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~ :~. The potential scattering 

7i:)5 

I Iereafter, we shall restrict our discussion to the potential scattering of two 

spinlcss particles. The interparticle (optical) ]Jotential is assumed to be the 

central one, which is sectionary continuous, has at most r- 1 singularity at the 

origin, and satislies 

(:3 ·1) 

In tll is section, we shall summari;;,e the general formula lion of potential scat­

tering and show that 1m X (E, (1) =~O even in the region Ere> E>O. 

According to the standard textbook, the scattering amplitude f(E,2/<,Y) ]s 

expressed by 

(3·2) 

·where N is a normalization factor Nco::.: (2n) :l/3, the plane wave is 

cp(r, /i:) =J.Vexp(£le:·r), (3·3) 

and the potential F(E, r) is replaced by 

U(E, r) "c=c,2/I.F(E, r). (3·4) 

The wave fUllction vII) is a solution of the Lippmann-Scll winger integral equa­

tiollwith the Green function corresponding to the outgoing wave, 

*) Editorial note: For an editorial reason, the paper has been separated into two parts. This 

is the second part containing §3 to References. The first half was published in Prog. Thear. Phys. 

39 (1968), 430. 

*'1:) Present address: Department of Physics, College of General Education, Osaka University, 

Toyonaka, Osaka. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/3

9
/3

/7
8
5
/1

9
3
2
2
7
6
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



786 T. ,,'lelachi alld T.Ko/ani 

(3·5) 

Similarly, the reaction matrix R (E, 'lj:,y) is defined by*) 

R (E, '2/.:y) =:- 1 ((t'r 
'hr1V~j 

(:3. G) 

where <//[') (0-, l£) expresses the standing ,verve, a solution o[ the Lippmann­

Schwinger equation with another Green function, 

q) , (:3·7) 

P standing for the Cauchy principal ,,(llue. It should be noted that these 

f(E,2ky) and R (E, 2l.:y) are defined 011 the momentum shell (I == Ikil =k), 

and that R (E, 2l:,y) is real, if the potential IS real, i.e. Ere> E>O. 

As it is well known, these I(E,27.:y) and R (E, 2l:y) arc related by the 

Heitler integral eCluation, 

-We shall now introduce the restricted impact P;lfc1l1lcter reaction mairi;-< 

R (E, 8) defined by 
I 

R(E, tJ)---'2\yelyJ oCrJ:v)H.(E, ~21.:y). 

According to the gelleral thcorem,1),5) the inversion of Eq. (3·~) IS 

co 

R (E, 2/.:y) ~:c" .~ V1 elIJ J o C/1:Y) R (E, (-5) () (J - :y), 
.~ () 

0·10) 

and R (E, /1) IS self-projected by G 1 Ca, m as 

OJ 

RCE, 8) = \aclaG 1 (a I1)RCE, a). (3· JJ) 

Since the lIeilter equation Eq. (3·8) has the mathematical character similar 

to the unitarity relation for fCE, 2k:y) , it is reduced to the following form in 

terms of A (E, /3) and R (E, /-3) : 

w co 

II (E, ;1) = R (E, (1) + il.z ~ ctldctl \ ct2dct 2G 2 (fJa l a 2) R (1~, ct1) ,,'1 (E, ct2). (3· J 2) 

o 

In the case of the partial wave expansion, the corresponding Beitler equa-

'n The authors arc indebted to Professor Nt Kato at the University of Tokyo for suggesting 

them to introduce the reaction matrix in order to simplify their treatment. 
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..c1n 1mj)ael Para meier RCjJl"csentatioJ! of the ScaUcrilll4'Prob/cm 78'1 

tion becomes a simple algebraic equation, namely 

Al (E):--= R/ (E) / [1 --- ild?, (E)], ( ") ·1'» ,) ,.J 

where Rl (E) IS deiined by 

I. 

Rl (E) = 2 \yc/y 1)/. (I - 2:l) R (E, 2/(~v) . 

o 

By expressing .. 1l (E) in terms or the phase shifts (Yl (E), we flnd from Eq. (3 ·1:3) 

that 

(
",> 'lh) ,)' , a 

We have seen that the HeiLIer equation for ..c1l (X) IS simpk~, hut j t is not RO 

for A (E, /-i). This difference comes mathematically from the fact that the 

Legendre function can be modified to be orthonormal in the physical region 

1~:y2:0 and has a simple addition 1heorcm, while the Bessel function J o((3y) 

cloes not. 

Let l1R solve E(l. (:3 ·12) by iteration procedure by assuming that the Rerics 

is convergent, c.£. reference 31). We find that 

co 

.fl(E, d)c
1

j;jU/;;;)IL lq)l\aJeiCtJR(H, aJ]GnC/-ictt· .. a n). (:3 ·16) 

o 

Here the flrst: term (n,-"1) in Eq. (;)·]6) IS rcduc:ed Loasilllple term R(E,(1) 

in Eq. (3 ·12) by the relation (:3 ·11) . 

In the above derivation, no rcstriction on potential is assumed. If the 

potential is real, then R (E, (3) is real. This is because R (E, (i) is also calcu­

lated Gy 

(::l ·17) 

and R~(E) is real in the region Erc>R>O. III this ease, the decomposition of 

A eE, (3) into the real and imaginary part;) is easy; 

A (]i,;, (i) =-'C (Ilk) [AlJdtl (E, (3) + iAcvcJl (E, (3)], 

\vllcre 

(3·19) 

and 

(3·20) 

Thus, we find that 
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788 T. Adachi and T. KaLani 

tan [Re X (E, 8)] :ecc: [ (<; -1) + 2Jl c\Cll] /2L1ocld , (3·21) 

and 

(3·22) 

We see that <; IS not ell ual to unity in general, namely 1m X (E, (3) =,\=0. 

§ 4~. l'he first Born term and the MSW approximation 

In this section, we shall consider the properties of the iirst Born term 

under the MSvV approximation. The first Born term is expressed in the fol­

lowing form: 

CD co 

=-= - ~ ada Jo(Ja) ~rdrU(E, r) [r3_([2] 1/2 (4· 3) 

(L 

CfJ 

.-:2h~adClJo(Ja)Xt;(E, 2ha) , 

u 

-where Xc IS the eikonal phase deGned in Eq. (1- 21) and we have used the 

relation*) 

". 

sin (dr)_ \" ! J- (_1 ) ( .2 2) - 1/:] . -- .. - -- aca 0 IJel 7-([ 

L1 . 
for L1~':::O . 

u 

It is an interesting fact that the JJrst Born term can be expressed by the form 

of the impact parameter expansion itself. This character is utilized by 1s1am32
) 

to define an optical potential. 

According to the definition of A (E, (3), Ell. (1·13), the iirst Born approxi­

mation of A (E, fJ) is given in the form 

co 

An (E, (3) = 4h ~adaGl ((3, 27w) Xc (E, 27w). 

The order of magnitude of the upper value of the integral variable a is the 

characteristic length (R) of the potential, as shown by Eq. (4 -3) . Then, we 

shall rewrite the definition of G 1 (2!?b, 27w) , Eq. (2 -2), by introducing the new 

variable z = 2hRy, 

*) See p. 7 of reference LJ;1). 
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All ImjJact Parameter RejJFe.wmtatioJl oj' the Scattcrinp:; Problem 789 

In the short vi'avelength region kR';;:> 1, we can neglect the second integral, if 

Xe (E, 21w) is not especially large for a<R. Under tIle conditions on our potential 

mentioned in § 3, the integral in Eq. (4·3), 

co 

~rdrU(E, r) (r2 - a2) --1/2 (4· 8) 

n 

is convergent, i.e. Xe (E, 21w) has allnite value for a11 a. 

property of Dirac's 0 functioll~j~) 

Thus, by using the 

co 

( _ ( 1 ) 1/2 " ) xdx J o (a:r) Jo(b.T) = _. o (a-----b) , 
. ab 

(4·9) 

o 

we get the following approximated form: 

(4 ·10) 

This is the simplest case of our MSW approximation, EC]. (2·40). 

Under the MSW approximation, the first Born term AR(E, (3) becomes 

o 

=-= __ 1 (dzV[E (b 2 _I.Z2Y/2]. 
2E.) -, 

By recalling the discussion in § 2.7, we find from Eqs. (4 ·11) that 

Xsw(E, (3) = Xc (E, (J), for kR';;:> 1. 

(4·11a) 

(4·11b) 

(4 ·12) 

We see that, as it is expected, Xc (E, (J) has generally some singularities in the 

complex {3 plane, while the exact X (E, (J) has not. Furthermore, we find from 

Eq. (4·4) that we have 

Xf (E, (J) = Xe (E, (3), for a11 energy. (4 ·13) 

This is just Eq. (2·84), vvhich we are interesting in l1nding it. It, however, 

should be noted that this relation X]= Xsw is obtained from the first term of the 

Born expansion, but this result does not mean that it guarantees this relation 

for the higher expansion terms. We shall show in § 5 thatEq. (4 ·12) can be 

proved for every higher terms, while Eq. (4 ·13) is not. In general, the first 

Born approximation is mathematically the 3-dimensional Fourier transform, 

which is equal to the ordinary Hankel transform if the potential is symmetric. 

However, the higher Born terms are not related with the Fourier (or the or­

dinary Hankel) transforms simply. In this sense, we understand that the result 
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790 T, lldacill' ({ nd 7'. I{oiaJli 

'Xl =--= 'Xc Eq. (4·13) is a special character of the first Born term. 

It is -worthwhile to see how various relations in tJ1e previous section are 

simplified under the MSvV apprOXil11<1l iOll. The Heitler equation itself Eq. (3·] 2) 

becomes 

(4·] 4) 

If there is no opening reaction channel, the approximated phase function 'Xsw(E, (5) 

is rela1ed to R 8W (E, (]) in the simple form: 

R8 IV (E, (]) == 1cm [Re 'X8 IV (E, (])] /1-:, (4·15) 

(4 ·16) 

These are the same forms as 1hose il1 1he partial\vave expansion, Eqs. (3 -13), 

(3·15) and (2 ·17), respectiyeJ}r. the laUer two are consistent vvith the solution 

of the Heitler equation obtained by the iteration method, hec(1use the solution 

Eq. (;3·18) has 21 simple form 

and 

(;1-18) 

Since Eq. (4 -14) is directly derivec1 fro III the 11eitler equation by assummg 

lheMSVV <lj)]Jroxim<Lliol1 only, the c()]wcrgence condilion for the iteration 11Iethod 

is not serious. 

Let liS inlroduce the i'urth(;r [lpproximatiol1 sl1ch as 1he lIse oflhe first Born 

approximation for the rc~\ction 1l1iltrix R eE, 2/"y). By lhe definition of R eE, 2/~y) 

Eq. (~3·()), the firsl Bon] term of R(F, 8) is given hy /17J(l~, (1), Fq. (ii-G). 

Combining this first Born ter111 oj" R (E, (-5) under the MSW approximatioll with 

Eq. (4·14), we get .ll(iJi(E, (J) Eq. (1·2[-)). Tn the C[]SC of the reed potcniial, 

the total elastic cross section is expressed under i hese approximations as follows: 

It should be nol ed l11nl Bl[]ll ken beeler :l1ld C olc1bcrgcr's 1"cslll1 22
) sho"ws I hal 

(4·20) 

by C0l11j)<lr111g As1v(F, (J) Eq. (2·7G) wilh Alw(E, (5) Eq. (1-2;)). If we 'I})­

proximate the c1enominalor of Eq. (4·19) by unity, we obtain the moc1ified 

Born approximation, i.e. £In ,SlV(E, in Eq. (4·11): 

This 1S essentially "whal has been obtained j)\, Gillllll.\l) .As it 1S well knowll ill 
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An Im/J(lct ParaIJlctcr RejJ}"csclltatio" of the 5'catter£np; Problem 791 

the general case of the reaction matrix, if A (E, (1) is calculated through R (E, (3), 

it satisfies the unitarity relation automatically, irrespective of any approximation 

of R (E, (3). Furthermore, the second Born term of R (E, (J) vanishes under 

the MSW approximation. In these sense, although the\veak potential approxi­

mation Eq. (1- 5) is employed, the former approximation Eq. (4 ·19) can be 

used as 1he next <lpproximatiol1 in the lo\ver energy region where the first Born 

approximation fails to reproduce the experim ental results, c.L ~ 8. 

~ 5. The evaluation of the impact para:mcter amplitude, A (E, fJ) 

Our problem is to find a simpler relation between Xsw(E, (5) and VeE, r) 

under the MS\V approximation. For this purpose, it is eonvenient to calculate 

A (E, (3) itself rather than R (E, (3) . vVe first exjJress the partial wave amplitude 

Al (E) by using the Bor11 series expansion of </} i) (r, fa.) , and then obtain A (E, (1) 

by Eq. (2· 16) . 

Let us def! ne the partial wave expansion of rj}!) (r, l;,) as fo]]o\\,s: 

</}:)(r, 1.,) =c4TCN~ y/n(k)Yt'*(r)/'</)/I)(J~, r). (5 ·1) 
i, ?n 

Similarly, the plane wave q; (r, Ie) is expanded by llsing j[(J?J') 111 the place of 

</h(-I) (E, r), where j[ (z) is a spherical Bessel function of order 1. 'T'he L,ippmann­

Schwinger equation becomes 

en 

(lU'l) -I ~ (dr2) ~ g{(l)(r], 7"2)<j)/I)(R, r 2), (5·2) 
(I 

( 
r: .:» 
.). J 

and the Green function G I (Ir1-r21) Eq. (:3·5) is expanded as 

r I) -- ,-I \,r?n ('r~ ) \7 m,* (r~ ) g- (I) (J' 7') 
2 ---- L: I " 1.1 I- 2 1- b 2 (5·4) 

",?n 

:lnd 

ro 

gr l
) (r], r:) = 2 r (l(1c; jt (qr1 ) 9 1 9 )/ (qr2) , 

TC ,) (k" +- is) -- (( 
o 

(5·5) 

, .- I' jl (kr]) h/1
) (lZ7'2) 0 (1'3 - r1)-1 

-=-:. (-- 71.:) . 

-i- frY) (Izrl) jt (/;:1'2) 0 (r1 - J'2) -

(S· G) 

Here h/1
) is the spherical Hankel {unction of the ilrst kind and 0 (x) IS a step 

function. The solution </h(+) (E, T l ) is obtained by the iteration method. By 

dcfin ing the Born series expansion in the form 

ro 

d) (I) (F J') = ,----. (/)(1) (T? J') 
'i I, "'., .LJ l.j U L~", ., (5·7) 

It . ~ I 
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792 T. Adaclli and T. ]{oiaJli 

and aSSUl1lll1g its convergence, '.ve geeO
) 

CD 

(H~?(E. r1)::c-:: ( ~~i)nl.\ (dr.J1(z,'lI1(rl, r.Jjl(l?rn) , (I)·8) 

where 

00 

K"n~l (rl , rn) cc= •• \ (dr'lL I) K I ,n2 (r l • rnJ ) 1(1,1 (rn 1> r n ), (I) . 9) 

n 

7:..' (J' ;.) -- fJ ( [ ) (7" J") / ( ---~~ l",) 1",-/ , 1 J ' 2 ----- t /, 1 ., 2 f"" (I)·10) 

and 

(5 ·11) 

Correspondingly, the partie]1 '.vave amplitude AI, (E) is expanded 111 the form 

CD 

_/11 (E) ~=:c ~ At,?/. (E) , (I) ·12) 
" 1 

where 

OJ 

A"n (E) = (- ~) ~ (drl).il (l?rl) (/A,~,) (E, r 1) (I) ·13) 

{) 

co w 

==: (-- ~) (--ly~1 \ (dr]) \ (drn)j/(l?rj)K1,nl(rl, rn).i/(l?l"n). (I) ·14) 

Il 0 

The impact parameter amplitnde A (E, /1) is obi,]inecl by 

00 

J1 (E, /1) = ~ An (E, (J) , (5· ] 5) 
It I 

where 

Let us consider the first few terms as eXLllllPlcs. The first Born terl11 1S 

the well~known one, 

co 

A1,1(E) = ~-~~ ~ ~ (dr 1)jr(lO"1)jl(l?rl ) (5, 17) 

{) 

(5 ·18) 

CD 

== 2 ~dalJ211~1 (27w 1) Xi! (E, 2l:( 1) , (5,19) 

o 
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An Imj)act Parameter Rej)resentatioll of the Scattering Problenl 79:3 

where we have used the definition of Xc ECJ. (1· 21) and the relation*) 

(5·20) 

The second Born term is 

co <Xl 

A I,,2 (E) ~c: (--- l~) ( -- 2i) ~ (dr}) I: J" (krl) J 2 ~ (dr2) jl (hr2) 17 l (l) (l~r2)' (5·21) 

o ~ 

Since we have the follmving relation**) 

(5·22) 

then we get 

co 00 

A2 (E, (j) c::c~ (--- ~) ( -- i) [ 81~2 ~ da1 Xc (E, 2k(1) ~ da 2 Xe (E, 21w 2) 

o al 

(5·23) 

'Nhen the MSvV approximation is applied, the second term has no contribution 

because of al = a 2 = (j/2k. Thus, 'Yve flnd that 

(5·24) 

where we have used the relatioll 

(5·25) 

We shall consider the third Born term, which offers the new type of 

com binatioll, [/1.1(1) (l~r) r. It 18 

co 0:) co 

4 ~ (dFI) [jt (PI) J 2 .\ (dl" 2) h/
J
) (P2) jt (02) ~ (dr 3) h lY) (P3) Jl (P:l) 

( 
1 ) 0 1'1 '1"2 

/ll,3 (E) = - > (--- i)2 
!\.." 00 co OJ 

-I 2 ~ (dr1) r jt (Pl>:P ~ (dr2) [Jz (P2)] 2 \ (dr3) [II/I) (rh) ] 2 

o 1'1 r3 

(5·26) 

'I) Equation (5·20) is given on p. 21 of reference 44). It is easy to confirm that Eq. (5 ·19) 

is consistent with Eq. (4,4) within the physical region (1)Y2:0). However, fn(E, 2ky) Eq. (4·4) 

has a value even for y>l, while, if in(E, 2ky) is obtained from Eqs. (5·19) and (5·16), it is equal 

to be lI,ero for y>l; see Eqs. (2·69) and (1\<\). 'J'his special character for y>l is true for every 

11 igher Born terms. 

**J See pp. 21 and 102 of reference 11)" 
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79;J. T. Adachi and T.KoiaJli 

where 

Pj = l~ri . (5·27) 

The function [h l (l) (hr)]2 CI'111 be expressed in the £orm,*) 

(f) 

1
'-/ (1)(7 )'10 --2i~ da '(I)' I) 

/. I?J"" .'~.:: , II" ,(21W -, l _ 1 / 0 ') .. _I 1 I. , 
In' 'Va" -" r" 

(5·28) 

r 

where 1-I2Wl (z) is the ordinary IIankel function of the first kind. Thus, when 

we calculate As (E, (3) from A z,3 (E), the first term of Eq. (5· 26) gives the 

com bination G 3 (f], 2ha1 21w 2, 21wg) similar to the previous cases, while the second 

term introduces C 3 (1) (f], 21wb 21ul 2 , 21w3) , 'which is defined as 

Gn(7n) ((Jofi]'" fin) 

n-1n[ J (O)J n r- lI(l) (D)J ::-: I.;z2 (2llI) II . 2111 Pi ._)1. 2l-I-1 jJ j . 

1.,-0 _ f].; J-n-?n-Il - f]j -
(5·29) 

It should be noted tlla L Lhis new type appears only for n?~3 and }l-- 2~1Jz., and 

that there is at least one .12111 (f]i) \vhose argument f].z cannot be larger than the 

f]/s of TL}?J (f]j). Under the ,MSW approximation, we have 

Gn(m)(f]of]l···f]n)~Gn(f]of]l···fin)' for hR-->oo. (5·30) 

The proof will be given in Appendix B. By appJying a1most the same argument 

as for the seconc1 term of l12 (E, (J), we shall again 0111 it the lerm which includes 

[hz(l) (/-?ruJ ] 2. 

[n gelle1"<l], we C,l1l decompose Il l ,n(R) into [\yo parts, 

where .lz,n (E) consists of combinations of both [jl. (Pm)] 2 and jl (Pm) hY) (Pm), 

and .fIl,n (E) includes at least one com binatiol1 [h/ 1
) (Pm) r. When An (E, (3) is 

derived from lIl,n(E), it inc] udes G lI(m) ((1, cr's). According to the similar pro­

ecdure, '\ve need not l~lLe into aecotll1t (he conlrihutioll from T[I,n(E) ullder the 

lVIS\lV approximal ion. 

'rhe first (errn .ll,n (E) is expressec1 in the form 

co 

J/',n(I~) =c Ef"", (E) +:~J ~ (drj)jl.(PJ) hl(l) (p,) 

rl 1"1Il-1 rm 

X ~ (dr2) Jt (P2) lz l (1) (r):,) '" .\ (ch-'m).il (P.m) h/ I
) (Pm).\ (dr.1Il 11) [.if, (Pm1]) ] 2 
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All ImjH[ct Paramctc/' Rej)rcscntatioJl of tllc Scattering Problem 795 

00 

(drm+2)h/1) (P?/1i 2)j,,(Pmr2) ... ~ (5·32) 

,vhere 

00 m w 

E"n(E)~~ (dr[) [jl(PJ)]2 ~ (dr2) j/,(P2)h/1
) (P2) ... ) (drn)jz(Pn)lz/l) (PnY. 

o rt 

As it will be s11o\vn 111 Ap]icndlx C, we can prove tha1 

J[,n (E) =:. 2n
-

J E 1,n (E). (5·34) 

By replacing j[ (Pm) h l (1) (PrJ by the integral form, it IS easy to confirm that the 

jl (P·m) III (Pm) term has no contribution to Jl,n (E) under theMSW approximation. 

Thus, it is enough to consider the simple expression, in which the combination 

of it (Pm) h,(l) (Pm) is substituted by [jl (Pm) r. This part of JI,n (E) will be calleel 

.J,:~2 (E) . By using Eqs. (5·25) and U) ·19), we IInd 

.J (0) ( T/') ,=- 2n · 1 T? (II) (Ji') 7-,n 1"'.J .-. .L~'Il,I,-I 

(G·3() 

(5·37) 

F'in:llly \ve !?;ct 

m 

>< [fl; ~ajda/x,,(E, 2/wj)]Gn ({:?, 2Iw'1' ···2kan ). ( r: <)8) ,). d( 

By applYl11p; 1heMSW <1])proxim.lI ion, w'e get 

] CD (2 ·)n ... 1 

11 (EI 0) ...... : ',' '\., I ['I (T;' O)"j 'it 
S rv -', i) - ---.L.....J _Iv e 1 ~, J) _ 

!~ n=d 71 ! 
(5·39) 

(5·40) 

Thi~; is just the result obtained under the eikonal (or semiclassical) approxi­

mation, Eq. (1·20). By comparing it with Eq. (2·76), we conclude that the 

relai ion Xsw(E, {]) == XI! (E, (5) Eq. (4 ·12) is correct for all higher Born terms. 

~ 6. The dispersion relati.on 

The <lllalytic properties of the impact panlllH'ter amp1itude ACE, (5) \vilh 
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796 T. Adachi and T. I<:otani 

respect to (3 for the fixed physical value of E have been discussed. In this 

section, we shall study the analyticity of ACE, (3) with respect to E for the 

fixed value of (3. On the other hand, Blankenbecler and Goldberger have 

derived a dispersion relation for lICE, b) for the fixed b. By combining the 

approximate unitarity relation, they have found that the solution of their dis­

persion relation is A Gn CE, (3) Eq. C1· 25) rather than the eikonal form AswCE, (3) 

Eq. C5· 40). In order to investigate this difference, we sha11 approximate our 

exact dispersion relation for the frxed (3 by applying the MSW approximation. 

In this section, the full scattering amplitude is expressed by fCE, t) instead of 

fCE, 2ky) , where t= - LJ2. 

In order to guarantee the dispersion relation for fCE, t), Our discussion will 

be limited to the potentials which satisfy the conditions 

OJ 3£' 

)r
2
drIVCE, r)l<oo and ~ rdrIV(E, 1')1<00, (6·1) 

)If 0 

where M and M' are finite positive numbers. We shall further assume, for 

simplicity, that there is no bound state and that the potential can be expressed 

by superposition of the Yukawa potential, 

OJ 

TV(E, r) = .)dm uCE, m)e-np
" (6· 2) 

where 'Jn O-
1 is the range of the potential. We shall assume that u (E, 1n) has 

no singularity in the complex E plane. 

Under these assumptions, it has been proved
34

) that the Mandelstam repre­

sentation for fCE, t) can be 'ivritten in the form 

where 

OJ 

~
dE' Im fCE' t) 

fCE, t) = fnCE, t) +--- -,---'-:--, 
rc E -E-ze 

o 

OJ 

fn CR, t) = - 2/1 (dm u CE, m)--!-- , 
.) 1772 

- t 
1110 

p CE, t) being the spectral function. 

(6· 3) 

(6·4) 

(6·5) 

In order to get the dispersion relation for A (E, (3), it is convenient to 

discuss the first Born term fn CE, t) separately. When the definition of ACE, (3) 

Eq. C1·13) is applied, we encounter an integral,4) 

:1 

!'vICE, lJZ
2, (3) :-~.( yd:-/ ,10 C(3y) __ 1 

.) m 2 
-[- 4k 2

y2 
() . 

(6·6) 
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An ImjJact Pararneter RCjJrcsentatioll (~f the <'-y~calteriJlg Problcnl 797 

The function M (E, t, (3) in our impact parameter expansion corresponds to the 

Legendre function of the second kind, Ol (1- 2y2), in the partial wave expansion. 

[See Eqs. (6 ·14) and (6 ·18) .J We perform explicitly this integral and get 

the result, 

--. 2 1 00 (- ]y~ ( (3 ) 2n n:.~ (-- 1 Y ('In) 27 (' 1 .) r'I-1 M(E, m , (3) = ~ .. . ..... ~ .... .... .. 
8 11=1 (n!y 2 '1'=0 (n-r) 2 1?2 

-+ 1 J
o 
(~!!lP_) In 141(+. m

2

1. 
81?2 21? I 1n2 i 

I I 

(6·7) 

From this expression we may read off the analytic properties of M(E, m 2
, (3) 

by regarding it as a function of the complex variable E. There is a cut along 

the negative real E-axis, which comes from the logarithmic term. In fact, the 

discontinuity of M (E, lYl
2

, fi) is 

;i {M(E-!- is, m
2

, (3) - M(E - is, JJl2, (3)} 

:==.: 7C 2 J o [ • . (311lz] 0 (- /-:,2._ m 2/4) . 
8/-:' 2--/ ---J? 

(G·8) 

The cut from the Born term In(E, t) nms from [---2tt(mo/2Yl to (--00) in 

the complex E-plane. Furthermore, we see that M(E, m 2
, (3) becomes to be 

zero at lEI = 00. Concerning the second integral in Eq. (6·3), if we substitute 

t
f instead of ln2 in Eq. (6·6), the similar procedure can be adapted. Thus, the 

second integral has a cut from (-- 2,am02) to ( .... 00) in the complex E-plane. 

We may now write the dispersion relation for A (E, fi) from the above 

analytic properties in the complex E-plane ;*) 

-2#\?n
02 

dJ.~/ .. JA .. (E', .. (.1)._I" 00\ dE' Im fleE', (3) 
A (E, ,9) == lin (E, /1) + . , 

7C E' --E 7C E' --E-i2 
o 

(G·9) 

where the Born term An (E, ,9) IS reexpresscd in the form 

-#1no2/2 2 V:"2,ult' 

An(E, (3) = 
It 

\ 
dE' 

7C E' --E 
( dm (f(E', m) [ n ,Jo(i1 . r m e • __ )], 

J 4/JE' 2 v - 2,aE' 
rno 

(6 ·10) 

and the discontinuity across the left-hand cut is 

-8#E 00 

JA (E, (3) cc-:= 1, ( elt'.f
o 
(fij t' ,) (dE' p (E', t') 

81LI'.. J -- 81tE J 7C E' --- E - is 
I 47n02 0 

(6 ·11) 

*) This form of dispersion relation, of course, can he derived by a very direct procedure, which 

is similar to Eq. (252) on p. 615 of reference 23). 
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T. Jl daclll and T. l{otalll 

The dispersion relation for .11 (E, fJ) has the same structure as for the 

partial \vave amplitude, Al (E). It, ho\vever, is unnecessary to introduce the 

kinematical factor in order to guarantee the threshold behavior for the fixed (1, 

in contrast with the case of the partial wave amplitude. Since the unitarity 

relation for A (E, (3) has the same form as for .Liz (E) with the opened reaction 

channel, we lllay solve the dispersion relation Eq. (6·9) by using methods pro­

posed by Froissart,35) J:"ry and WanlOck,oG) and Islam and Kang. 37
),16) As it is 

well known, in order to solve this dispersion relation, we have to assume both 

the discontinuity across the left-hand cut ,mel the values of e. We shall not 

go further to discuss it here. 

In order to investigate thc propcrties oJ the dispersion relation ullder the 

MSvV approximation, it is convenjent to start hom another form of the lViandelstam 

representation, 

where 

(f) 

I(E, t) "-"In (E, t) 
( dt' il t (tf, E) 

j n t f ~-- t 
'bno~ 

(1) 

1 ( II:) :..::.: ~ d~i ./[ t, _ ~._ 

/" 
() 

() (EI, t) 

E'-- E-- ic 

(6 ·12) 

As it was dOlle by 131allkenbecler and CoJdberger,2~) we shaH usc th.e following 

relation :*) 

CD 

[' ~ __ [ c= ~adaJo (a V - L) A:'o (aJ t'), [or .RcJ t'>lml J -- t I, (6·111) 

o 

where ]{o (,::::) IS the modified Bessel lUllction of onIer zero. When lhis relation 

is substituted into Eqs. (6 ·12) and (6·4), the dispersion relation for A (E, fi) 

can be reduced to the form 

en 

Ll (E, fJ) = ~adaGl ((J, 2/w) 

o 

W W 

>< [ -- 4/1 j dJ7z (j (E, rn) 1(0 (ma) -+ ~ (~f .Lit (ll, E) Ko (a V t') l 
'1110 4;,,0'1 /e 

(6·15) 

where the first and second integrals are defined for (mo/2» 11m l: I and 7no> 11m!? I, 
respectively. This equation means that A. (E, (3) is to be projected from the 

quantity in the square bracket, which may correspond to IIg (E, 2lur, q> 1) of 

*) See p. 137 of reference 44), 
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.Lin Imj}(u.;t Parameter ZxeJ)rescnLaLion of tlte Scattering Problem 79~) 

Eq. (2·71) .*) 

If the MSW approxillwiion is applied alld the poten1 ia1 is real, independent 

of energy, then the approximate dispersion relation becomes a 'Vcry simple form: 

CD 

A ,(E 9) ::::.:-<,1· ,(E /.]) _I ~df{' 1m .JiHG(l{', 8) . 
Be, ,/ . H,8JI ,I }_" }.' • 

• TC ~ -- ,,--- zc 
o 

(()·21) 

As we shall show it, the solution of this equation IS A RG (E, (]) Eq. (1·25). 

Owing to the a-functional character of G 1 (,3, 2/:za) under theMSW approximation, 

the integral variable a in Eq. (G ·15) has been replaced by ((5/2/(') = h. The 

Born term can be reexpresscd in the form 

00 

4P ) )-r) AJI,SlV (E, 2/:zb) _cc-' --- ? dm (j (nl Ko (mb , 
4/;z" 

(Cj·22) 

?no 

IJ 

~E.f lbVLvli-l-z
2

j, 
--co 

where we have llsed Eqs. ((1·2), (1· 21), and t.he rclation,**) 

((j·2d) 

Since A n,8W(E, /3) is real [or the physical vaIucs o[ R illld (3, thc discollLinuiLy 

,;,) The consistency between Eqs. (6·9) and ((j·15) is easily verified as follows: As long as 

Re (m/2k) >0, we have, [See p. 2:3 of reference 14).] 

co 

KoCam) = ~ ydyJo (2kay) /[y2+ (m/2/() 2]. 

u 

Since we have a relation5) 

OJ 

~ rxdrxG1 ({3a;)Jo (ay) =.10 ({3y) 0 (1-y), 

Eq. (6· (i) can be expressed in the form 

<Xl 

M(E, 1ll2, (-3) ~'adaGJ({3, :!'/w)KoCam). 

o 

It should be notcJ that we have a relation4
) 

M(E, m 2, 2kb)4~2Ko(mb) -LeE, m 2
, ~:!.l,b), 

where L(E, 1112, {3) is the complementary function of M(E, m 2
, {3), Eq. (ij.()); 

0:; 1 
LeE, t, {3)===(' ydyJo((1y) . 

.l t+ (2ky) 2 
j 

These are a set of examples of ii (E, {3), II] (E, (3) and B f (E, (3) m § 2Ji. 

**) See p. 1 :38 of reference 13). 

((i. 17) 

((j. JB) 

(6,19) 

(6-20) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/3

9
/3

/7
8
5
/1

9
3
2
2
7
6
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



800 T. Adachi and T, ](()iani 

across the physical (positive) E-axis is defined by 

00 

1m A J3G (E, (j) =1 \ elt' p (E, t') K:o ((1) t' /2h). 
4e ) TC 

4.1n02 

(6·25) 

Thus we see that the dispersion relation for Ana (E, (3) has only the right-hand 

cut arising from At (t, E). By assuming the approximate unitarity relation 

Eq. (2·75) for all energies, the dispersion relation Eq. (6·21) was solved by 

Blankenbecler and Goldberger. According to the standard method,38),23) we shall 

define 

L(E, /J) ~~AB,sw(E, (3), 
ABG(E, (3) 

(6·26) 

which approaches unity as IEI->oo, and is a function analytic 111 the entire cut 

E-plane. Here we assume that E.L1BG (E, (3) has not the zero. Any such func­

tion can be yvritten as 

vvhere 

Then, we find that 

co 

L (E, (3) = 1 + \ dE'fIu L (E', (3) 
j TC E' -E- £s 
o 

L (E, (J) =: 1-- iXe (E, /]). 

Finally, we get the form of AnG(R, (3) given in Eq. (1·25). 

(6·27) 

(6·28) 

(G·20) 

We have now a question: vVhy do we get Ana (E, (J) rather than the cikonal 

form Asw(E, (3) under the sallle MSW approximation? Whel1we have derived 

Asw(E, (3) in § 5, we Grst have obtained the exact solution of the Lippmann-­

Schwinger equation by the iteration method, and then applied the MSW ap­

proximation to the final solution of A (E, f]). As it was shown in ~ 4, the 

solution ABG (E, f]) has been obtained by using the first Born approximation 

for the reaction matrix. It is the simplest solution satisfying the approximate 

unitarity relation Eq. (2·75), which includes even the contribution from the 

reaction channeL On the other hand, in the case of Blankenbecler and Gold­

berger's derivation, the I\/[SW approximation is applied to the dispersion relation 

itself which is the starting point corresponding to the Lippmann-Schwinger 

equation. As a result, the analytic porperties have been changed appreciably 

when Eq. (6 ·15) is approximated by Eq. (6·21). It will be shown in the next 

section that Asw(E, /3) gives the expected result for the scattering by the square 

well potential, while ABa (E, (3) does not. 

Finally, we sha11 mention the dispersion relation for the Gxed b. In this 

case, .11 (E, 2!?'b) have an additional singularity at lEI = co .4),16) This singularity 
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An ImjJ([ctParameter RejJresentatiuJl of tlze Scattering Problem 801 

arises because J o(2/"hy) , which is an entire function of E, h.<1s such a singularity. 

This fact can be seen explicitly in the function, l'vJ(E,m 2
, (-3), Eqs. (6·6) anel 

(6·7). Therefore, we need make more subtractions to get the dispersion re­

lation {or the fixed b case under the same conditions as for the fixed {3 case. 

At a glance, it seems that Blankenbecler and Goldberger have derived the dis­

persion relation for the fixed b. This is because, in the high energy limit, we 

may neglect a contribution from 00>J>2h, namely theL-term of Eq. (6·19) 0 

This procedure corresponds to the .MSW approximation, as it was discussed in 

§ 2.7. If we neglect the L-term,we have not the singularity at lEI = 00, and 

arrive at the same dispersion relation even for the fjxed b case: VVe would 

rather have a new singularity at lEI = 00 for the fixed {3 case, because of 

1(0 (m{3/2h) of Eq. (6 ·19) 0 

~ 7. Scattering by a squ.are well polential*) 

VVe shall apply our results to the scattering by the square well potential: 

VeE, r) =-= VaO (R .--- r). (7 ·1) 

As Clauber 13) has shown it, OLlr eikonal phase is expressed Hl tbe form, 

XI; (E, (3) = a [1·_· ({3/2/d<YJ J/20 (2/:R --- (f) , (7·2) 

'where a is defined by Eq. (1·2). We see that 11sw(E, (5) has a cut in the 

complex (3 plane with the physical value of E. 

The scattering amplitude in this case is expressed as, 

'2kR 

Imfsw(E, 2hy) = \ \ (3d{3Jo((iy) {1--COS[2ctrjl-- (. ~»)2J~ 
4k ' 2/'v[\. J 

(7·3a) 
() 

, 

= (/?R
2

) [; J 1 (z) --- .~ :cd.cJo (zx) cos (2a .Jl-- :;:2) J (7 . ~)b) 

o 

and 

1 

Refsw(E, 2hy) = - (hR2) \.xd.:cJo(zx)sin(2ct.Jl~--.:I:))' (7·4) 

o 

where 

z =~ 2kRy. (7·5) 

The first term of 1m j~w(E, 2h~v) is familiar in optics as characterizing the diffrac­

tion scattering from a black sphere. This" shadow" scattering, therefore, de­

pends on Rand h, but is independent of Va' as it is expected. The remaining 

*) The authors are indebted to Miss S. Okamoto and Miss M. Yoshii Jor discussing the contents 

of this section. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/3

9
/3

/7
8
5
/1

9
3
2
2
7
6
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



802 T. i1daclzi alld T. ]{otani 

terms express the scattering by (he potential, a11d are the complicated functions 

o[ 1'oancl R. The angular clistributi'oll [or (his case vvill be discLlssed elsewhere 

in connection with our general cOllcl w:;iolls in ~ 2.8. 

\1\1 e shall co'm pare the total cross sections obt.ained by various' approxima· 

tions mentioned in ~~ 2.7 and 4. Since the first Born term is real which does 

not satisf)' the unitarity relation, \\'e calculate tl]e tOlal clastic cross section, by 

Eq. (2·52), 

(Jc!(lJ)(E)=c,2a3!'j (' J )3'1 sin (t/l:R) ,sin
2
(2/d? .. )]. (7.(;) 

nR 2 L 2/:R, (2/d~)3 (2/(,R)4 

By applying the MSW approximation, as we expect, Eq. (<1·21) becomes 

In the case of Blankenbecler and (;oldberger where the impact parameter reo 

action matrix R (E, /3) is approximated by the first Born term, ECI. (4 ·19) 

becomes 

1 
'J In (l 

cC 

{ 

'J ;J 
2et,'" _ .. ') 

= ;) 

,:\., 

a~) " 

ror 1 , 

for a->oo . 

The eikonal form llsw(E, d) gives us Eq. (2.79) ;1:3) 

(J~;;/g (E) := 2 I' 1 ._ 2 sin (2a) , cos (2a) 

rrR 2 a 2 a (1;2 

\ 'J ') 
,j 

a\ [or 1 ~cc '" , 
9 

-l 
2 , for a--> 00 

(7·8) 

(7·9) 

(7 ·10) 

(7·11) 

The nUlllerical results for these cases are shown in Fig. 1. The order of the 

validity of the MSW approximation may be seen by comparing (j"ii'dn) (E) [case IV J 
'with the exact ilrst Born term (Jj'!) (E) [case III] in Fig. 1, because they give 

the almost same numerical results even vvhen hR = 2. We see that the result 

obtained by using only the lVISW approximation, cTt~:~;li) (E), leads to 2nR2, twice 

its geometrical cross·sectional area. This is the famous result known as the 

"extinction paradox",12»1l) which is due to the wave character III both the clas· 

sical and quantum physics.*) 

Unfortunately, we cannot apply our formalism directly to the scattering 

by a hard sphere, because the Lippmann.Schwinger equation has been used from 

the biginning, so the potential should be finite, Eq. (3 ,1). Since our original 

*) The authors would like to express their sincere thanks to Professor H.Wergeland at [nstitutt 

for Teoretisk Fysikk, Tronclheim, for sending copies of his papers on this problem. 
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Fig. 1. Various approximate Ctotal ross sections as a function of rt=RYo/J./k Curve I: (}i~i~l(E); 

Curve n: (}~~3t~j (E); curve III: rr~{f) (E) with H<.= 1 and I.:): Curve IV rrgIff) (IE). The unit of 

the cross section is nR2. 

formalism has no sllch restrictioll, tbis scattering call l)l~ treated by our for1l1alism, 

in principle. Although we have not yet derived the final simple results, we 

can take out some interesting character and confirnl Ollr expected results. For 

example, we have the relations in the partial wave expansion, 

tan[Re uL(E)] =j,(ld<)/nf,(Id<) (7 ·12) 

and 

where R is the range of the hard sphere. According to the relation between 

X(E,/J) and ()L(E) , we obtain 

( (E, (3)--- 1, for all the (1's and E's, (7 ·14) 

~ cos [2 I~e X] := ~1,2 (2l-+ 1) [J2f, II Un]' [J:~.2 - )/.:J, 
(3 -J/. -\- Jll 

(7 ·15) 

e sin [2 Re "IJ = ) 1 2 (2l,,\1) [J2
t.ll U])-1 [ 2 j

/.ll/.. J 
'::, I. ..:.....II, ' fJ . 2 . 2 ' 

jJ - Jl -I- n/. 
(7·1()) 

and 

1 - ~2 === 4kK (E, (:i) 

= ~l~?iA (2l-+- 1) (2m -I- 1) 

X [.12/.1: (f3) J [ J 2"nl
;J ({1) J r. ~(j/)~m:7~ jmY 2 J. 

/1 d - (Jz -I- Ill, ) (jm + JIm ) 

(7· ] 7) 
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T . .Ildachi and T. K .. utani 

As it IS required by the unitarity relation, it is easy to see the result of Eq. 

(2 'Jr::) . 
• d,) , I.e. 

co 

.~ /1 dti (1 :;2) ~ () , (7 ·18) 

because of Eq. (2·7). 

Furthermore, Slllce j il (E) is gl \'en III the [allowing form as E-->O: 

(7·19) 

the total cross section, U{u[al (E) [or t1cJ (E) J, is expressed as 

en 

ULl'L,,1 (E)= ~; .~ t3drJ [~l2 (2!1-1)J2(,: J (d) ;3 1m lll(E) J 
o 

(7·20) 

00 

= 47rR2 [~d(jJl ((5)1- 0 (I.z2R 2
) J (7·21) 

w 

~ 47rR2 L (2/.z) ~ dbJl (21.zb)i 0 (!.z2R2)] (7·22) 

(7 . 2~-5) 

where we have llsed ECj. (2·8). This well-kno\vl1 exam pIe indicates that, when 

we treat the low energy phenomena (/:z-->O) by the impact parameter formalism 

we may have some confusion if we separate /1 by 2kb in the earlier stage, 

as shown in Eq. (7·22). If /1 itself is kept as an integral variable like Eq. 

(7·21), -we can ,Jvoid sllch a confusion in the complicated cases. 

~ 8. Discussion 

We have inlroduced the lVISVV approximation llJ which the condition /d{~1 

IS modified by the approximation of G n C/3 j ) in the form of the a-function. In 

the case of potential scattering, we have obtained Asw(E, (3) which has been 

derived previously under the eikonal approximation. In our derivation, we did 

not make any special assumptions about () and Va c::q)licitly. As we have seen 

in ~ 2.7, the approximate total cross section (}tS~;,i) (E) should give a very reliable 

result, if hR';P 1. 

As an example, let us consider the charge exchange scattering of protons 

by hydrogen atoms. The classical maximum angular momentum IS 

(8 ·1) 

where RJI is assumed to be the Bohr radius and EL is the kinetic energy (in ke V) 

of the incident proton in the laboratory system. Thus, many angular momentum 
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An 1m/)aet Parameter Rej)}'cs(,JltatioJl of the ,,,'ealtering Problem 805 

states have to be taken into account even below EL=-~: 100 eV, so that the treatment 

by the partial wave expansion may not be adequate. The first Born approxi­

mation may explain the experimental result on U/o1.,,1 (E) above 10 keY, in contrast 

with the case of the electron scattering by hydrogen ato111s.:10
) In the latter case, 

the first Born term can explain the experiments in the much lower energy region 

than the former. These facts can he understood qualitatively: The electron 

velocity is greater than the proton velocity at the same laboratory energy, so 

that (t= RIJ Volv is smaller in the electron case than in the proton case. As 

we ha\'e seen in Fig. 1, the first Born approximation gives a larger value than 

our approximated results, Uj:~;l~) (E). 'I'his expected behavior agrees with the 

discrepancy between the experimental results and the calcu lated (jj~:'(l (E) . *) 

Thus, we may imagine that our approximclte result, u(SW) (E) or even u(lW) (E), 

can explain the data on proton-hydrogen charge exchange scattering. The 

quantitative comparison will. be discussed in another paper of this journal. 

The impact parameter amplitude A (E, (1) is an entire function of complex 

(1 for the fixed E. On the other hand, the corresponding partial wave amplitude 

Al(E) has the Regge (moving) pole in the complex l-plane. 4
l) If we inter­

]Jolate the discrete l-values of the Legendre polynom ials in the standard manner 

and define Al (E) for nonintegral values of l by Eq. (2 ·13), the A (E, l) so 

defined cannot contain any p01es. 40
) The definition of the right interpolation 

to get the Regge pole was done via the Schrodinger equation.<ll),·10) In this sense,· 

it is desirable to derive the Schrodinger eq uation in the impact parameter re­

presentation. 

The solution of the SchrCidinger equation, 

J<jJ(r, l£) + [k 2
-- U(E, r)J<jJ(r, k) =0, (8· 2) 

IS expanded by assuming the spherical symmetric potential: 

00 

V) (I', y, k) == N('{1d(iJIl ((1y)cp(r, (1, k), 
2 ) , 

(8 ':3) 

tI 

where the k-direction is chosen as the z-aXlS and JV is a normalization factor. 

If the Laplacian J is expressed by the polar coordinates, 

(8· 4) 

then \ve find that 

(8·5) 

Since cp (r, (1, k) in Eq. (8·3) corresponds to [If in Eq. (2· Glc), it can be de-

*) See Fig. (5) of reference ;19). 
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Iined by the inversion formula Eq. (2· 60a) with an arbitrary q. Thus, we find 

the Schrodinger equation for if (r, (3, k) in the form 

It should be noted that the function Cf is restricted by the integrahiEty condition 

CIJ 

)(3dfil cp (1', (1, I?) I (8·7) 

for the fixed values of r <mel l:. This corresponcls to Eq. (2·G2). If the angular 

variable :v in 0 (r, )I, k) is restricted to the physical value of )" the function ({J 

should satisfy four conditions similar to for A (E, {]). 

We have not yet succeeded in discussing the solutions of this cquation in 

gcneral, especially in connection \\'ith .!l(E, (1), as it was established in the case 

of t he partial wave expansion. It may, however, be worthwhile to show some 

of the typical solutions, by which mathematical character in our impact parameter 

representation can be unclerstoocl. Since this equat ion is a separahle type, we 

shall aSSllme the following type of solution: 

(8·8) 

Then, we get a couple of equations 

(8·9) 

anc1 

d
2

·v -I- 1 .dv+ (1 ~_ 4},-I- l).v=O. 
d(]2 ') d(] (] 

(8·10) 

If \ve requue that 'V (19, n is an even and entire function with respect to /], 

then 'lye han~ 

l=Z(Z+l), for Z=O,l, (8·11) 

and 

(8 ·12) 

by considering the integrability condition, Eq. (8·7). Under this condition, 

Eq. (8·9) is just the equation for the radial part In the partial wave expal1s10n. 

Thus we can write a whole solution ill the form 

(B· ] 3) 

J# 

This IS the form in the Vvebb-IZapteyn theory of· the Neumann se1'1es*) and 

*) See §HiA of reference /12) and §:1 of refere1lce 1). 
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f~orresponds to Eq. (2 ·16) for A (E, (1). 

It should be noted that \ve never require the property that the function 

if! (r, (1, I?) is an exponential type 1. In order to see this property explicitly, let 

us consider the case of a free particle as an example. In this case, the solution 

ul,(r, I?) is expressed in terms of the spherical Bessel functions z/,(p) where 

p = l.:r. Let us define functions: 

h(l) (p, 8) ~:cc )"'~2 (2l+ 1) f-.T2II,~)(/9)1 [/h,,(l) (p)] 
III _ jJ ". 

CD 

:-::: 4 \ yely.To Usy) ex p lip (1 ." 2y2) J 
o 

co 

4.~ yely.To ((';y) exp [ip (1 .- 2:i) J 
1 

y(p, (1) =::~[lz(l)((J, /1) +N2)((J, (9)1 

= E,,2 (21 +- J) [.T2I1 1 ((1) /iJ] [if yl, (p)] 

:[ 

::-.::: 2 ~ ydy .10 ({9y) exp [i(J (1- 2y2) ] 

o 

(8 ·14) 

(8 ·15) 

.(8·1f)) 

(8 ·17) 

(8 ·18) 

(8 ·19) 

(8·20) 

(8·21) 

(8·22) 

(8·23) 

Only the function j(p, {9) is an exponential type ]. This IS because j(p, {9) IS 

an inverse transform of the plane wave, as shown by Eq. (8·22). 
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Appendix A 

The J\;[SIF aj)/)ro:dmation of G n ({90{91'" (in) 

We shall prove that the function Gn ({9opj'" (in) defined 111 Eq. (2·37) is 

reduced to the product of Dirac's b'·functions, as showll in Eq. (2·41). Our 
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808 T. lldaclli and T. Kotani 

procedure of the proof is the generali%ation of 12 (a j C[2 ; y), Eqs. (2·29) and 

(2·94), and G 2 ((i(t1(t2) , EC]. (2·33). The function Gn({:3ofJj .. ·{:3n) is a symmetric 

[unction of all arguments dj , where we shall use the abbreviations such that 

C n (8J= Gn (8081'" HJ, if 1 here is 110 confusion. If Gn ((j}) is clecol1l posed into 

1 

Cit (881'" HJ :c-c .\ YlmdYiJ/i .10 ((iYb.J II, ((11'" (in , YIJJ, for Jl? 1 , (A· 1) 

o 

j hen we have 1 he inversion of it in 1 he f Ofl11 

CD 

In ((]I'" (11' ; YlnJ a (1 .~ Ylm) = ) (id(j .10 ((iYIJ?J Gn ((1(11···8'11)' (1\·2) 

o 

11 ((1: y) =.10 ((1)') (A·3) 

= LI2 (21 + 1) p{ (1- 2y2) [J2111 ((3) /8J 0 (1 - y) . (1\·4) 

By substituting Eq. (2·38) into Eq. (1\·2), we find 1hat the generali%ed expres­

sion of I 1,((ij; y) is 

(A·5) 

Thus, vve have the following recurrence form u]a 

(A· G) 

\vhere we have used the famous relation for the Legendre function, 

\ 
Zn 1'Y (1 ? 2) 1) (1 2 2) - 4nc'i'lm ]:> (1 2 2) (Jc,n i - ~Y2n 1iI ._- ,Vnl --- i . -- :)121 • 

. 2l+ 1 
(1\.7) 

By an iteration of Eq. (A· (-j), wc ha,'c an integral such as 

(A·8) 

This is just the same form ,\S Eq. (2·29). By using thc Neumann addition 

theorem,**) Eq. (2·29) can be reduccd to Eq. (2·30). By continuing the itera­

tion procedure and in1roducing (\ new integral variable .Tij = 2kYij' we get the 

integral representation of GnC/jJ in the j'orm***) 

'n The rlefinition of Ij([3;y) is consistent with EClS. (6,17) and (2,2). Equatiol1 (A·4) can be 

proved by sullstituting Eqs. (2·()9), (2';l) and (i)'17) into Eq. (A·/1). 

'bi) See p. 358 of reference 12). 

**':<l This is the generalization of Eq. (:l<n of reference 22) ilnd Eq. (A·7) of reference 1). 
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An InzjJ{lcL Parameter Rej)}Y:sentatioJl of the Scattering Problem, 809 

2i\; 2k ~Tr, 

= (2~yn \ .T'md'L"m .\ ,Z:JndT ln'" .\.Tn J,nd.-Cn l,n 

(I II 0 

xJo {b,X;lm} .10 {b\:r,mJJ --- (.Yln/21-::)2r/2} 

X .10 {b1.'r1n [1 -- (.T'm/2lYr /2
}.10 {b2:r\n [1 -- (.y2n/2l:Yr /2

} (A·9) 

By applying the short wavelength approxim8tion Eg. (1·1) (k-'?oo) and usmg 

Eg. (4·9), \YC have the final expression Eq. (2·1\1) ll1lder the MSW approxi­

mation. 

Appendix B 

The l\lS1V ajJjJro.TimatioJl of Gn (m) ((10(11'" (1n) 

vVe shall show that under the MSvV approximation, the function Gn (71/) ((10(11'" (1n), 

Eg. (5·29), behaves as Gn((1o(31 • .. (1n). 

VVe decompose the function Gn(m) ((3f ) into two paTts; one of them includes 

the J 2Z \l((1j) P81:t of 1I2}1([((1j) and the other the lVU \l((1j) part; 

m 

( " (m.) (f:) (.~ () -- G (U,) () I ,-,'\., '(Ir' (m,'!) (') 0 (') 
In )O)l"'/Jn ."'. n /JO/)\'''/Jn --- L .... u:: . ...JpZ 1.1n /JOjJl'" I n , (I). 1) 

,!.~d 

\vhere q<m is the number of NUll ((1f). In order to avoid a confusion, the 

argument of lV21H is written as aj instead of (1j' The symbol :L;p means to 

take a sum over all possible permutation to interchange (a l ,,· aq) with any 

of the arguments ((1n-ml-l'" (1n) which appear in the E[2i~~1 ((1.1) , The second tel'ln 

becomes to be zero under the MSW approximation, although there are some 

conditions which will be discussed later in this appendix, 

One of the typical terms among Gn(rn,q) is written as 

By taking Eq, (2· 7) in t 0 cOllsidenllion, 1 his is expressed as 

co 

Gn(rn,'!) ((3.,;aj) = .\ t;dt;Gn . fIll ((10(11'" (1n (It;) Sfl (t;a1'" alj) , (13·3) 
() 

vvhere 

(B·4) 
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SIO T, /tc!ae/II' and To [(otani 

(R·!) 

~1l1 cl 

(B· G) 

Thus, in orcler to investigclte the property Gn(m,q) ((3J~J) under the 1\/[SW approx1-

mal ion, it is sufhcient [0 kllow the behavior o[ SJ (~a), hecause o[ lhe known 

properly or G n ((3i) ill the previous appcl1cli:--.:. 

An inlC'gral Corm or N~/.: J ((\')is knoWIl (IS 

l 

N 2/, it (a) :-cc [.Cyd:VJVII (ay) [)l (1- __ 2y2) 1 __ 1 S21.:-1(a) , 
a \ rr (l'. 

(B·7) 

\vhere 5'2l!1 (a) is SchHifl l's ])olynol1l i;lls_*) Th is corresponds! () Eq. (2 0 IG) . By 

com h in ing Eq. (A· il) wii h th c rc la t1()nS,~:;f:) 

(2/+] )J2£: J (f) SlZ II (a) /rrat; 

-- (2/rc) (0:2 s?)1 

the fillal cxpreSSlOl1 or ,,\\ (z;:a) IS 

co 

sJ (fer:) --c: --) ydylVII(fy)JII(ay) 

J 

CD 

--- ) zdz iVa (t;.z/2l:R)Jo (c'{,z/2hR) 

2lcR 

for a>F.) (B·8) 

(B·9) 

(15 ·10) 

for a>F.. (B'11) 

This last expression just corresponds to the second term of Eq. (4,7), \vhich 

is neglected under the MSVv approximation. 

Thus, we conclude that all G1I(1n,I{) ((3iaJ) can be neglected consistently under 

the MSvV approximation, if a>;:, The problem" therefore, becomes whether 

or not this condition is satisiled in our case. As an example, let us consider 

the second term of the third Born approximation Eq. (G·2G), which includes 

GY) ((]j). ]'his part oj' II (E, 8) is \vrittcn as ;13(1) (E, (3) 

ol') See p. ]08 of reference till), p. :.?tH of referencc 1:2) and p, 11 of rcfcrcl1ce IS)_ 

:l"n Sec pp. ;r2 and 9:l of rdcrcl1cl' Ij[)). 
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(B ·12) 

We see that Eq. (B ·12) requires tile inequlllities ({:l>'r:,>'J'2>-tl 2 ancl J'2>r1>a1. 

On the other hanel, the function G n ((1i!;j) 111 Eqs. (13·3) and (B·["» becomes 

Dirac's /)-£unction uncleI' the MSW approximation. That is, in the case of 

A}J) (R, (1), we have l1w following inequality ill the notal ion of this appendix: 

(B· ];~) 

We see that our condition ctJ is satisJied. As wehc:lve noticed below Eq. 

(G·29), we alw'ays have such inequalities in our potential scattering problem. 

This inequality means that the first term of Gn(m) ((1.1) Eq. (B ·1), also has no 

contribution. Thus, we can conclude that Ilz,n(H) which involves the combi·· 

na1 ions [hl(l) (OJ) ]2, has 110 cCln!ribut ion uncleI' the MS\;V approximation. 

Appendix e 

The simj)lUicatioJl of .Iz,7/, (E) 

'We have separated the Born series amplitude Al,n(E') into .Il,n(E) and 

Ill,n (E), Eq. (5 ':31) . The function Jl,n (E), Eq. (5 ';32), includes Jl terms of 

.In :' 1 ((3.1), and is reducecl to a very sim pIc form, Eq. U) <-34) . We shall prove 

tIl is proced ure. 

Let us lntrocluee t he abbreviated notations: 

J (Pm) ~= jl (1~rlll) j[ (l:.r'lll) , 

1\J (Prn) =-""' jl (I~r'ffi) hl (1) (l~rrn) . 

(C·l) 

(C·2) 

Also we define three functions by assuming t\vo positive integers f)~m: 

l'rn 

10 (m, f»~ = \ (drm!l) 1\1 (Pm 11) 10 (m + 1, i»~ , (C·3) 

o 

,vhere 

(C·4) 

r p -l 

10 (;)-1, f» ::c:: \ (dr.,,) 1\1(p~,); (c·G) 

() 

(j) 

rAJ em, j» = \ (drllll-l) l\!(P'III: J) ra' (m -I- 1, j», (c·G) 

where 

I CD (j) n, /) ==], for Jl 0, 1, 2···, (C·7) 
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where 

where 

T. Adachi and T.Kolani 

ro 

FD (j) - ], jJ) =-c: ~ (drJJ Ai (01» ; 

I'm 

T 
1'--1 

Iq(JJl, I)~ = \ ( drmIJ)1\l(Pm I J)!,l(m+ 1, I)~, 
r q 

T2'-1 

!,/(j)--1, I)~ == .~ (drp )1\;f(pJl); 

rq 

(X) 

f q
ro 

(m, j) = ~ (drm) 1\,1 (Pm) fq (m, j) , 

Tq 

Ir/"(j)+Jl, jJ) =1, for 17=1,2, .... 

By using these notations, Jl,n (E) can be expressed as 

J l ,?/' (E) - El,n (E) 

rm 

X ~ (drm 11)J (Pm 11) FD (m + 1, n). 

o 

(C ·8) 

(C·9) 

(C ·10) 

(C· 11) 

(C ·12) 

(C ·13) 

(C ·14) 

By interchanging the order of integrations over r'm and Tmll and after repeating 

q times of interchanges, we have 

.II,?! (R) - E"n (R) 

(X) Tm-q 

=%J \ (dr l ) 1\!(pJ 10 (1,m - q) .~ (dr'lll !1)J (PmI1) (C· IS) 

o 0 

X Irnll (m -- g, m) fro (ml-l, 17), 

where ,ve have used the relations 

(I" ,'~; a n 

~ dr \ ely/Cr, y) = ~ dy \ d-rI('?';, y), (C ·16) 

(I O!l 
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An IJltj)([ct Parameter Rejn'esentatio}l of the Scattering l.Jroble;n 813 

(X) ;1; 00 co 

) dx' ~ dyf(:r, y) ::::: ~ ely ~ d.:cf(·T, y). (C ·17) 

(I ?f 

By putting q = m -1, we geL 

co 

Jl,n(E) =cEl,n(E) + '!~1.~(dr.!nll)J(P.mll)r0(lJlll, n)1 11L1C<l(1, m). (C ·18) 

o 

Now we rename the suffix of r m the cyclic order such as rp by rp-rn and 

rq by rn-rn+q if q~}n. Since in our notation we have 

m 

El,n(E) = ~ (drl)J(Pl)IUJ(1, n), (C ·19) 

we get a compact form 

00 

Jz,'/t(E) ""c ft) (dr1)J(pl)IW(1, n-m)I/fJ(n-ln-I-1, n). (C·20) 

From the last factor, we have 

00 

}Joo(n--m+l, n) == ~ (drn-lnil)1\.f(Pn-1lI11)Il(n lull, 77) 

r] 

= n21'~1 ... -I- rnr I ~ ] (dr" ,nH) M((J" 00") I, (n- nl 11, n). (C· 21) 

rl J'2 l"n-rn-l rn-rn 

By usmg the rebt ion, 

Cf.J ;1; en ifJ 

\ d:r \ dyI('c, y)= ~ ely \ dx}'(:c, y), (C·22) 

a a 11 

and renammg the integral variables rj 111 the order, we find that 

+ ~j (dr,) J ((J,) r (1, n· in -I- 1) "%r r (dr"", 1-') AI ((J" .",,,) I, (Il m -1- 2, Jt). 

o 

(C·23) 

Here we have used the special case j) = 0 of the following sum of the binomial 
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~1L1 1' . .L'1daciti and T. I"::'olan£ 

coefflcients,*) 

whercN, j}, q are posItIVe integers. 

Sill1ilar]y, by LlHing Eq. (C·24) with /)= 1, we proceed to the next Htage, 

i.c. 

(D 

i ::~j (dr[) J (()l) TO (I, Jl- JIl 12) (C <Z7) 

whcre wchavc Llsee! the rclatioll;I~) 

(C·2H) 

By repeating j} times of the similar procedures, we geL the general cxpreSSIOn 

P (n --1) 
J~,n (E) =: :2= E{,n (E) 

rnccO lJl 

CD 

I 11I~:j (drl)J((JJ)lco(I, Jl III I j)) (C·29) 

u 

JJl I jY (J)- '( 
.) (drn '1111 lill) _Ai (Pn?lll Jill) I J (n-- JJL + jY i 1, n). 

rl 
jY 1 

It IS not difficult to see -that we have 

(C·30) 

I I , (1-- ') t) au( we arove at _ 'AJ. .). ,)1 • 

*) Equations (C· 211) and (C· 28) can be proved by Llsing the following relations: 

(
1-»=('P+l) __ (' 1->, ) 
q q+l q+l 

((>25) 

and 

(C· 26) 
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