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§ 3. The potential scaticring

IHereafter, we shall restrict our discussion to the potential scattering of two

spinless particles. The interparticle (optical) potential is assumed to be the

U singularity at the

central one, which is sectionary continuous, has at most 7~
origin, and satislies '

o

S(Zrl V(I )| < oo . (3-1)

In this section, we shall summarize the general formulation of potential scat-
tering and show that Im % (Z, £) 20 even in the region [, >F>0.

According to the standard textbook, the scattering amplitude f(F, 2ky) is
expressed by

O.SCM o (s Tep) U (E, 7)o (r, Ky, (3-2)
4T N*
where N is a normalization factor N= (27) **, the planc wave is

o (r, k) = Nexp(ik-r), (3-3)

and the potential V (K, r) is replaced by

U(E, r) =24V (E, ). (3-4)

The wave function ¢ is a solution of the Lippmann-Schwinger integral equa-

tion with the Green function corresponding to the outgoing wave,

) Editorial note: For an editorial reason, the paper has been separated into two parts. This
is the second part containing §3 to References. The first half was published in Prog. Theor. Phys.
39 (1968), 430.

*5 Present address: Department of Physics, College of General Education, Osaka University,
Toyonaka, Osaka.
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786 T Adachi and T Kolani

G,

" —Ty)) = S dq ¢ (g, q) L

0 (5, ). 3:5
PN IO e

Similarly, the reaction matrix R ([, 2ky) is delined by™
. 1 5 ; < > ; o
R(E, 2ky) = - 1 V_Sc["/' ¢, By) UL, 7)o (v, Ky), (3-6)
A N*

where ¢'?(r, &) expresses the standing wave, a solution of the Lippmann-
Schwinger equation with another Green function,

Gl7<

e r) D g(z a o G, «5)

J‘@n s @), 3.7)

P standing for the Cauchy principal value. It should be noted that these
F(E, 2ky) and R(E, 2ky) are delined on the momentum shell (|k,| =|k;|=£k),
and that R(FE, 2ky) is real, if the potential is real, i.e. £, >E>0.

As it is well known, these (I, 2kv) and R(E, 2kvy) arc related by the
Heitler integral equation,

S, 2ky ;) = R (E, 2k, -t i 1/

=

g,m R (1, 2hev ) J (1) 2y, (3-8)

We shall now introduce the restricted impact parametler reaction malrix
Rk, 3) delined by
]
R(E, 3) 2 \ wely o (3) R (I, 2k). (3-9)
0
According to the general thecorem,”? the inversion of Eq. (3-9)
ey 1( S NP .
R (I, 2ky) = g,‘ﬁclﬁf}”(p’y) ROE 01—y, (3-10)
’26
and R(IE, 3) is scli-projected by G, (w, 3) ¢
R(E, 3) = gmm Ga) RE, ). (3-11)
0
Since the Heilter equation Iiq. (3-8) has the mathematical character similar
to the unitarity relation for f(I, 2ky), it is reduced to the following form in

terms of A(E, 3) and R(L, 3):

AL, B) =R(LE, 3) -+ z/vgctlc/cal gquda)(r (Betyeey) R(IE, an) A (L, ). (3-12)
0 0

In the case of the partial wave expansion, the corresponding Heitler equa-

% The authors are indebted to Professor M. Kato at the University of Tokyo for suggesting
them to introduce the reaction matrix in order to simplify their treatment.
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An dmpact Parameter Representation of the Scallering Problem 787

tion becomes a simple algebraic equation, namely
A () =R (E)/[1— kR, ()], (3-13)

where R, (L) is delined by
i

Ry(E) =2 % vy (1 2y%) R (F, 2ky). | (3-14)

0

By expressing A,(££) in terms of the phase shilts §,(I2), we find from Eq. (3-13)
that

R,y(L) ==tan 0,/k . (3-15)

We have seen that the Heitler equation for A, (L) is simple, but it is not so .

for A(L, ). This difference comes mathematically from the fact that the
Legendre function can be modified to be orthonormal in the physical region
1=y=-0 and has a simple addition theorem, while the Bessel function J,(By)
does not.
Let us solve Iiq. (3-12) by iteration procedure by assuming that the series
is convergent, c.f. reference 31). We find that
0 w
Al 9) 7?'4: (k)" ‘l;j_l‘_lj %cu‘,-clafjlx’(la‘, ;) |G (Ba ) . (3-16)
0
Here the first term (2= 1) in 15q. (3-16) is reduced to a simple term R(&, )
in I£q. (3-12) by the relation (3-11).
In the above derivation, no restriction on potential is assumed. If the
potential is real, then R([, ) is real. This is because R (L, 8) is also calcu-
lated Dby

R 3) = 202 @01 [Jun (B) /B 1R, (3-17)

and R,(£) is real in the region E£,>It>0. In this case, the decomposition of
AL, B) into the real and imaginary parts is easy;

ACE, B) == (18 [Avea (1, 8) - iAwer (12, D)1, (3-18)

where

co
2m -1

-‘i/'\udd (IE, B) :—7§)< - 1)7'i/\327'L H [» jJ:E SC({J'C/CKJ'[\) (]’;, C?fj) ] (;37,,,1 1 <[ﬁﬂf[ o lWan, ;,1> 5 (3 -1 9)

0

and
‘ A even (11:: B) - }__4‘ ( - 1)7;;—;-1/32771,[ “ Saijda‘fk (-E> w/) J (v;im (1’3“1 e “27n> . (3 : 20)
m:=1 F=1

0

Thus, we find that
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788 T. Adachi and T'. Kotani

tan[Re x (£, )] =[(—~1) +2A0a]/2A 0 (3-21)
and
S(L, 3) =AW A (1—-2A,0)" ] 3.22)

We see that § is not equal to unity in general, namely Im % (E, 8)=¢0.

§4. The first Born term and the MSW approximation

In this section, we shall consider the properties of the first Born term
under the MSW approximation. The first Born term is expressed in the fol-
lowing form:

L (E, 2ky) = — Zﬁ S L UE, Pexpl — ik, — k) -] @
_ °§ vl §inj4332 UE, 7) (4-2)
. Aog ada Jy(da) g?mer(E, ) [ at] (4-3)
2k§zlclu,]o () 1, (E, 2ka), (4-4)
;

where 7%, is the eikonal phase defined in LEq. (1-21) and we have used the
relation™
,

55”24’”). - SaczaJu (da) (P —a)~"", for A4=0. (4-5)

It is an interesting fact that the first Born term can be expressed by the form
of the impact parameter expansion itself. This character is utilized by Islam®
to define an optical potential.

According to the definition of A(E, ), Eq. (1-13), the first Born approxi-
mation of A(L, 8) is given in the form

Ay(E, §) = 4133 adaG, (B, 2ka) 7. (E, 2ka) . (4-6)
U

The order of magnitude of the upper value of the integral variable a is the
characteristic length (R) of the potential, as shown by Eq. (4-3). Then, we
shall rewrite the definition of G,(2kbd, 2ka), Eq. (2-2), by introducing the new
variable z=2kRy,

*) See p. 7 of reference 44).
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An Impact Parameter Representation of the Scattering Problem 789

G, (2kb, 2ka) = <2 ]1R> { § SP }zdz JOR i H IOK;H 4.7

In the short wavelength region kR>1, we can neglect the second integral, if
% (I, 2ka) is not especially large for a<€R. Under the conditions on our potential

mentioned in § 3, the integral in Eq. (4-3),
grd}“U(E, ” (7 —a*) (4-8)
o
is convergent, i.e. %, (FE, 2ka) has a finite value for all a. Thus, by using the

roperty of Dirac’s ¢ function®™
property

o0

1/2
S wdx Ty (ax) Ty (b) = < , 11“ > D a—b), (4-9)
. ab
0
we get the following approximated form:
L 11, 8 1
i, 2=t Lo (o B) 1 0(L). 410
(8, 2ha) s Ty k! (4-10)

This is the simplest case of our MSW approximation, Eq. (2-40).
Under the MSW approximation, the first Born term Az(F, §) becomes

AB,SW(Ea 16)) = e (E7 8) /k » (4'1]3)
0
o — 21]‘ g (ZZ ",7[]2’ ({7)2 |- zﬂ)l/Q] . <4 . 111))

By recalling the discussion in § 2.7, we find from Eqs. (4-11) that
%SW(E7 8) —:X(’ (Ea B) s fOI' /€R>1 (412)

We see that, as it is expected, %.(f, 3) has generally some singularities in the
complex f plane, while the exact % (F, £) has not. IFurthermore, we find from
Eq. (4-4) that we have

1 (E, B) =x%.(L, 8), for all energy. (4-13)

This is just Eq. (2-84), which we are interesting in finding it. It, however,
should be noted that this relation y,=%sw is obtained from the first term of the
Born expansion, but this result does not mean that it guarantees this relation
for the higher expansion terms. We shall show in §5 that Eq. (4-12) can be
proved for every higher terms, while Eq. (4-13) is nof. In general, the first
Born approximation is mathematically the 3-dimensional Fourier transform,
which is equal to the ordinary Hankel transform if the potential is symmetric.
However, the higher Born terms are not related with the Tourier (or the or-
dinary Hankel) transforms simply. In this sense, we understand that the result
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790 T. Adachi and T". Kotani

1r=%. Eq. (4-13) is a special character of the first Born term.

It is worthwhile to see how various relations in the previous section are
simplified under the MSW approximation. The Heitler equation itsell Eq. (3-12)
becomes »

A (I8, 3) = Ry (15, ) /1 1= ik Rsy (2, B) ] (4-14)

If there is no opening reaction channel, the approximated phase function Zgw (I2, (3)
is related to Rgw(F, #) in the simple form:

R (B, B) = tan[Re 75 (5, £)1/k, (4-15)
Sow(le, B) =1, ie. Im g (I, 5) =0, for K, >E>0. (4-16)

These are the same {orms as those in the partial “wave expansion, Eqs. (3-13),
(3-15) and (2-47), respectively. The latter two are consistent with the solution
of the Heitler equation obtained by the iteration method, because the solution

Eq. (3-18) has a simple form

A s (BB = kR (10, 3) /111 R (FLB)] (4-17)
and
‘/L-\'('H,SIV(E’ /f) . ’7\’213?\’”’([(;.‘ IQ> /l’ ] ﬁ /‘,21\);’”r<1(:‘ f?) “I N </1 : 18)

Since Iq. (4-14) is directly derived from the Heitler equation by assuming
the MSW approximation only, the convergence condition for the iteration method
is not serious. ‘

Let us introduce the further approximation such as the use of the first Born
approximation for the reaction matrix R ([, 2ky). By the definition of R (I, 2ky)
Combining this first Born term of R(E, 5) under the MSW approximation with
Eq. (4-14), we get Ag(IL, #) Eq. (1-25). In the case of the real potential,
the total elastic cross scction is expressed under these approximations as follows:

G4 (1) - 87zgz,(//, 1 2 (2, 2kb)
0 -

: 4-19
U by (. 2kb)- (1-19)

22)

Tt should be noted that Blankenbeeler and Goldberger’s result® shows that

Lsw (L2, ) =tan""y (K, (), (4-20)
by comparing Agp(Z, 8) LEq. (2:76) with Age(FE, 5) Eq. (1:25). If we ap-

proximate the denominator of IBq. (4-19) by unity, we obtain the modified
Born approximation, ie. Az (£, 3) LEq. (4-11):
oo

G (E) = 87:8 belb 7. (B, 200) . (4-21)

¢

This is essentially what has been obtained by Gaunt.”  As it is well known in
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An Impact Parameter Represeniation of the Scattering Problem 791

the general case of the reaction matrix, if A(F, §) is calculated through R(FE, ),
it satisfies the unitarity relation automatically, irrespective of any approximation
of R(E, ). Furthermore, the second Born term of R(FK, 8) vanishes under
the MSW approximation. In these sense, although the weak potential approxi-
mation Eq. (1-5) is employed, the former approximation Eq. (4:19) can be
used as the next approximation in the lower energy region where the first Born

)

approximation fails to reproduce the experimental results, c.f. §8.

§ 5. The evaluation of the impact parameter amplitude, 4 (F, 8)

Our problem is to find a simpler relation between gy (£, ) and V(E, r)
under the MSW approximation. IFor this purpose, it is convenient to calculate
A(E, B) itself rather than R ([, §). We first express the partial wave amplitude
A, () by using the Born series expansion of ¢ (r, k), and then obtain A(E, 8)
by Eq. (2-16).

T.et us define the partial wave expansion of ¢ (r, k) as follows:

O (r, k) = AN Y YR Y ()it (B, 7). (5-1)

Lym

Similarly, the plane wave ¢(r, k) is expanded by using j, (k) in the place of
O (E, 7)), where j,(z) is a spherical Bessel function of order /. The Lippmann-

Schwinger equation becomes

(/)I’(,},) (E, 7‘1) :fj/ (/C?“[) '}‘" % ((l’/‘g) /1 {/1'(.17) (7“1, 7'2) (/}[,( ! ) ([E, I‘z‘) 3 (ar ° 2>
where
(dry)==kr; UL, ;) dr;, (5-3)
and the Green function G, (lr;—mr]) Eq. (3-5) is expanded as
G, (Ir] - r)D == ?_:‘ Yo" (ﬂ) Y (fz) (/LH) (74, 79) - 4)

and

1
(k- ie) —
G kr) 1Y (k) 0 (ry— 1)
1 Ger) o CGers) 0 Gy 7))

Here A, is the spherical Hankel function of the first kind and 0(x) is a step
function. The solution ¢, (I, 7)) is obtained by the iteration method. By
defining the Born series expansion in the form

N jl, <(]/'2> . <5 . 5)
g

[

o 2 " 9 .
9. (ryy 179) = \ a*dyg g (qr)
A
0

= (—ik) ! (5-6)

A CORDEED I CORDN 57
7L
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792 1. Adachi and 1. Kotani

and assuming its convergence, we get’

[a]

W) = G- | @) Ko G 7 i), (5-8)
0
where
Kl,nf-l <7‘1,~ rn) :g (\(Zrn 1) Kl,n -2 (711» Ty —]) Kl,l (rn— 1s rn) » (5 : 9)
Koy (o) =9, G, o) /() (5-10)
and
KioGo ) =00 —r") kP UE, 7). (5-11)

Correspondingly, the partial wave amplitude A, (F) is expanded in the form
A () =20 Ay (I2), (5-12)
izl

where

A (B = (= 1 )| () i) 522 (B, 1) (5:13)

/\ [}
= (=)o (@ @it K G richr) . (5-14)
The impact parameter amplitude A (L, ) is obtained by
A(E, ) — ;\: ALE, B, (5-15)
where |
ALE ) =332 D) [J 2"1;“9).‘]‘4,,,”(15). (5-16)

Let us consider the first few terms as examples. The first Born term
the well:known one,

o

Ay () = = 7| (@i ) (5-17)
A
= 2S ddﬂzﬂ 1 (2kay) [” ! S A qu (E,‘)?‘l):l (5-18)
; 2k ) Artea)
s SCZ(zng,,_,,l (2ka) 7. (E, 2ka). (5-19)

0

15
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An Impact Parameter Representation of the Scatlering Problem 793

where we have used the definition of %, Eq. (1-21) and the relation™

»

GG giGer) = LT k). (5-20)
kr, Vit —a?
The second Born term is

Aua(B) = (= ) (=20 [ @) L) P (G i . 5-21)

Since we have the following relation®*

Ji(lker) B (kr) = (}i) H \/7)10—2*« i S\/ -21~-2J Sy (2ka) da (5-22)
v «U - 2 r -

then we get

A (E, ) = < ; ) (—1) [s/g day (B, 2ka) gdag 1o (E, 2katy)

@ o e @y

o ' g ridr UL, 1) ( rdryU(E, 7y)
—2 S (Zfli(}[ (ZGZGS 1 ‘\/;12 = dlz 1 g V 2';\'/(';2 — 7"22 B
X Gy (B, 2kay, 2ka,). (5-23)

When the MSW approximation is applied, the second term has no contribution
because of a,=a,=f£/2k. Thus, we find that

A‘J,SW(E> B) o= (l//&) [Xe (E’ B) ”]2~ (5‘ 2/1_)

wherc we have used the relation
(e8] [¢s]

{ar s (arireo § arren =" [farro | (5-25)
; P e n il
We shall consider the third Born term, which offers the new type of

combination, [/, (kr) % It is

48 OZT‘) l‘ Ju (01) ]2 % <CZ7'2) /lA(D (02> Ji (()z) g (dl'z) n (03) 7 ([)5)
Ay (E) = <_}C > -y * & E |
|- Zg (CZ/‘1> rJI (01) 1 ? g (('Zi'ﬂ) []/ (()2) ‘] : g ((Z?“Q []I.l(]) (03> ] 9

(5-26)

) FEquation (5-20) is given on p. 24 of reference 44). It is casy to confirm that Eq. (5-19)
is consistent with Eq. (4-4) within the physical region (1>y=0). However, fp(F, 2ky) Eq. (4-4)
has a value even for y>1, while, if f»(&, 2ky) is obtained from Egs. (5:-19) and (5-16), it is equal
to be zero for y>1; see Eqgs. (2:69) and (A-3). This special character for y>1 is true for every
higher Born terms.

Y See pp. 24 and 102 of reference 44).
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794 T. Adachi and 1. Koilani

where
p;=kr;. (5-27)

The function [2,% (k) ]* can be expressed in the form,®

N W (/08 (5-28)

. 2
27
P

where I, (2) is the ordinary Ilankel function of the first kind. Thus, when
we caleculate Ay(E, 8) from A, ;(I2), the first term of Eq. (5:26) gives the
combination Gs(f8, 2ka; 2ka,, 2kas) similar to the previous cases, while the second
term introduces GV (B, 2ka,, 2ka,, 2kas), which is defined as

Gn(mj ({goﬁ] ot 'I-?n)

~zeern |7 ”"‘éfm | ! I(;; 6] (5-29)

It should be noted that this new type appears only for 723 and 2—2>m, and
that there is at least one Jy,,(B;) whose argument 3; cannot be larger than the
B7s of T157, (8. Under the MSW approximation, we have

G (Bof3i - Br) 2G (BoBy Br) s for ER-—>o00 . (5-30)
The proof will be given in Appendix B. By applying almost the same argument
as for the sccond term of A,([, 8), we shall again omit the term which includes
1 2
[]Il( ) (/\)7”'1))] .
In general, we can decompose A, (J2) into two parts,

1

Ay () = ( ] ) (i T () -+ o ()}, (5-31)

>
v

where J,,(I) consists of combinations of both [ 7,(0,) 1% and 7 (0m) 2™ (0),
and M, ,(I2) includes at least one combination [/, (0,,) 1% When A,(E, ) is
derived from 11, (), it includes G, (pB, a’s). According to the similar pro-
cedure, we need not take into account the contribution from I, , () under the
MSW approximation. _

The first term .J,,,(I2) is cexpressed in the form

IES

-1 P
jz,n<E) == CZ,VL('[C> |- X 3((]/‘1)/'1,(()0 71,;,“) (p.l)
{0

1 Pm~1 Tm
X g ((]7‘2> J‘[, (()z) ]ZZ(U (pt’.> e g <[Z7’m> jl (pm) /7'1(1) (pm) g ((Z)‘m H) [jl (pmi ,l) ] :

) See Tas. (5-20) and (5-22),
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An Impact Parameter Representation of the Scallering Problem 795

X g ((Zrm-(—‘z)‘]]'l(]) (pm 3 ?> J/ (p'm l") T g (ern) hl(l) (0%) jZ (pn) ’ ’ (5 : 32)
7'1;;,+1 ’/‘,;-1
where
‘b:Z;7L(E) :ZS ((Zrl> [—]Z (QJ) h] ! g <(Z7~2) J/ (p‘J) ]lé(l) (02) e S (drn)jl<pn) ]Zl(]) (0/1) (5 ° 33)
0 71

Tn~1
As it will be shown in Appendix C, we can prove that
Sy (1) =22, (I2). (5-34)

By rveplacing 7,(0m) 7% (0n) by the integral form, it is easy to confirm that the
71(0m) 12,(0,,) term has no contribution to J;,(f£) under the MSW approximation.
Thus, it is enough to consider the simple expression, in which the combination
of j(0m) " (04) is substituted by | j,(pn) 1> This part of J,, () will be called
JR(E). By using Eqs. (5:25) and (5-19), we find

JE(E) =20 ES, () (5-35)
I |
=2 @i a1 (5-36)
ZANN
- 1 o
=2 y (~ Zk)"[gdmfﬂ,,,l(2/3(1) 1. (E, 2ka) ™. (5-37)
!
Finally we get
“ » f)'n-~1. o
A (E, g = B (gpym
nlk
X [1] g(lj (Z(ZJ' Z«(‘Ey 2]3(1‘7')](;73([)), 275(7‘1# "'Zkﬂn)- (5'38)
PR

0
By applying the MSW approximation, we get

-1

Ay (E, ) =1 3 -<2j? (7. (E )T (5-39)

e n=l y ’
= [exp (2ize) —11/2ik. (5-40)

This is just the result obtained under the eikonal (or semiclassical) approxi-
mation, Eq. (1-20). By comparing it with Eq. (2:76), we conclude that the

relation gsw (L, 8) =% (£, §) Eq. (4-12) is correct for all higher Born terms.

§ 6. The dispersion relation

The analytic propertics of the impact parameter amplitude A(E, 8) with
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796 T. Adachi and T. Kotani

respect to 8 for the fixed physical value of FE have been discussed. In this
section, we shall study the analyticity of A (XK, §) with respect to £ for the
fixed value of 8. On the other hand, Blankenbecler and Goldberger have
derived a dispersion relation for H(E, b) for the fixed o. By combining the
approximate unitarity relation, they have found that the solution of their dis-
persion relation is Agp (E, ) Eq. (1-25) rather than the eikonal form Agw(E, [3)
Eq. (56-40). In order to investigate this difference, we shall approximate our
exact dispersion relation for the fixed § by applying the MSW approximation.
In this section, the full scattering amplitude is expressed by f(FE, ) instead of
F(E, 2ky), where = —4".
In order to guarantee the dispersion relation for f(ZF, 7), our discussion will

be limited to the potentials which satisfy the conditions

o M

S?‘*%Z;*[V(E, r)|< oo and grder(E, r) | <o, (6-1)

M 0
where M and M’ are finite positive numbers. We shall further assume, for
simplicity, that there is no bound state and that the potential can be expressed
by superposition of the Yukawa potential,

rV(E, r) = gdm (L, m)e™ ™, (6-2)
Mo
where m,™ is the range of the potential. We shall assume that ¢(F, m) has
no singularity in the complex I plane.
Under these assumptions, it has been proved™ that the Mandelstam repre-

sentation for f(FE, £) can be written in the form

F(E, £) =fu(E, 1) -+ SdE Jm fCE 2 (6-3)
Jom B —E—ie
where
S (B 1) = — 21 g(i’m o(Em) (6-4)
m-—1
(B o= [ R 6-5)

sy
o(E, ) being the spectral function.

In order to get the dispersion relation for A(ZE, §), it is convenient to
discuss the first Born term fz(FE, £) separately. When the definition of A(E, 3)
Eq. (1-13) is applied, we encounter an integral,”

1

M((E, m®, () = S vy Jo(Bv) - 1

A 6-6
m® - 4kPy’ (6-6)

0
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An Impact Parameter Representation of the Scaltering Problem 797

The function M (L, ¢, 5) in our impact parameter expansion corresponds to the
Legendre function of the second kind, Q,(1—24%), in the partial wave expansion.
[See Eqs. (6-14) and (6-18).] We perform explicitly this integral and get
the result,

ME, m?, ) = . > (,”i,]-)n_<,@ >2n E(*l)’ <ﬁg> 27<’ 1 )”1

8 a=l <n1j2 2 =0 (n—7) \ 2 77627
W 2 1. 44,21
- Jo(gﬁ%f@_>ln | 462+ m| (6-7)
8k 2k Comt

From this expression we may read off the analytic properties of M (FE, m? )
by regarding it as a function of the complex variable E. There is a cut along
the negative real [E-axis, which comes from the logarithmic term. In fact, the
discontinuity of M (E, m* () is

;; {M<E+ ie: 77&2, B) - M(E‘“ 2.3, 7}[,2, ﬁ) }
A

A NS 9
The cut from the Born term f3(L, ) runs from [ —24(mn,/2)"] to (—o0) in
the complex ZF-plane. Furthermore, we see that M ([, m® ) becomes to be
zero at |E|=co. Concerning the second integral in Iiq. (6-3), if we substitute
¢’ instead of m* in Eq. (6-6), the similar procedure can be adapted. Thus, the
second integral has a cut from (—2um,") to (—c0) in the complex FE-plane.

We may now write the dispersion relation for A(K, 5) from the above
analytic properties in the complex L-plane;®

—2pmo? -\ o w ” 1o
A(E, B) = Ay(E, B) - Q dl ‘ AA(L 3 (ﬂ-*l" S dls Im‘ yal (L, [3’) , 6-9)
Jooz I —I T I —I—ie
where the Born term Az(L, 8) is reexpressed in the form
— pmg2/2 oV ounr )
J 1 . T m
Az (L B = S S e g dm g (E, m) [ -, < e >],
2B =" ) E-E ) ( st "\ oy
(6-10)
and the discontinuity across the left-hand cut is
—~8uli »

1 , e dE o(E, ") .
dA(E, §) =~ S It J< N/ L g A 6-11
(£ ) Sule ‘ o\ ~-8/,1E>0 7 B —E—ie ( )

! dmo2

*#) This form of dispersion relation, of course, can be derived by a very direct procedure, which
is similar to Eq. (252) on p. 615 of reference 23).
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798 T. Adachi and I'. Kotan:

The dispersion relation for A(Z, 8) Thas the same structure as for the
partial wave amplitude, A,(£). It, however, is unnecessary to introduce the
kinematical factor in order to guarantee the threshold behavier for the fixed f,
in contrast with the case of the partial wave amplitude. Since the unitarity
relation for A(Zs, 8) has the same form as for A, (F) with the opened reaction
channel, we may solve the dispersion relation IXq. (6-9) by using methods pro-
posed by Froissart,’® Fry and Warnock,” and Islam and Kang™® As it is
well known, in order to solve this dispersion relation, we have to assume both
the discontinuity across the left-hand cut and the values of &, We shall not
go further to discuss it herc.

In order to investigate the propertics of the dispersion relation under the
MSW approximation, it is convenicent to start from another form of the Mandelstam

representation,
S g / I
A o (6-12)
g2 T l/ ———[
where
A, 1y = [ 00D (6-13)
. D Oy e o
0

As it was done by Blankenbecler and Goldberger,”™ we shall use the following

relation

v :gaclcu/o (aV — 1) Ky(aVe'), for Re Vi/>>Im|v -1, (6-14)
- 0

where K,(z) is the modified Bessel function of order zero. When (his relation
is substituted into Eqgs. (6-12) and (6-4), the dispersion relation for A(L, ()
can be reduced to the form

A(E, B) = gacla(}l (8, 2ka)
0
X [»Q dpu gdm 0 (L, m) K,(ma) - S dt A, B K, (Cl\/L/):], (6-15)
o e

where the first and second integrals are defined for (m2,/2)>[Im £
respectively. This equation means that A (X, 5) is to be projected from the
quantity in the square bracket, which may correspond to H,(FE, 2ka, g>>1) of

and my > |Im k|,

*) See p. 137 of reference 44).
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An Impact Parameter Representation of the Scattering Problem 799

Eq. (2-71).%
If the MSW approximation is applicd and the potential is real, independent
of energy, then the approximate dispersion relation becomes a very simple form:
[es]

A, B) = Ao (B )+

6

AdE Im Age (I, 3)

N 6-21)
T I — I —de (

As we shall show it, the solution of this equation is Ape(F, B) Eq. (1-25).
Owing to the d-functional character of G, ({3, 2ka) under the MSW approximation,
the integral variable a in 15q. (6-15) has been replaced by (8/2k) =b. The
Born term can be reexpressed in the form

Ap,sw (B, 2kb) = - 2//‘ Sclm g (m) Ky(mb), (6-22)
) 0 .
e zlﬁ g d= VIV 2, (6-23)

where we have used Egs. (6-2), (1-21), and the relation,®®

]\fo(m!})“«“gclr ¢ dor Rem>0. (G-24)
? =

Since Apsw (L, ) is real [or the physical values of 15 and (5, the discontinuity

#) The consistency between Egs. (6-9) and (6-15) is easily verified as follows: As long as
Re (m/2k) >0, we have, [See p. 23 of relerence 44).] i

Ky(am) = 3 vdyJdo(Qkay) [[y2+ (mf2k)%]. (G- 16)
0
Since we have a relation®
Swd&(;l (Ba)d o () =Jo(By) 0 (L—~), (6-17)

0

Eq. (6-6) can be expressed in the form

ML, m2, B) = Sadzz(}l (B, 2ke) Ky (am) . (6-18)
0

It should be noted that we have a relation®

22‘ Ky (mb) — L (I, m?, 2kb), (6-19)

where L(E, m? 8) is the complementary function of M (K, m?, 8), Eq. (6-6);

M (E, m2, 2kb) = 4

o

. 1 .
L(E. ¢ B)==( ~d 3 . 6.2
L(E, ¢ B) 5 ydydy(By) it (k) (6-20)

These are a set of examples of A(E, B), I, (E, B) and B,(E, ) in §2.6.
) See p. 138 of reference 43).
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800 T. Aduchi und 1. Kotani

across the physical (positive) [-axis is defined by

Im Ay (E, B) 741, g W, ) Ko £/28) (6-25)
2" T
dmey2

Thus we sec that the dispersion relation for Apg (X, 8) has only the right-hand
cut arising from A4,(¢4 £). By assuming the approximate unitarity relation
Eqg. (2-75) for all energies, the dispersion relation Eq. (6-21) was solved by

Blankenbecler and Goldberger. According to the standard method,”* we shall
define '
AR A £ (Ea B) NI
L(‘IL’ 5>£ B,S'W Ty ((j"ZG)
ABG (E;- 18)

which approaches unity as |E|-»>c0, and is a function analytic in the entire cut
Lplane. Here we assume that EAz (L, ) has not the zero. Any such func-
tion can be written as

o

B JE Tm L (I N
T ) 6
where
Im L (I, 3) == — Qpli)* Ay sw (I, 8). (6-28)
Then, we find that
LI, B) =1—iy. (I, ). (6-29)

Finally, we get the form of Age(IL, B) given in Iiq. (1-25).

We have now a question: Why do we get Age (L, 5) rather than the cikonal
form Agw (L, 5) under the same MSW approximation? When we have derived
Agw(L, 3) in §5, we first have obtained the exact solution of the Lippmann-
Schwinger equation by the iteration method, and then applied the MSW ap-
proximation to the final solution of A(LE, §). As it was shown in §4, the
solution Ape (L, ) has been obtained by using the first Born approximation
for the reaction matrix. It is the simplest solution satisfying the approximate
unitarity relation Eq. (2-75), which includes even the contribution f{rom the
reaction channel. On the other hand, in the case of Blankenbecler and Gold-
berger’s derivation, the MSW approximation is applied to the dispersion relation
itself which is the starting point corresponding to the Lippmann-Schwinger
equation. As a result, the analytic porperties have been changed appreciably
when Eq. (6-15) is approximated by Eq. (6-21). It will be shown in the next
section that Agy (L, 8) gives the expected result for the scattering by the square
well potential, while Apg(E, B) does not.

Finally, we shall mention the dispersion relation for the fixed 4. In this

4),16)

case, A(L, 2kb) have an additional singularity at || =co. This singularity
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An Impact Parameter Representation of the Scaltering Problem 801

arises because J,(2kby), which is an entire function of [, has such a singularity.
This fact can be seen explicitly in the function, M (L, m® 5), Iigs. (6-6) and
(6-7). Therefore, we need make more subtractions to get the dispersion re-
lation for the fixed & case under the same conditions as for the fixed f casc.
At a glance, it seems that Blankenbecler and Goldberger have derived the dis-
persion relation for the fixed 4. This is because, in the high energy limit, we
may neglect a contribution from oo>4>2k, namely the L-term of Eq. (6-19).

This procedure corresponds to the MSW approximation, as it was discussed in

§2.7. If we neglect the L-term, we have not the singularity at |E|=oc0, and

arrive at the same dispersion relation even for the fixed & case: We would
rather have a new singularity at |L]=oc0 for the fixed  case, because of

Ky(mB/2k) of Eq. (6-19).
§ 7. Scattering by a square well potential™
We shall apply our results to the scattering by the square well potential:
V(I r) = V0 (R—r). (7-1)
As Glauber™ has shown it, our cikonal phasc is expressed in the form,
2. (I, 3) = —a[l— (5/2kR)" 10 (2kR —3), (7-2)

where « is defined by Eq. (1-2). We see that Agy (&, 5) has a cut in the
complex f plane with the physical value of It
The scattering amplitude in this case is cxpressed as,

2kR

Im Fow (B, 2ky) :41/ 5 BB Ty (By) {1 ~cos [ 2 // 1 <2 f[\ )]} (7-3a)
L I -
= )| L ) - (adedy ) eos a1 -9 | (7-3b)
pt o =
and
:
Re fow(E, 2ky) = — R {wde, (2) sin 2y 1= 22, 7-4)
é |
where

=2k Ry. (7-5)

~

The first term of Im fguw (£, 2ky) is familiar in oplics as characterizing the diffrac-
w ; 1 =}

tion scattering from a black sphere. This “shadow” scattering, therefore, de-

pends on R and %, but is independent of V,, as it is expected. The remaining

%) The authors are indebted to Miss S, Okamoto and Miss M. Yoshii for discussing the contents
of this section.
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802 - 1. Adachi and 1. Kotani

terms express the scattering by the potential, and are the complicated functions
of Viand R.  The angular distribution for this case will be discussed clsewhere
in connection with our general conclusions in § 2.8,

We shall compare the total cross sections obtlained by various approxima-
tions mentioned in §§ 2.7 and 4. Since the first Born term is real which does
not satisly the unitarity relation, we caleulate the total clastic cross scction, by

Eq. (2-52),

0N : : D i (d) G2 (20 RY]
Tl E],) 9 {l_ ) < ] > n sin ( I/Jj) sin (ZLR)J_ (7-6)
TR 2R (2kR) (2kR)*
By applving the MSW approximation, as we expeet, Eq. (4-21) becomes
TuB (1) = 208 (R RP) . (7-7)

In the case of Blankenbecler and Goldberger where the impact parameter re-
action matrix R ([, 5) is approximated by the first Born term, Eq. (4-19)

becomes
ﬁffg} (‘)E> foniy L 1 = ]i) J n ( l - ; (,U‘l | (7 °8)
TR? L e -

‘ 9 ”1’ . - P
20— o, for «w<l,

0

N 3 (7-9)
4, for «w—>co.
The eikonal form Agy (£, 3) gives us [Eq. (2:79);"

g (L), 1 2sin(2) _ cos(2w)

7-10
TR? I «w & ( )

12@"“’ ----- 1 at,  for  w<l,
9 (7-11)

1 2, ~for w00

The numerical results for these cases are shown in Fig. 1. The order of the
validity of the MSW approximation may be seen by comparing 0" (£) [case IV ]
with the exact first Born term ¢” (E£) [case II1] in Fig. 1, because they give
the almost same numerical results even when kR=2. We see that the result
obtained by using only the MSW approximation, 6.7 (E), leads to 2zR% twice
its geometrical cross-sectional area. This is the famous result known as the
“extinction paradox”,"™ which is due to the wave character in both the clas-
sical and quantum physics.*’

Unfortunately, we cannot apply our formalism directly to the scattering
by a hard sphere, because the Lippmann-Schwinger equation has been used from
the biginning, so the potential should be finite, Eq. (3-1). Since our original

*) The authors would like to express their sincere thanks to Professor H. Wergeland at Institutt
for Teoretisk Fysikk, Trondheim, for sending copies of his papers on this problem.
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T e - e ,_’
e T o
-
el . 3 .
5 6 7 8

Fig. 1. Various approximate Ctotal ross sections as a function of a=RVyu/k. Curve I: o SP(E);

Curve 11: ¢ZO(E): curve UL: e8P (£) with ER=1 and 1.3: Curve 1V ¢ (E). The unit of

the cross section is wR2.

formalism has no such restriction, this scaltering can be treated by our formalism,
in principle. Although we have not yet derived the final simple results, we
can take out some interesting character and confirm our expected results. IFor

example, we have the relations in the partial wave expansion,

tan|Re 0, (E) | =, (kR) /2, (kR) (7-12)
and
Im 0,(L2) =0, ie. 7,(40) =1, (7-13)

where R is the range of the hard sphere. According to the relation between

v (I, 8) and §,(£), we obtain

C(E, ) =1, for all the §’s and s, (7-14)
. Nroa e
B Lt ‘
Esin|[2Rey|=>12@2011) [‘].21' 1[; ("D] L?JI/’;’/Z] (7-16)

and
1= "= drK(E, 1)
= Y A (204 1) 2m-+ 1)

N lil]ZLl}([g)j![l,?mH(B) leﬂ '?<jl.”7nf .}7rl;jm>2 . ] (717)
o /s L (gt nd) (gm’ F 1Y)
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804 1. Adachi and T. Kotani

As it is required by the unitarity relation, it is easy to see the result of Iiq.
(2-35), ie.

&3(43(1 8 =0, (7-18)

0

because of 15q. (2-7).

FFurthermore, since J1,({2) is given in the f(ollowing form as [£->0:

Ay (E) = (= R+ kRN 0,y + O (KR, (7-19)
the total cross section, 0, (&) [or d4(&)], is expressed as
O ora (LL) = Z//T g 3y [ELZ @CLE1) e (9) ])) Im AL(E)] (7'20>
k. [
=47 R [S(Z[))J; () + O (BRY) | (7-21)
0
AR (2k) gd/;,/i (20b) 1O (R ] (7.29)
= A7 R[ 1O (R ], (7-23)

where we have used Eq. (2-8). This well-known example indicates that, when
we treat the low energy phenomena (£—0) by the impact parameter formalism
we may have some confusion if we separate [ by 2k6 in the earlier stage,
as shown in Eq. (7-22). If B itself is kept as an integral variable like Eq.
(7-21), we can avoid such a confusion in the complicated cases.

§ 8. Discussion

We have introduced the MSW approximation in which the condition AR>1
is modified by the approximation of G,(8;) in the form of the 0-function. In
the case of potential scattering, we have obtained Agy(FE, 8) which has been
derived previously under the eikonal approximation. In our derivation, we did
not make any special assumptions about 0 and V, explicitly. As we have seen
in § 2.7, the approximate total cross scetion S0 (£) should give a very reliable
result, if £AR>1.

As an example, let us consider the charge exchange scattering of protons
by hydrogen atoms. The classical maximum angular momentum is

L=Ryk=18x10°VE,, for IE; in keV, (8-1)

where Ry is assumed to be the Bohr radius and [Ej is the kinetic energy (in keV)

of the incident proton in the laboratory system. Thus, many angular momentum
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An Impact Parameter Represeniation of the Scattering Problem 305

states have to be taken into account even below I£;,=100 eV, so that the treatment
by the partial wave expansion may not be adequate. The first Born approxi-
mation may explain the experimental result on ¢, (k) above 10 keV, in contrast

> In the latter case,

with the case of the electron scattering by hydrogen atoms.”
the first Born term can explain the experiments in the much lower energy region
than the former. These facts can be understood qualitatively: The electron
velocity is greater than the proton velocity at the same laboratory energy, so
that =Ry, V,/v is smaller in the clectron case than in the proton case.. As
we have seen in Fig. 1, the first Born approximation gives a larger value than
our approximated results, ¢S (E). This expected behavior agrees with the
discrepancy between the experimental results and the calculated ¢S (E).®
Thus, we may imagine that our approximate result, 7" (E) or even ¢ (E),
can explain the data on proton-hydrogen charge exchange scattering. The
quantitative comparison will be discussed in another paper of this journal.

The impact parameter amplitude A(L, §) is an entire function of complex
3 for the fixed . On the other hand, the corresponding partial wave amplitude
A (I2) has the Regge (moving) pole in the complex Ilplane.”” If we inter-
polate the discrete /-values of the Legendre polynomials in thé standard manner
and define A,;(E) for nonintegral values of [ by Eq. (2-13), the A(E, I) so

> The definition of the right interpolation

41),40)

defined cannot contain any poles.”
to get the Regge pole was done via the Schrddinger equation.
it is desirable to derive the Schrédinger equation in the impact parameter re-
presentation.

The solution of the Schrédinger equation,

4 (r, k) + [~ U, r) ], k) =0, (8-2)
is expanded by assuming the spherical symmetric potential:
o N(u.. R
0w = \sdsr @3¢ 0 8. 8. (8-3)

il

where the k-direction is chosen as the z-axis and N is a normalization factor.
If the Laplacian 4 is expressed by the polar coordinates,

4-1 a—(r‘*—a)—r Loy (8- 4)

9

70N Or 7

then we find that

N N B AC BEPUA ACIO BE
AL =) | =8 R YU A (8-5)

Since ¢, B, k) in Eq. (8-3) corresponds to IZ, in Eq. (2-6lc¢), it can be de-

) See Fig. (5) of reference 39).

In this sense,
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fined by the inversion formula Eq. (2-60a) with an arbitrary ¢. Thus, we find
the Schrédinger equation for ¢ (7, 8, k) in the form

R T | [ 2 ap 09 eaﬂ 3.6
- [k U, )= B35 7% + . 8- (
A N LW A (8-6)

[t should be noted that the function ¢ is restricted by the integrability condition

w0

\Bedflg G B Iy <o (8-7)

0

[or the fixed values of 7 and . This corresponds to Eq. (2-62). If the angular
variable v in ¢ (7, v, k) is restricted to the physical value of v, the function ¢
should satisfy four conditions similar to for A(E, 5).

We have not yet succeeded in discussing the solutions of this equation in
general, especially in connection with A(/, 3), as it was established in the case
of the partial wave expansion. It may, however, be worthwhile to show some
of the typical solutions, by which mathematical character in our impact parameter
representation can be understood. Since this equation is a separable type, we
shall assume the following type of solution:

o, By k) =u(r, by Do (B, D/B. (8-8)
Then, we get a couple of equations
TR TN o)
drt o dr A .

and
72, 1 -
(Z A 1 ,d"?‘_{ﬁ (1 A4 1>'v:0 . (8-10)
ds* B dp 5
If we require that ©»(8, ) is an even and entire function with respect to 3,
then we have
l=1({-11), for [=0,1, -, (8-11)
and

v, D) =Ju (B, (8-12)

by considering the integrability condition, Iq. (8:7). Under this condition,
Eq. (8-9) is just the equation for the radial part in the partial wave expansion.
Thus we can write a whole solution in the form

¢ (}', '6)., /C) = i 2 <2[’] ]) tr 1]21,-1-; (ﬂ> ] Uy (7', k) . (8 -1 3)
10 _ / -

I

» . . ) . )
This is the form in the Webb-Kapteyn theory of the Neumann series® and

) See §16.4 of reference 42) and §3 of velerence 1).
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corresponds to Eq. (2-16) for A(K, ).

It should be noted that we never require the property that the function
@ (r, 8, k) is an exponential type 1. In order to sece this property explicitly, let
us consider the case of a free particle as an example. In this case, the solution
w,(r, k) is expressed in terms of the spherical Bessel functions z,(p) where
o="Fkr. lLet us define functions:

1.9 =z [ @ e o) (8-14)
- 43 vdy Jy(By) explip (1 --2v") ] (8-15)

== < 1>¢\1)~7() 1 7321: (8-16)

01 - 80-

1 (0, B) = 32 QL) [T (B) /81 [0 (0) ] (8-17)
= a{ yetv 7By explin (121 (8-18)

= (1 )ensy( ) ARG (8-19)

0 k=0 .

70, B =3[hY (0, ) +h® (p. ) ] (8-20)
30220 1) [ (B) /BT 50 | (8-21)

=2 aety Jo(B) expllio (1 - 27 (8-22)

0

:<2t)z>e W}“(éigl) Jir (B). (8-23)

Only the function j(p, 8) is an exponential type 1. This is because j(p, 8) is
an inverse transform of the plane wave, as shown by Eq. (8-22).

Acknowledgement
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Appendix A

The MSW approximation of G, (BB Bn)

We shall prove that the function GL(BoB, -5, defined in .F,q. (2-37) is
vreduced to the product of Dirac’s J-functions, as shown in Eq. (2-41). Our
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procedure of the prool is the generalization of IL(a,;y), Egs. (2:29) and
(2-94), and G,(Bawas,), Eq. (2-33). The function G, (BoB:+-Ba) is a symmetric
function of all arguments 3;, where we shall use the abbreviations such that
Gu(37) =G (3o3y-++B.) . il there is no confusion. I[ G, (3,) is decomposed into

1

.Gn (/?Bl " '/Qn) w % i\’/mCZ',V/m ']‘() (/))y[n) ]/L (ﬁl tee ﬁn » 3’/m) ) for 77} 1 s (A ‘ ]>

.8

then we have the inversion of it in the form

]IL (/?1 e Bn s Nhn) 0 (1 — Nhn) - g B(ZB ’]() <8.'V{m> Gn (1/))81 e B}Z) s (A ° 2)
0

where we define™®
ACHORAGD (A-3)
=320 D P —23) [Jun (B /B10(1—y) . (A-4)

By substituting Eq. (2-38) into Iiq. (A-2), we find that the generalized expres-
sion of L,(f;:v) is

L@ ) 2@ DRA-20) I PP o s
=i P
Thus, we have the {ollowing recurrence formula

I/L (/9} o 'Bn 5 L\'Im) - 81’[ S([Qn 1]n 1 (!6)1' ! 'ls)n--—l > ybnwl>'70 (ﬁnﬁhrﬂ,n) ) (/\ : 6)
/

where we have used the famous relation for the Legendre function,

4

gdﬂn Pi(1 2D P, (1 2v,0) = Zm,’"" Pi(1—2v.3). (A7)

I+ 1
By an iteration of Eq. (A-G), we have an integral such as

1

8

g(]‘Qn '1'70 (/9” va 2,7 ]><]ﬂ (/?n:\]n —1,n> . (A : 8) »

This is just the same form as Eq. (2:29). By using the Neumann addition
theorem, ™ Iq. (2-29) can be reduced to Eq. (2-30). By continuing the itera-
tion procedure and introducing a new integral variable x,;=2kv,; we get the
integral representation of G,(#;) in the [orm™**®

¥ The definition of I;i(f; ) is consistent with Igs. (6-17) and (2-2). Equation (A-4) can be
proved by substituting Iigs. (2:69), (2-3) and (6-17) into Eq. (A-4).

5 See p. 358 of reference 42).
#0 This is the generalization of Eq. (3:3) of reference 22) and Eq. (A-7) of reference 1).
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G, (2kb, 2kb,, ---2kb,,)

2% 2k s
T O G SR
= ’ Ly Xy \ Ty L0qg 0 \ Ly T, 4,
(2],):% . .
Y/ 0 0

X ']’0 {/)-'I:/;vz}*]() {Z)l:(:/m IQ] - (-1‘]75/2]‘3)2_“] 1/2}
X Ty Dsitin 1~ () 21Ty byt 1 — () 26 (A-9)

X ']0 {])7%42%‘7# 2,11[1 - <<7jn~ 3,%/2/6)2] 1/2} JO /)IL SN -2, 7L[ (rn 1 n/?]\f) ]1/91
><J‘() {])nw]frnwl,w{ <rn 2,7;/2/”> Il/“ 0 Lbnrn 1, nf

By applying the short wavelength approximation Eq. (1-1) (k—>o0) and using
Eq. (4-9), we have the final expression [Eq. (2:141) under the MSW approxi-

mation.

Appendix B

The MSW approximation of G, (Bof3i )
We shall show that under the MSW approximation, the function G, (881 Br) »
Eq. (5-29), behaves as G, (85 Sn) -

We decompose the function G, (#;) into two parts; one of them includes

the Ju., (8 part of Hy?(8;) and the other the Ny, (f;) part;

G7a<m) (BOB] o 'Bn) = Gn (/90/? ﬁn) | LZ Z’Z’/( (0 (/? Q /))n) 9 (P’ ° 1)

q=1

where ¢=m is the number of N, .,(8;). In order to avoid a confusion, the
argument of Ny, is written as «; instead of f3;. The symbol >p means to
take a sum over all possible permutation to interchange («---«,) with any
of the arguments (Bn mi1+fBn) which appear in the Y (B;). The second term
becomes to be zero under the MSW approximation, although there are some
conditions which will be discussed later in this appendix.

One of the typical terms among G,'™? is written as

GomD (Bye Bty ty) == 342 (20 + Uﬁ: {_J 2145(/?7:_) } ]QI [sz_»n;x (cw)}_ (B-2)
i L N n

34 C;
By taking IEq. (2:7) into consideration, this is expressed as
. o
Gum D (Buct)) = \EdEGon s (Bufree- B D) Sy (et cty), (B-3)

0

where

$i& ) =Rz | T 5 ©] | B >J (B3 4)
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310 T, Adachi and 1. Kotani

W

q
=111 2028, )16, (808 (B-5)
and
S, (Q—Q) - ZI? <21’]" DSy (5) Noyiy (a’> /505 (13- 6)

Thus, in order to investigate the property G, % (f,c¢;) under the MSW approxi-
mation, it is sufficient to know the behavior of S, (Sqv), because of the known
property of G, (83;) in the previous appendix.

An integral form ol Ny, () is known as

1
Nt CO ety Ny P12y | = | S (@ (B-7)
(44 A 44

0
where Sy, (@) is Schlifli’s polynomials.®  This corresponds to Eq. (2-15). By

combining 5. (A-4) with the relations,®*®

2302 2L 1) a1 (§) Saury (UQ /mas

= (2/7) (&) for a>¢&, (B-8)
'f""-gﬁ'('/yf\fo (cew) o (Ev) for a>¢&, (13-9)

0

the final expression of S, (§) is
S, (Eqv) == g vy Ny (Ev) Ty (( vv) for a>&, (3-10)
1

Szdz Ny (E/2kR) T (2 /2kR)  for  a>& (B-11)

Py

This last expression just corresponds to the second term of ILiq. (4-7), which
is neglected under the MSW approximation.

Thus, we conclude that all G, (8,c;) can be neglected consistently under
the MSW approximation, if «>&. The problem, therefore, becomes whether
or not this condition is satisfied in our case. As an example, let us consider
the second term of the third Born approximation Eq. (5-26), which includes

G,V (3. This part of A(E, B) is written as A, (I, 8)

Ty

AW (E, B) = ( ) (27 1) ?(dﬂ)? ) 1‘[,,1(2(11 O§((Z7 % ada,

ker ; 2-a ) Do kry g,

% See p. 108 of reference 44), p. 284 of reference 42) and p. 41 of reference 45).
#8) See pp. 32 and 93 of reference /Ab).
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x S <;Z:3) g( i:lg[ia.;)l/z (;3(1) (B’ 2/»’([1’ 2]\’(22, 2%\1@3) . (B . 12)
. 337,3 ay — 73

We see that Eq. (B-12) requires the inequalities ay > > >>a, and r>r>a;.
On the other hand, the function G,(8:£,) in Ligs. (3-3) and (13-5) becomes
Dirac’s d-function under the MSW approximation. That is, in the case of
AN (E, #), we have the following inequality in the notation of this appendix:
>R =Ry = =0, . (13-13
We see that our condition «,>&, is satislied. As we have noticed below Iiq.
(5-29), we always have such inequalities in our potential scattering problem.
This inequality means that the first term of G, (#,) Eq. (B-1), also has no
contribution. Thus, we can conclude that I7,,(IX) which involves the combi-

nations [/4,0(p,) )% has no contribution under the MSW approximation.

Appendix G

The simplification of Jp,, (1)

We have separated the Born series amplitude A,,(FE) into J,,(E) and
H,,(E), Eq. (5-31). The function J,,(F), Eq. (5-32), includes n terms of
Jau1 (By), and is reduced to a very simple form, Eq. (5-34). We shall prove
this procedure.

Let us introduce the abbreviated notations:

I (0n) = Ju () 3o (k) 5 (C-1)
]‘{[(Om) :]L </5rm> 'le,(l) (/87”m> . <(: : 2)
Also we define three functions by assuming two positive integers p—="m:

7

1,(m, P) :g () M0 ) Ly (m+1, p), (C-3)
0
where )
L(ptan, p)y=1, for n=0,1,2-, (C-4)
Tp-1 . .
L(p—1,p) = \ (dr) M(p,): (C-5)
I” (7)77 /)) e § ((27'.,,,4_1) AJ(OM} I) [” (7” + 17 ;/))9 i ((«"'6)
T
where

I°(p-tn, p)=1, for n=0,1,2-, (C-7)
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17 (=1, p) = | ) Mo,); (C-8)
Tp-1
7"7}7,
I,Gn, p) = g (dryy ) M0, ) I,(m 1, ), (C-9)
7:,1
where _
L(p+u, p) =1, for n=0,1,2. -, (C-10)
-1 '
L(p=1. ) = | (@) M(o,): (c-11)
Tq
12 0np) = { (@) Mo 1,0m, ), (C12)
q
where
S LP(pa, p) =1, for n=1,2, . (C-l?))

By using these notations, J,,(f£) can be expressed as

¢]I,,n (E> - El,n (IE)

7L—-1OD m-l

= 3 (@) ML =1 | (@) Mo (C-14)
== .
. 0

T'm

X S (drm I—l)'](pm[-l) Im (7”' + 13 77’) .
0

By interchanging the order of integrations over 7, and 7,,, and after repeating
g times of interchanges, we have

S () — I, ()

=< R 7

. \ “m~q
=S {woreynam—o  @aieey  ©5)
0 )

X Loy (2 ==q, m) I (m-+ 1, 1),

where we have used the relations

22 n [22 Q

S ('in dvf(x, v) :X dv g dxf(x, v), (C-16)

0 0 0 i
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8 d.z:g dyf(x, v) ~S dy g dref(x, v). (C-17)
0 0 0 ¥ .
By pulting ¢g=m—1, we get
n--1 °
Jl,n (15) = I{:l,n (]i:) -+ 23 g ((Zr""” l)‘] <()m | l) A <‘)” + -Ivr 77') ]7:”-“; <J7 HZ) . ((J‘ ° 18)
me==1,
0

Now we rename the suffix of 7 in the cyclic order such as r, by 7,_, and
74 bY 7pemiq i g==m. Since in our notation we have

B (1) = | @) (0 171, ), (C-19)
0

we get a compact form

-1 e
i (I0) = 2] g (dr)d () I, n—m)L," (n—m--1, n). (C-20)
me==0 . .

TFrom the last factor, we have
1°(n—m-1, n) = g (dro-mi) M(Onor) Ly(n =m0 1, 2)
71

o 13 Tnem w0
[l T § J@nwo M wdma=minm. 20
rLoTe Tn-m-1 "'n—m“
By using the relation,

[<3) a o w

g clxg dyf (e, y) :S (Zyg dxf(x, v), (C-22)

a [ a ¥

and renaming the integral variables 7; in the order, we find that

n=)

1 ! 1 n- l ~
J/_’,L (1’4 = 2__, < >1’41,n

i
-1 0? n f'iz}_—xrl 7‘q . )
+ 30 S (dr)d (o) I, n—m-+1) > g (drm-mi2) M(On i) Ly (n—m~+2, n).
m=2 q=2
7y

(C-23)

Here we have used the special case p=0 of the following sum of the binomial
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314 ' T. Aduchi and 1. Kotani

coefficients,™

VN per N--p-t 1 o
! >}A > (C-24)
7l /) /) 'I" 2

where N, p, ¢ are positive integers.
Similarly, by using 5q. (C-24) with p=1, we proceed to the next stage,

, . o [au—1\
T () — >1a,,,,,,<1a>

=0 m
- °

L S(c[n),] (o) L7 (1, = 1 2) _ (C-27)
mugﬁ

womid (a2 g g | N

X ‘1 % (([/'71, e .'S) Ai[(pn - '5) 11 <}[, — 3’ 7‘1) ,
. 1 /. »
1 5

where we bave used the relation™

¥ip (IN--p t-g-—r N-l-qg 11 ,
3T ( >< ) (C-28)
r=p q g1

By repeating p times of the similar procedures, we get the general expression

Y AN
cjl,n(‘h) = }..,.J < >Ll,7b(]f‘)

m=={)

Y
/Lf_—L ()? o
4 D0 3(c[r_l)J(()J),l"°(l, e p) (C-29)
me—=p-b,
0
, Ty . V
w it el pee g\ -
S Z.,.* < > % <(Z}1’/L el el 1) Aj(()n “aml ;-J,) L (71/ =P l, 72) .
=2 .

p1

1

It is not difficult to sec that we have

et [ 72— 1)
3 < ) = ol (C-30)

=0 7L

and we arrive at Eq. (5-34).

#) Equations (C-24) and (C-28) can be proved by using the following relations:

(i[): ijD" )q{l)—1> (C-25)
and |
(q;]):(”“ | (C-26)
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