginary 

and real parts of the potential, respectively. [See p. 338 of reference 6) .] 

It can be shown that the impact parameter amplitude with these special 

choices satisfies neither the Kapteyn equation nor the unitarity relation. How

ever, as this FST model is a more realistic modification of the black disc model, 

we shall consider this case and show that a discrepancy on the total elastic 

cross section similar to that met in the black disc model appears. 

The full scattering amplitude is expressed in the form 

R 

T(s,y) =ipW~ bdb J0 (2pby) [1-exp(-tcr+2ikr)], (5·6) 

where 

(5·7) 

It is easily shown that the total cross section, O'tat, calculated from the optical 

theorem (3 · 6), is equal to the sum of O'~f> and 0'~~> derived from the integra

tion over the impact parameter, Eqs. (2 · 3) and (2 · 7), respectively. [See the 

paper of Fernbach, Serber and Taylor.4>] 

On the other hand, the elastic cross section derived from the integration 

over the angular distribution is 

1 

<r~l' = (;,)} ydy[T(s, y) I', (5·8) 

(5·9) 

By performing an elementary but tedious calculation, it can be shown that 
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502 T. Adachi and T. Kotani 

(5 ·10) 

However, In the high energy limit [p---+oo], we may define the following 

quantity, 

(5 ·11) 

and find that 

(5 ·12) 

This situation is completely analogous to that met in the simple black disc 

model mentioned in § 2. 

Thus, it is concluded that, if the angular distribution given by Eq. (5 · 6) 

is assumed,. the total elastic cross section, G~f\ which is given by Eq. (6) of 

FST,4> is overestimated and the reaction cross section, (]"~~\ Eq. (5) of FST,4> 

is smaller than the correct value calculated through the unitarity relation. 

A modification of the FST model which is self-consistent within the frame 

of our impact parameter formalism, can be derived on the basis of the rule 

mentioned at the end of § 3. 

§ 6. Discussion 

Let us consider the so-called high energy approximation to the familiar 

partial wave expansion of the scattering amplitude, Eq. (4·1), in the case that 

the angular momentum l is large. This approximation is based on the follow

ing four assumptions. The first is the MacDonald expansion [p. 157 of Watson's 

Bessel Function9>], 

Pl (cos{})= .1a[ ( l+_l-
2

) {} J + 0({}2
), (6 ·1) 

the second IS the Euler-MacLaurin formula 

L+l/2 

~fl = ~ dl f(l) + 0 (fo -fl;2). (6 ·2) 

-1/2 

The impact parameter Is introduced by Eq. (1· 2). Furthermore, the partial 

wave phase shift ol (s) IS assumed to be equal to the eikonal phase function 

x(s,b), 

x(s, b)=ol(s), for l= pb-1/2, (6 ·3) 

that is,*> 

*> Cottingham and Peierls24) have pointed out the following relation between the partial wave 

and impact parameter amplitudes on the basis of Eq. (2·6) of II: 

al(s) =a(s, b) -t-O(l/p2), for b= (l+l/2)/p. (6·4) 
In course of this derivation, it is assumed that a(s, b) is a function of b defined on the range 

O<b<oo, and belongs to a class of functions which may be expanded in a uniformly convergent 
series of Laguerre functions.25) 
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An Impact Parameter Formalism. III 

a (s, b)) =az (s), 

Thus, we get the expression 

ro 

for l= pb-1/2. 

T(s,y)=2pW) bdbJo(2pby) [ 2 ~~-(exp (2ix) -1) J. 
0 l 

503 

(6·5) 

(6 ·6) 

It has been argued that this procedure is generally a good approximation 

in analyzing the small angle scattering data. In tact, only the first approxima

tion (6 ·1) was discussed quantitatively. But, as ·was pointed out at the begin

ning of § 5, the last approximation, (6 · 5) apparently violates our unitarity relation, 

(2 · 19) . It should be noted that the final expression for T (s, y) in this pro

cedure, Eq. (6 · 6), is the same as the impact parameter expansion, Eq. (2 ·10), 

except for the assumption a(s, b) =a~(s) for pb=l+ 1/2. This fact means that 

the only important assumption is the last, the high energy approximation (6 · 5) 

which corresponds to the asssumption K (s, b) = 0, Eq. (2 · 21). All other ap

proximations can be bypassed by the rigorous mathematical method given in 

our formalism. The argument that the above procedure is only applicable to 

the small angle scattering, is not correct mathematically. This argument may 

be correct physically, if the crude strong absorption model is assumed in order 

to evaluate a(s, b). The impact parameter amplitude used in the high energy 

approximation is· ac (s, b), which is defined in § 3 as what corresponds to the 

semi-classical particle picture. 

Since the oscillating part of our impact parameter amplitude is what is to 

be required to satisfy the unitarity relation and the Kapteyn equation, the con

tribution from this part is certainly related to the error due to the high energy 

approximation. In order to understand this situation, let us consider the sharp 

cutoff model. Since the partial-wave amplitude is defined by 

1 

_1_(1-r;), 

Im az(s) = 2 

0, for Z>L, 

for l<L, 

(6·7) 

the corresponding impact parameter amplitude in the 

due to Eq. (6 · 5) is 

high energy approximation 

Ima(s, b)=1 ~ (l-7j), 

0, 

1 
for pb<L+--

- 2' 

for pb>L+ 1/2. 
(6 ·8) 

Comparing this Im a(s, b) with our previous result shown in Fig. 1, we can 

get some idea of the difference, though Lis not large in our numerical calcula

tion. 

In the high energy approximation, the relation between the partial-wave and 

the impact parameter amplitudes is an approximate one, Eq. (6 · 5), ·while, in 

our formalism, it is given exactly by Eq. (4·16). In this sense, it may be in-
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teresting to investigate ~he connection between our impact parameter representa

tion and the resonance theory. 

A great deal of the work which has thus far been done on high energy 

nuclear collisions, is to be considered more or less as empirical studies of the 

"optical model". This model represents an attempt to deal with the problem 

of elastic scattering alone. Physically, in the relativistic energy region, the use 

of the concept of "potential" is questionable. Since our formalism is applicable 

to the relativistic energy r~gion, it will be possible to discuss such high 

energy collision problems by considering the form of the impact parameter· 

amplitude, instead of the assumed complex potential, for example, the Wood

Saxon (complex) potential_26
) The impact parameter amplitude emerges as a 

rather natural way of describing the specific results obtained for elastic scat

tering, and this enables us to give an explicit construction of the optical poten

tial in the strong interaction region, if necessary. For example, inversely, at 

the present primitive stage of our formalism, it is interesting to find the form 

of the impact parameter amplitude corresponding to the Wood-Saxon-type potential, 

which has been used in extensively nuclear physics. 28
) We hope that it will 

allow a very simple insight into the origin of the optical model. Many investi

gations to clarify the concept of the optical potential have so far been done on 

the basis of either the eikonal or the high energy approximations. 5
),

6
) . The im-

. pact parameter amplitudes used in these works satisfy the unitarity relation 

only in the high energy limit, as discussed in this paper. Therefore, we shall 

have to check this point carefully. 

Any desire to discuss the effective absorption in a quantitative way leads 

us back again to the question of treating inelastic processes. In the optical 

model, particles which undergo inelastic scatterings are removed by pretending 

that they have been absorbed within the nuclear target. Any mathematically 

comprehensive discussion of the optical m~del must therefore be based on a 

unified treament of elastic and inelastic transitions. 5
),G) For example, as regards 

high energy nucleon-nucleon scattering, we can investigate the inelastic part by 

claculating the overlap function, as done by Van Hove. 27
) Our impact parameter 

formalism will be useful in this sense. 

Furthermore, the- spins of the target and the incident particle are assumed 

to be equal to zero at the present stage of our formalism. It is not difficult to 

take such spin effects into account, though the mathematical tools are . very 

complicated. This will be shown in future work. *l 

*l After completing this paper, we received the following preprints: M. Luming and E. 

Predazzi, "An Alternate Way of summing the Partial Wave Series" (EFINS-65-85, the University 

of Chicago); M. Luming, "Impact Parameter Representation for Scattering Amplitudes involving 

Spins" (EFINS-65-81); E. Predazzi, "Integral Representation for Scattering Amplitudes, I and II", 

(EFINS-65-82 and -84); M. Luming and E. Predazzi, "On the Fourier-Bessel Representation for 

(continued on p. 505) 
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Appendix 

We shall summarize some relations which are used to confirm the con

sistency of the modified black disc model within our formalism. 

00 

~ d{3{3-m Jm+l ({3) =2m~! . 
0 

(A·l) 

(A·2) 

1 

{3~ y dy Jo ({3y) = .h ({3). (A·3) 

0 

1 1 

~ dy .hz+1 (fjy) = ~ dy .h ({3y) Pz (1- 2y
2
), (A·4) 

0 

1 

( dy .hz+l ({3y) = (~) '.t J2l+2m+2 ({3). 
,) {3 m=O 
0 

(A·5) 

(A·6) 

(A·7) 

z 

J) ( J} (t) dt = '.t [Jm+v (z)] 2 - _l_ J} (z), 
) t 7n=O 2 

(A·8) 

0 

for Re v>O. 
1 

G1 ({3) = 2 ~ dy .h ({3y) .h ({3y) , 
0 y . 

(A·9) 

Helicity Amplitudes" (EFINS-65-99); K. Fujimura, -T. Kobayashi and M. Namiki, "Non-zero 

Elastic Amplitude Real Part Effects and Nucleon Recoil Effects on Relationship between Elastic 

Diffraction Scattering and Inelastic Collisions at High Energies" (Waseda University, Tokyo). In 

all these papers, the approximation of the high energy limit is employed, in. the sense of the 

use of the Hankel transform_lO, 24) The authors thank Professor Kunia Yamamoto for sending 

preprints of the first two papers to them. They also would like to express their thanks to Dr. M. 

Luming, Dr. E. Predazzi and Professor M. Namiki for sending these preprints before publication. 
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1 

=4~C2l+1) c) dy J2l+1Cf1y)J
2
, 

0 

1 

= /1) dy Jo (k/1y) .h (/1y ).. 
0 

OJ 

lim U1 (/1, k) = ( dx Jo (kx) .h (x), 
f:Hoo J 

0 

= { ~~2, 
0, 

1 l 

for k<1, 

for k= 1, 

for k> 1. 
l 

Gz (/1, y) = 16) dyl) dy2 .h (/1yl) J1 (/1yz) I (yh Yz ; Y), 

where I(yh Y2; y) is defined by Eq. (4·3) of I. 

1 1 

Gz (/1, y) = 4) dy1) dyz 

0 0 

We should note the following relation, 

G1 (/1) = Gz (/1, y = 0) . 

Uz (/1, k) = 8~z (2l + 1) (1/ /1k) .ht+l (/1k) [~n~ .hz+2m+2 (/1)] 
2

, 

1 1 

= 
2
: ~ dyl ~ dy2~l (2l + 1) .ht+l (/1k) .ht+l (/1yl) .ht+l (/1y2)' 

0 0 

1 1 

= /1
2 ~ dyl ~ dy2 Jl (/1yl) Jl (/1y2) 

0 0 

(A·10) 

(A·11) 

(A·12) 

(A ·13) 

(A ·14) 

(A·15) 

(A ·16) 

(A·17) 

(A·18) 

(A ·19) 

(A·20) 

(A·21) 
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1, for k<1, 

l lim g, (/1, k) = 1 1/4, for k=1, 
f]~ro 

0, for k>l. 

(A·22) 
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