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An Implementable Lossy Version of
the Lempel-Ziv Algorithm—~Part I.
Optimality for Memoryless Sources

loannis KontoyiannisMember, IEEE

Abstract—A new lossy variant of the Fixed-Database Lem- their practical success is mainly due to the fact that they
pel-Ziv coding algorithm for encoding at a fixed distortion provide low-complexity algorithms that offer themselves to
level is proposed, and its asymptotic optimality and universality 54y on-Jine implementations. (A comprehensive introduction

for memoryless sources (with respect to bounded single-letter . -
distortion measures) is demonstrated: As the database size: to several lossless Lempel-Ziv schemes and their implementa-

increases to infinity, the expected compression ratio approaches tions is given in the recent text [16]; see also [3] for numerous
the rate-distortion function. The complexity and redundancy variants.)
characteristics of the algorithm are comparable to those of its On the other hand, there are several applications in which
lossless counterpart. A heuristic argument suggests that the e requirement for perfect reconstruction of the data can be
redundancy is of order (log log m)/log m, and this is also laxed di f | hen i i it
confirmed experimentally; simulation results are presented that relaxed [ossyco 'ng)'_ or example, W €N IMages are tansmit=
agree well with this rate. Also, the complexity of the algorithm ted over the World-Wide Web. In this case, the story has been
is seen to be comparable to that of the corresponding losslesssomewhat less successful. From rate-distortion theory [4], we
scheme. _ _ know that one can achieve a sometimes dramatic improvement
We show that there is a tradeoff between compression perfor- in compression by allowing some amount of error in the

d di lexi d di how th | t ;
g;g(;?e?grs igﬁobénghg(;rgﬁ t%xggiair::evtvh?s I.!I’Sac(;JeSgﬁ %V\;raiﬂrfee.\@g reconstructed data. In fact, it has been demonstrated that there

also discuss the performance of the algorithm when applied to €Xist universal algorithms for lossy data compression that
sources with memory, and extensions to the cases of unboundedasymptotically achieve optimal performance and, moreover,

distortion measures and infinite reproduction alphabets. there are explicit constructions of such universal codes; see
Index Terms—Fixed database, Lempel-Ziv, lossy data compres- [17], the references therein, and the more recent work of
sion, universal source coding. Zhang, Wei, and Yang [42], [43]. Typically, these construc-

tions either involve exhaustive searches over the space of
all possible codebooks or are of exponential complexity at
l. INTRODUCTION the encoder and therefore cannot be realistically implemented
i ) in practice (cf. [46], [27], [25], and [37]). More practical
OVER the past 25 years, the practical requirement for €1 ithms have been recently proposed by Yang, Zhang, and
ficient data compression has become apparent in aIm%% ger [39] (partly expanding on the ideas of Muramatsu and

every engineering application where large amounts of data "f’{gnaya [25]), where they suggest a new way for circumventing

transmitte_d or stored. the exponential encoding complexity of earlier schemes.

In applications yvhere the data needs to be perfectly re-Motivated by the success of the lossless Lempel—Ziv
constructed from its compressed forosSlesscoding), the  g.hemes, several attempts were made to extend them to the
most prominent examp_le of a successfu_l praCt'C"?‘I SChem?c!fse of lossy coding, most notably by Morita and Kobayashi
probably the Lempel-Ziv data compression algorithm. Vari 4] and by Steinberg and Gutman [29]. Although fairly easy

tions of the o:iginal scheme [47], [43] are IirEpIerEented Of} implement, these schemes unfortunately turned out to have
most persona computers in use today. Although in ter ?rictly suboptimal compression performance; see [23], [39],
of compression performance they have been shown to

: : ) S , %], and the discussion in Section lll.
asymptotically optimal and to achieve optimality universally o purpose of this paper is to present and analyze a new

(IZver Te(\j/eral ?etﬂeral classes4<;f dﬁg soz;cess(ze., ;‘gthoggpﬂﬂfversal lossy compression algorithm, generalizing the Fixed-
nowledge of the source) [47], [45], [48], [34], [28], [ ]'Database Lempel-Ziv (FDLZ) lossless compression algorithm
[34] to the lossy case. As we describe in the next section,
Manuscript received July 27, 1998; revised June 23, 1999. This woikiS a scheme for encoding memoryless sources at a fixed-
was supported in part by NSF under Grant NCR-9628193, by JSEP unggstortion level. We show that its compression performance
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bounds on the complexity, and we also discuss some of tiistortion theory that, unlike in the case of lossless coding,
algorithm’s practical limitations. when distortion is allowed the optimal codebook distribution
The gist of our approach is that, instead of using a databaseypically different from the distribution of the source. The

generated by the same distribution as the data, the encodenast straightforward way to fix this mismatch between a
allowed to havemultiple databasesimultaneously available, fixed database and the optimum one is to maintain multiple
and to adaptively choose which one to use at each step idaabases at the encoder and decoder, so that a good enough
“greedy” way. As the database length grows, the number wfatch can always be found. In this way, two objectives are
available databases also grows so that, in effect, codebookssneultaneously achieved.

generated according to all possible reproduction distributions.
By controlling the rate at which the number of databases
grows, we can make sure that reasonable complexity is main- o )
tained at the encoder, while at the same time the set of possibld) Reéasonable complexity; like FDLZ in the lossless case,

codebook distributions is refined to cover an asymptotically ~ What makes this algorithm potentially attractive is that
it provides a sequence of suboptimal coding schemes,

i) Universality; the same algorithm with the same set of
databases works for any memoryless source.

dense set. '

Although the notion of using multiple codebooks for source ~ indexed by the database length and the number of
coding is well known in information theory [44], [26], multiple available databases, th.at offer a handle on the complex-
codebook algorithms typically involve either a training stage,  ity/redundancy tradeoff: Using a few short databases, we

get efficient, easily implementable algorithms with high

redundancy. On the other hand, increasing the length
and the number of databases provides algorithms with
compression performance that can be made arbitrarily
close to being optimal, at the cost of increasing the
encoding complexity. Quantitative bounds on the precise
form of this tradeoff are given in Section V.

or a large search over (essentially) all possible codebooks.
For example, Chou, Effros, and Gray’s [7] vector-quantization
interpretation of universal lossy source coding is in terms of
two-pass (or “two-stage”) weighted universal codes. Another
family of two-pass lossy compression algorithms is that of
empirically designed vector quantizers, discussed by Linder,
Lugosi, and Zeger [22] among many others. (More pointers to

the large literature on vector quantization can be found in thewe also note that there is a wealth of approximate string
recent review paper by Gray and Neuhoff [15].) Preliminannatching algorithms (see [10], [1], [2], [9], and the references
results from a work closer in spirit to our approach wergherein) allowing for efficient implementations.
recently reported by Zamir and Rose in [40] and [41]. The rest of the paper is organized as follows. In the next

We analyze the performance of the new algorithm (presentgsttion we describe the algorithm in detail and present our
in Section 11-B) by studying the asymptotic behaviomaiting  main theoretical result, Theorem 1, stating its asymptotic
timesbetween stationary processes. The connection betwegitimality. In Section Il we first give an informal explanation
waiting times and data compression seems to have been fgsthis optimality, and we state and prove the theoretical
made by Willems [31]. At about the same time, Wyner and Zixesults that are needed in order to establish it formally. This is
[33] showed that the asymptotics of waiting (and recurrencgdne in Section IV. In Section V we discuss implementation
times are intimately connected to the performance of sevejgdues, and present some details on the quantitative nature
variants of the Lempel-Ziv scheme, and, since then, a numiegrthe complexity/redundancy tradeoff. A heuristic argument
of papers have appeared exploiting this connection (see, esgiggests that the redundancy of the algorithm is of the same
[34], [35], [29], [30], and [32]). The first step in our analysisporder of magnitude as that of the lossless FDLZ, and we
carried out in Section I, is to study the performance gfresent simulation results that seem to confirm this rate. In
an idealized version of the algorithm in terms of waitingection VI we describe extensions of the algorithm in several
times, whose asymptotic behavior is determined by the strategijections: more general classes of sources, unbounded distor-
that was introduced in [19] and [12], namely, the waitingion measures, fixed-rate coding. Section VIl and Appendices |
times are first approximated by a sequence of large-deviatighd Il contain the proofs of the theoretical results in Sections
probabilities (Lemma 1), and then large-deviations techniqugs and 1V.
are used to identify the exponent of decay of these probabilities
(Lemma 2). We should note that a related approach was Il. DESCRIPTION OF THEALGORITHM
adopted by Bucklew in [5] and [6], where he utilizes large After some preliminary definitions, in Section II-B we
deviations for distortion balls to prove direct coding theoremgescribe the compression algorithm in its simplest form and we

In Section IV, we relate this idealized scheme to thetate our first result, Theorem 1, which establishes its asymp-
practical algorithm. This is done by realizing that there is @tic optimality. The algorithm is a lossy source-coding scheme
duality relationship between waiting times and match lengthier encoding memoryless sources at a fixed distortion level,
This relationship is not as straightforward as in the losslegsth respect to single-letter distortion measures. Extensions
case, and some new subtleties arise in the proofs. Neverthelegshe use of the algorithm to more general situations are
the optimality of the practical algorithm can be deducediscussed in Section VI.
from carefully exploiting this duality, in combination with the
waiting times results of the previous section.

The reason why this algorithm compresses optimally canLet X = {X,,;;» > 1} be a memoryless source with values
be explained intuitively as follows: We know from rate-in the source alphabeti, where A is a Polish space (nhamely,

A. Preliminaries
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a complete, separable metric space) equipped with its Berel Simplex of distributions
field .A. The distribution ofX is determined by specifying that on the reproduction
the random variable§X,,} are independent and identically oaeoas —— alphabet
distributed (i.i.d.) according to some fixed measureon QY
(A, A). Let A denote thereproduction alphabetand assume 7
that it is finite. Letz = {z,;n > 1} denote an infinite
realization (or “message”) produced by the souXe and,
given integersl < ¢ < j < oo, write z] for the string
correspondlng to the part of the reallzatlon betweeand
gy @] = (2, g1, -+, x5). We also erteX’ for the vector
of random variables{XZ,XZJrl,---,Xj), and similarly, for
sequencey = {y,;n > 1} andY = {Y,;n > 1} in the
reproduction alphabet.

Given an integef;, a probability mass function (pm€) on
A is called ak-type if for everyy € A, Q(y) is of the form
j/k for some nonnegative integgr< k.

Letp: Ax A — [0, o0) be a fixed, nonnegative (measurable)
distortion measure, and define a sequehgg of single-letter
distortion measures o™ x A" — [0,00) by

| |

Z p xmyz xrll € Anv yf € A"
1

n Width = 1/ [log m ]
Pn xl ’ yl
z:

3I>—‘

Fig. 1. The set of allllog m]-types, correpsonding to the vertiges of a
uniform grid of width1/[log m] placed on the simplex of pmf's oA.

Without loss of generality, throughout the paper we assume

as usual that B. The Algorithm
. Let X = (X;,X.,---,Xy) be a message of length
:‘ég Lrélg p(e,y) =0 (1) N generated by some memoryless soufeof unknown
distribution P on A, and let a distortion leveD be fixed.
and also that the distortion measyrés bounded Let {t(m)} be a nondecreasing sequence of integers, write
T'(m) for the number ot(m)-types on4, and recall [11] that
M2 sup max p(z,y) < 00. T(m) is at most polynomial int(m)
€A yEA .
T(m) < [t(m) + 1], 3)

Given D > 0 and a stringz? € A", let B(z7, D) denote the
distortion-ball of alln-strings inA™ that are within distortion
D of z}

For eachn, we describe an encoding algorithm that ugés.)
databases of lengtha.

Choose and fix am for now. Assume that the encoder and
decoder both have accessTgm) memoryless databases

YO ¥ v ® id, ~ QW
Given a source distributio®, we define Y2 y? . y® iid ~Q®

B(a},D) = {yl € A" p,(a},4}) < D}.

Dmax = min EP(p(X7 y))

yExi .

(Tm)) (Tm)) 3 AT(m)) i ~ OT(m))
and assume thab,,,. > 0. Given D > 0, let R(D) denote Yy Y s Yo iid. ~@Q

the rate-distortion function ok with respect to{p,, } where each database has the same lemgththey are all
generated independently of the messAan?é, and each one is
R(D) =inf I(X;Y) (2) i.i.d. according somé(m)-type QW) on 4, for1 < j < T(m).

Fig. 1 shows schematically the set of &(hn)-types for the
where I(X;Y") denotes the mutual information (in bits) bespecific choice oft(m) = [logm] (here and throughout the
tween X and Y, and the infimum is taken over all jointly paper log” denotes the logarithm taken to base two).
distributed random variable§X,Y") with values in4 x A, We can either assume that these databases are available to
such thatX ~ P andFp(X,Y") < D. Following the standard the encoder and decoder before the coding process begins, or
convention, we let the infimum of an empty set be equal that they are generated at the encoder and transmitted to the
+00, S0 R(D) = +oo if there is no such paifX,Y). It is decoder using an overhead of
easy to check tha®(D) = 0 for D > D,,.x, SO We restrict our A .
attention to the inte(reiting range of allowable distortion values [mT(m)log |A[] bits. )
D € (0, Dp,ax). Moreover, condition (1) and the finiteness of The encoding algorithm is as follows: First, the encoder
A immediately guarantee th&(D) < oo for all D > 0. calculates the length of the longest match of an initial portion
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of the message, within distortiod, in any one of the distortion D, also the concatenation of all the reproduction
databases. LeL,,1 = Ly, 1(D) denote the length of this strings
longest match

Lrn,l = Lrn,l(D)
= max{k = (Y] i) e Bt D)
for somel <i<m—k+1andl1<;j<T(m)}

W5 | p)

will be within distortion D of X}V.

and letZ1) denote the initial phrase of length,, ; in X Let £,,(X{") = £,,(X{¥, D) denote the overall description
/ length for XV. From (4) and (7).4,.(X?,D) is bounded
1) A 1 m 1>
z® = (Xy, Xy oo, Xp ) above by
Observe thatl,, ; > 1 by assumption (1). Then the encoder -
describes to the decoder [mT(m)log|All
. . 11
a) the lengthL,, 1; this takes at most'log (L, 1 +1) bits, LI ) )
whereC is a universal constant (cf. [14], [35]); + kz_:l min{Cy log(Lim,x + 1) + Cz log(t(m) + 1)

b) the index; of the database in which this longest match
was found; this takes$log T'(m)] bits;

©) tthe posﬂpm n (_Jlatabasg where the match occurs; thISThe following result establishes the asymptotic optimality of
akes [log m] bits. . . .
_ this algorithm by showing that, for long messagés — oo),

Clearly, from a), b) and c) the decoder can easily recover tje, oy nected compression ratio achieved does not exceed the
string rate-distortion function?( D), asm tends to infinity. In fact, a
somewhat stronger result is proved, namely, that for (almost)
any message emitted by the source, the compression ratio
which is within distortionD of Z(). The description length achieved, averaged over all possible databases, is asymptot-
of a), b), and c) is bounded above by ically no larger thanR(D). Theorem 1 is proved in Sec-

+log m, C3L,, x} bits. (8)

) — (Yi(j)v Y;:J—)U .. 7Y;(-|]—')Lm,1*1)

Theorem 1. Algorithm OptimalityLet 0< D < Dy, |If

e ratet(m) at which the databases are refinedt(s:) =

log m], then, with probability one in the source messages
[Lyilog |A] bits. (6) (or “almost surely,” denoted “a.s.”

{&;D)‘le}gmm as. (9)

Alternatively, Z® can be described by first describing ity
length L,,, ; as before, and then describitd") directly using i

The encoder uses whichever one of the two descriptions
shorter, together with a one-bit flag to indicate which one wa
chosen. Therefore, from (5), (6), and (3), the length of the

i
Sﬁm sup limsup F

m—oo N—oo

description ofZ() is bounded above by where the expectation is over all databases. Therefore,
min{Ci log(L, 1 + 1) + Co log(t(m) + 1) . . 0.(XN, D)
+log m,CsLy 1} bits @) lim sup 11]1\?1 sup < R(D) (20)

for some fixed constant§y, C-, and C3, independent ofn,
N, and of the source messadég".

After Z(1) has been described within distortidh the same
process is repeated to encode the rest of the message:
encoder finds the length,, » = L, »(D) of the longest string  Remark: The case of lossless compression can be regarded
starting at position(L,, ; + 1) in X{¥ that matches within as a special case of the above algorithm, where the encoder
distortion D into any one of the databases, and describes looks for exact matches between the source and the database.

@ A In fact, implicit in the proof of Theorem 1 is a proof that the
27 = ( X+, X2, XL 1 4L2) compression ratio achieved by the lossless FDLZ algorithm
to the decoder by repeating the above steps. [34] applied to a memoryless sourcE converges to the

The algorithm is terminated, in the natural way, when tHetropy rateff of X, for almost all source messages:

entire stringX;" has been exhausted. At that poiif;" has  Corollary 1. Strong Optimality of Lossless FDLZ:et X
been parsed intdl,, = IL,(X{¥, D) distinct phrasesz®, pe a discrete memoryless source of entropy #teand let

with the expectation here being over both the messdge
and the databases. Moreover, (9) and (10) hold for any choice
ci'fhte(m) — oo with (log t(m))/log m — 0, asm — oo.

each of lengthL,, x £,,(X ) denote the description length & using the FDLZ
xN = 7 7(2) . () algorithm. Then

with the possible exception of the last phrase, which may . . £ (X .

be shorter. Since each substriggf® is described within hf,fl_s);lop h]{ff;lop Eq—x |%1 <H as
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. WAITING TIMES RESULTS greater than the optimal raf&( D) (the rate-distortion function
of X). In fact, R(D) satisfies

A. Motivation )
) . . . R(D)=inf R(P,Q,D) (13)
The first extensions of the Lempel-Ziv algorithm to the Q

lossy case [24], [29] suggested using a database of the same o , N
distribution as the source, and doing approximate string mat¢idth the infimum over all pmf's¢? on 4), so the problem

ing with respect to that database. As it later turned ot that we do not knova priori which database distribution
[23], [38], [12], this results in strictly suboptimal compressio@chiéves the infimum in (13). The simple intuition behind
performance. In this section we illustrate how this performan&¥l algorithm is to compensate for this by using multiple
can be understood by studying an idealized coding scenari plabases: We allow the encoder to generate one memoryless

terms of waiting times (this reduction of a practical scheme fifitabase for each-type on4, and then encode using the best

an idealized one was introduced by Wyner and Ziv [33] and §€: I-€-, the one for whicKy* has the shortest waiting time.
is described in detail in [18]), and in the next section we shoW€ additional coding cost incurred is that we must identify

how the idealized coding scheme can be modified to achieWBich database was used, but since there are only polynomially

optimal compression. many n-types this extra cost is asymptotically negligible.

Let X be a memoryless source with values ih and
distribution P, and suppose that a distortion lev®lis chosen B. Results
and fixed. Assume that the encoder and decoder both haveet {S(n)} be a nondecreasing sequence of positive inte-
available to them an infinite databad¢ = {Y,;n = 1} gers. For each, let S(n) be the number of(n)-types onA
with values in A, distributed i.i.d. according to the pn®, and write @), 1 < j < S(n), for each one of these(n)-
and independent of the sourdé. The encoder’s task is to types. Assume that for eashwe haveS(n) processeyw,
describe the firsk.-string X{* produced byX to the decoder, <j <50, where¥Y ¥ is independent oX and distributed

with distortion no more thanD. This is done as follows: ;; 4 according taQ¥). For eachy let W,@(D) be the waiting
The encoder looks for the first position in the database whefe . il xn appears iy within distortion D
1

X7 appears within distortiorD and communicates it to the

decoder_. We c(agl) this position theaiting timefor X and vy ()(py=inf{i>1: (Y;(])7Y;E|]—?L7'"7Y;E|]—ZL—1)EB(XIL7D)}

denote it byW,*’ (D)

A and writeW (D) for the shortest one of these waiting times

Wi(D) =inf {k > 1. Y}~ € B(X},D)}. '
W (D)= min WY(D).

Since [14], [35] it takes approximately 1<5<S(n)
[log W9 (D) + O(log log W @ (D))] Theorem 2. Waiting Timestet 0 < D < Dyax. If s(n) —
o oo then
bits to describéV; )(D), the rate of this code is, to first order,
. log W}*(D)
log W(Q)(D) limsup ——2—= < R(D) a.s.
~——" "/ Dbits per symbol. noee

Before we give the proof of the Theorem we need to in-

Theorem [23], [38], [12]: troduce some notation and definitions. First,/e{ D) denote
loo W(Q)(D) the rate-distortion function aX in nats rather than bits, and
lim 27 W) R(P,Q,D) as. similarly write R. (P, Q, D) for the function defined as in (11)
e " but with relative entropy in nats rather than in bits, i.e., with
where H(:[|-) replaced byH.(R||R) = 3., R(y)In(R(y)/E (y)).
. Equation (13) is equivalent to
R(P.Q.D) =it [ HOCIQW) dPE) ()
R.(D) =inf R.(P,Q,D
Wl (G +H@QQ]  (12) (D)= BB, )
and the infimum is taken over all random variab{é§ Y') on  and we writeQ* for the pmf onA that achieves the infimum.
Ax Awith X ~ P, and Ep(X,Y) < D, with (The fact that there does exist an achievipgis easy to see:
Let {¢,} be a sequence of pmf's such th&t(P,g,, D) —
N § / p
H(R|R) = R(y)log (R(y)/E (1)) R.(D). Since the simplex of pmf's on the finite set is a
Y

compact (Euclidean) subset &-!!, the sequencdg,} has
denoting the relative entropy between two pmRsand R/, a convergent subsequenge/,} with ¢/, — someQ*. But
~ denoting the conditional distribution &f given X, and@’ R.(P,(Q, D) is continuous i} for pmf's ) is a neighborhood
denoting the marginal of. As before, we letR(P,Q, D) = of Q* (this follows easily from Lemma 4 of Section VII-B by
+oo if there is no such paifX,Y). an application of the dominated convergence theorem), and
If we compare (12) with (2) it becomes clear that th€q/,} is a subsequence dfz,} so we must havek.(D) =
asymptotic rateR(P, @, D) of the code is generally strictly R.(P, Q*, D).)



2298 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 7, NOVEMBER 1999

For n large enough we can choose &m)-type ),, on A Corollary 2. Match Lengthstet 0 < D < Dy . If t(m)—

such thatQ,,(y) >0 for all y € A, and o then
. | A] . fing Lma@) o 1
|Qn(y) — Q% (y)] < sy’ foralye A  (14) 1m 1n] log m = R(D) a.s.

(this is ogtlined in Appendix l.)' From now and until the end of .4 proof of Corollary 2 is a straightforward but tedious
this section we assume thatis large enough so th&,, can ;0 jation, very similar to the ones done in the lossless case,
be chosen as above. Wril#,(D) for the waiting time until 5,y therefore omitted here. The optimality of the algorithm
a D-close version ofX{' appears in th&"-process distributed (,4¢ of Theorem 1 below) essentially follows from the fact
according to@,,, let P denote t_he_ p_roduct measufe™ on -t the match lengths grow liklog m)/R(D), similarly,

the product Spa}cé_Aoo’Aoo? of infinite sequences drawn ¢ jeaqt in spirit, to the lossless case, where the optimality
from A, and, similarly, writeQ,, for the product measure o¢ £ 7 follows from the fact that the lengths,, of the
(@n)™ on (A%, F), where 7 is the o-field on A generated |ongest exact matches grow ligog m)/H. Unfortunately,

by finite-dimensional cylinders. the elegant combinatorial argument used by Wyner and Ziv in

Proof of Theorem 2:Theorem 2 follows by combining [33] and [35] no longer works when distortion is allowed, and
Lemmas 1 and 2, below, together with the trivial observatid@r that reason in the proof of Theorem 1 we need a stronger
that W*(D) < W, (D) with probability one. bound on the (conditional) lower tails di,, ;(D); its proof

Lemma 1 shows that asymptotically, on an exponentii§l given in Section VII-C.
scale, the waiting timéV,,(D) for a D-close match ofX}
into Y cannot be significantly larger than the reciprocal gt
the probability@,,(B(X7, D)) of the event that such a match
occurs. Its proof parallels those of the corresponding strong
approximation theorems in [19] and [21].

Corollary 3. Tails of Match Lengthsiet 0 < D < D ..
t(m) — oo then for anye >0

log m

(log m)Pr {Lm,l(D) < R(D) te

‘Xfo} — 0 a.s.

Lemma 1. Strong Approximation:
1 V. COMPLEXITY, REDUNDANCY, AND IMPLEMENTATION
limsup — log[Wn(D)@,(B(X{, D))] <0 as. A useful feature of the algorithm is that it provides a
e handle in balancing the tradeoff of encoding complexity versus
Lemma 2 is a large deviations result; it will follow by ancompression redundancy, depending on the requirements of
application of the @rtner—Ellis theorem [13, Theorem 2.3.6]particular applications. This tradeoff is discussed in some more
detail below. First an upper bound is given for the complexity
of the algorithm, and then a heuristic argument is presented,
liminf 1 log Q,(B(X", D)) > —R(D) a.s. suggesting that if the rate at which the databases are being
n—oeo refined is chosen appropriately the redundancy of the algorithm
Lemmas 1 and 2 are proved in Sections VII-A and VII-Bis of the same order as that of the lossless FDLZ (where
respectively. O “redundancy” refers to the difference between the expected
compression ratio achieved by the algorithm and the rate-
IV. ALGORITHM OPTIMALITY distortion function). This heuristic rate is also confirmed by
é)rief simulation results presented in Section V-C.

Lemma 2. Large Deviations:

We will use the waiting times results of the previou
section to prove Theorem 1, establishing the optimality of the ,
algorithm presented in Section II-B. A. Complexity

First observe that there is a duality relationship between theThe worst case complexity of the algorithm can be roughly
waiting timesW (D) and the match lengths,,, ; (D) in that upper-bounded as follows. In the worst conceivable case,

. for each position of the message striny uch positions)
WaD) sm—=n+1= Lni(D) 2 n. (15)  the algorithm might have to look for a match starting in
Strictly speaking, since the definitionsf: (D) andL,, ,(D) ©Very position of each of the databasesI{(m) of them),
depend on the choices of the underlying sequetieéig} and and makem comparisons between the source string and the
{t(j)}, respectively, we should say that: W (D) defined Corresponding database string, resulting in at most

with respect to a fixed sequende(:)} satisfies m2T(m)N  operations.

WD) <m—n+1 - .
Of course this is an extremely crude upper bound, but it

then L,, 1 (D) defined with respect to some sequerf¢€j)} illustrates the facts that 1) the complexity of the algorithm
such thats(n) = t(m) satisfiesL,,, 1(D) > n. is certainly not exponential in the message lengthand 2)

Unlike in the case of no distortion, the implication in (15) ighat increasing the number or the lengths of the databases
generallynotan equivalence. Nevertheless, (15) is sufficient ismproves the compression performance and also increases the
translate the asymptotic upper bound &7 (D) of Theorem complexity. Much more accurate bounds based on efficient
2 to an asymptotic lower bound fdt,,, 1 (D). implementations of approximate string-matching algorithms
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can be derived from those reported in [2] (see also [10], [1], [1l, this corresponds to comparing the rate in the expo-

[9], and the references therein). nent of@, (B(X7, D)) with that of(Q*)"(B(XT}, D)),
and (14) indicates that this difference ¢¥1/n) for

B. Redundancy Versus Complexity the choices(n) = n. Therefore, for the algorithm in

Section II-B we would expect an additional redundancy

There are three “terms” contributing to the redundancy of
term of order

the algorithm, due to three different reasons.

i) Finite-length databasesince the databases used by the O< 1 )
algorithm are finite, the compression will not be optimal log m
even if we encode with respect to a database with the
optimal distribution. As with FDLZ in the lossless case, corresponding to taking(m) = [log m].
we expect that the penalty incurred by using a databas
of finite length/m will be of the order of

eCombining i)—iil) suggests that the leading term in
the redundancy of the algorithm is of the order of
log log m (loglog m)/log m, just like in the lossless case [36].
O<—> In particular, now it should be clear why the choige:) =
[log m] was singled out in Theorem 1; because it makes the
The main ingredient in deriving this rate for FDLZ [36] iscontributions of the terms in ii) and iii) comparable to the
the fact that the expectations of the exact match lengtbentribution of i).
L,, grow like (log m)/H + O(1), where L,,, denotes
the longest exact match between the initial portion of t
message and a single database of lengthith the same
distribution as the source. We expect that, to some extentAs stated in Theorem 1, the algorithm converges to op-
the same behavior persists in the case when distortiorfigality if the rate t(m) at which the databases are refined

allowed, and that when only one database of distributidnds to infinity while(log ¢(m))/log m tends to zero. More
Q is used we will have generally, from the proof of Theorem 1 it is clear that

any asymptotically dense set of database distributions will
=—° " _10(loglog m), asm — oo work, as long as the numbéF(m) of available databases
R(P,Q, D) of length . does not grow too fast, namely, as long as
og T(m))/log m — 0 asm — oo. Therefore, in practice,
e have the freedom to choose any set of database distribu-
come as a surprise, particularly in view of [12] wher ions t_hat fit the sp_ecmc _appllca_ltlon better mstea_d of gnlformly
gpovering all possible distributions (as shown in Fig. 1). In

it is demonstrated that, in addition to their first-orde deul ior knowled bout the distribution of th
behavior, various second-order properties of the matdh2rcu'ar, prior knowledge about the distribution ot the source

lengthsL,,, (D) (when only one database of distributiorc@" easily be incorporated into the structure of the algorithm.

is used) are analogous to those obtained in the Iossles.L,n terms of its complexity, the al_gorithm s compargble
@ ) g 0 the lossless FDLZ in the following sense: For a fixed

l(;arflea(]c;(.)mpare [12, Theorem 4] with [19, eq. (1.6), Coro:izlatabase sizen, the FDLZ encoder typically searches though
. . m possible starting positions to find an exact match of length
i) Several databaseslf th_e rate t(m_) at which the O(log m). Similarly, whent(m) = [log m] in the lossy case,
databases are refined is polynomial (kg m), then he encoder has to search throu@itm) databases (where
fche coding cost of identifying which database was usest(m) is at most polynomial in(log m)—see (3)) to find an
is also of the order of approximate match of lengiB(log m). And as in the lossless

<10g10g m) case, there is a very extensive literature devoted to efficient

log m

h@. Implementation Issues and Simulation Results

1 N
ELp,1(D) o8 ™

(in the notation of Section Ill, and under some regularit
conditions on the distortion measysg This should not

algorithms forapproximatestring matching. Implementation

details and algorithmic issues are discussed at length in the
This can be verified easily by reading through the progéxt [10], and, in the context of data compression, in [1], [2],
of Theorem 1 in Section VII-D, and it is also intuitively gnd [9].
clear since we us€(loglog m) bits to identify one of  Although the above arguments indicate that the encoding
the databases each time we describe a string of lengmplexity of the lossy algorithm in certainly polynomial
O(log m). In general, ift(m) grows at a different rate, in the message length, the upper bound for the number of
the contribution to the redundancy is of the order Qfatabases provided by @1(m) < [t(m) + 1]|As|, reveals
(log t(m))/log m. one of the algorithms’ major practical limitations: that for

iii) Wrong databaseFinally, there is an error associatedinite database lengths, the number of databases becomes
with the fact that for finitem: the optimal database isunreasonably large when the reproduction alphai)hecomes
(typically) not included among the databases currentlgrge. For example, even in the (rather modest) case when
available to the algorithm, so that the data is encod¢d| = 256 (corresponding, say, to 256 gray levels of an image)
with respect to &log m)-type approximation to the and m = 512, the above upper bound fd&F(m) becomes
optimal database. In the idealized scenario of Sectidd**®, obviously an impossibility.

log m
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Heuristic (-) versus observed (*) performance
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Fig. 2. Compression performance on a memoryless Ber(oulli source, with respect to Hamming distortion abd = 0.22. The compression ratios
achieved by the algortihm for different database sizesare denoted by=«{); the ideal compression ratio (rate-distortion function) is shown>ag the
performance suggested by the heuristic argument in Section V-B, nafiéR) + C(loglog m)/log m, is shown as a solid line, with the constant
C =~ 0.53 empirically fitted to the data.

To illustrate the algorithm’s performance, we chose the Let R be the target rate, and recall from (7) that a string
simple example of lossy compression of a binary memorylestlength L in the message that matches somewhere in one of
source with respect to Hamming distortion. We pseudoratiie databases, can be encoded using no more than
domly generated binary Bernoyli4) data, and implemented N
the algorithm as described in Section I, with some minor ¥, (L) = min{C; log(L + 1) + C; log(t(m) + 1)
practical modifications. +log m,CsL} bits. (16)

Fig. 2 shows its compression performance on a sequence of
524 288 bits (64 kbytes), with the distortion levelset t00.22, To guarantee an encoding rate beldbits per symbol, we
and for a total of 15 databases of lengths= 27,219 ... 2!%  consider initial stringsX{ of the message(;" of lengths L
bits each. For reference, we note that typical values:ah large enough so that,,(L)/L < R, i.e.,L > M,,(R), where
current implementations of lossless versions of Lempel-Ziv
are aroundm = 2% bits (for example,;» corresponding to M, (R) 2 min{l <L<m: Ym(L) < R}
the window size used by LZ77 as implemented in the Unix - L~
commandgz1p, see [16].)' . . (since the functior,,,(L)/L is nonincreasing inL, L >

As in several current implementations of lossless versio I . I
of Lempel-Ziv coding, we set a maximum possible matc%im(R) implies ¢, (L)/L < ). Of all such stringsXy,

. he T . oose the one that matches somewhere into one of the
length of 128 bits. This restriction allowed us to describe ea%tabases with minimal distortion: let
L., 1 using a fixed 7 bits rather than tifélog (L,,, 1 + 1) bits ’

suggested in Section llI. Dy, 1((R) = min{PL(Xfa(ﬁ(j)aﬁﬂa“"Yi(ﬁ)r,_l))l
VI. EXTENSIONS M, (R)<L<m,1<i<m-—L+1,
A. A Fixed-Rate Version 1<j<T(m)}

We informally outline how the algorithm can be modified t@nd writeA,,, 1 (R) for the achievingL in the above definition.
provide fixed-rate lossy compression for memoryless sourc&en the initial string inX;¥ of length A,,, 1(R) > M,(R)
The main difference is that instead of looking for loegest can be encoded, within distortiaB,,, 1 (R), using
match with distortion smaller than a fixdd, here we look for
the most accuratenatch with length greater than some fixed YA 1 (F)) < R bits per symbal (17)
length M. Ama(R) 7
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The same process can be repeated iteratively until the enfire General Reproduction Alphabets
message has beeg encoded, yielding a total etibstrings of g giready mentioned in Section V, the algorithm optimality
X{", of lengthsa; = A,,,.i(R), and corresponding description-does not depend on the exact form of the database distributions
Iengthsbiéz/;m(Am,i(R)).By (17) and the log-sum inequality chosen, as long as 1) they are asymptotically dense, and
[8, Theorem 2.7.1] it follows that 2) their numberT(m) satisfies(log T'(m))/log m — 0 as

m — oo. In the case of general reproduction alphabets,

% a; I -1 g the algorithm can be extended in a straightforward way, by
| i= - a; ) including several databases uniformly covering the space of all
lo L < a; a;log — | <log R ) . L .
&l N = <; ) ; < & bi) =08 possible reproduction distributions. Such asymptotically dense
El K finite covers should be possible to construct in a systematic
manner, at least as long as the space of database distributions
so the overall encoding rate ofi" is is “compact,” in a natural sense.
11
2 VIl. PROOFS
Zznl < R bits per symbol.
2 bi A. Proof of Lemma 1

1

T

Fix D € (0, Dyax), Write P, for the empirical measure
Now let us look at the distortion achieved. From thﬁ]duced beIL on A, i.e., the measure which assigns mass

definition of,,, it is clear that the dominant term in the right-(1 /,,) to each one of the valueX;, i = 1,2,---,n. Recall

hand side of (16) is th€log m)-term, which means that, for that thes(n)-typesQ,. were chosen such tha},,(y) > 0 for

large m, ¥m(L)/L & (log m)/L and M (R) = (log m)/R. all y € A. Since by (1) we have

Therefore, D,,, 1 (R) is the minimal distortion that can be

achieved between the source and any one of the databases by sup min p(z,y) =0

strings of lengths longer thafog m)/R. But from Corollary PEA yEAs

2 we know that there exigb-close matches of length at IeasE

(log )/ R(D), which suggests that t follows that for anyz}? € A" the ball B(z}, D) is not
g m)/R(D),

empty, and hence

limsup Dp, 1 (R) < D(R) a.s. (18) Q.(B(XT, D)) > 0, P_as. (19)

with D(R) denoting the distortion-rate function of the sourcenow choose and fix any realizatian let ¢ > 0 arbitrary, and
So, in the same way that Corollary 2 is the essential technieglsumei’ > 1 is some fixed constant. For amylarge enough
ingredient in proving Theorem 1, it is plausible that the optiso thate™ > 2(n + 1), we have

mality of the above scheme (i.e., that the overall description

of the messag&’¥ is asymptotically within distortiorD(R)) PxQ{W,(D)> K|X] =27}

will similarly follow from (18). i1 .
<Qu{vit" ¢ Bat.p),

B. Sources with Memory K—1
. . . . . forall:=0,1,.--,
A simple inspection of the proofs immediately reveals that n
all the results from Sections II-IV remain true in the case =[1-Q,(B(z}, D)K-1/n

when the assumption thaf is memoryless is replaced with the
assumption that it is a stationary ergodic process. In particul@ginceWn(D) > 1 by definition we need not consider values
the asymptotic compression ratio achieved by the algorithgf K < 1). Letting K = 2"¢/Q,(B(z%, D)) above, and
is equal to the first-order approximation to the rate-distortiafoting that(1 — )% < 1/(Rz) for all z € (0,1) andR > 0
function of X, which is, in general, larger than the rateyields

distortion function itself. In the companion paper [21] we

present a different modification of FDLZ that achieves the p Q {l log[W,(D)Q, (B(z", D))] >
rate-distortion function for a wide class of processes with "n " ’

X7 :x?}

memory. ot 2( 5 - 11717"
n L (B(x7,D

« fosen.op| Em=1|

C. Unbounded Distortion Measures
ne n —1
The assumption that is bounded is a technical assumption < [2 - Q.(B(=1, D)) Q. (B(a? D))}

that can be significantly relaxed at the price of more complex - n " L
proofs. We expect that the algorithm optimality, as well as < 2p277C, (20)

the waiting times results of Section Ill, remain valid for a
much more general class of distortion measures, satisfyiAgeraging over all strings:} € A™ and applying the Borel—
only certain moment conditions. Cantelli lemma completes the proof. O
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B. Proof of Lemma 2 where
To avoid cumbersome notation, we prove Lemma 2 in terms folz) = InEq (C)\p(az,Y))7 5 e A
of natural logarithms (denoted hy) instead of logarithms "
taken to base, i.e., we will show that If we define f(-) on A like f,(-), but with @,, replaced by
Q*, then
liminf — an (B(XT, D)) > —R.(D) as. (21) .
n—oo 1
(recall thatRe(D) is the rate-distortion function oX in nats). |n Axp (n) n ; (X n Z oK) = J(X3)]
In the proof of (21) we will use two more technical Lemmas < sup |f (@) — f(2)]
from [20] and [12]. Lemma 3 is simply a restatement of [12, ~eca "
Lemma 1] (or [20, Lemma 2.1], where it is proved). Lemma < sup |log(1 4 e, ()]
4 i) corresponds to [12, Proposition 1] or [20, Proposition #CA

2.2], and Lemma 4 i) is an immediate consequence of tﬂﬁ'nere
corresponding proof.

—OF Ap(z,y)
Lemma 3 [20], [12]: Let x» and ~ be arbitrary probability ZA [@nly) — @ Wl

yCA
measures oM and A, respectively. Let en(@) = S Q(y)e @)
yEA
DY =E, i X
mm v J&B‘L 0 X y) But from (14)
Dﬁlal:X:EHXV [p(X7Y)] |A|
_ len ()] < ARNM o forallze A

and for A,z € R define s(n)

Auw(N) = E,[In EV(C)\p(X,Y))] which implies that
and its Fenchel-Legendre transform 1 Axy(An) — 1 Z f(X)|—0 as. (22)

n n 4=
A% (2) = sup [\ — Ay (V)] o = _
AZO Also, sincep is bounded (by assumption), so fsand by the
Clearly ergodic theorem
: v 1
0< Dy S DS M <oo. p > F(X) = BE(f(X1)) = Apge(\) as. (23)
=1
i) Ay, is infinitely differentiable on(—oc,0), A}, ,(0) =
Dy and A, (X) — DY asA — —oc. ’ From (22) and (23) we get that
i) AL\ 2 Ofor all A < 0; if, moreover,D'"" < D#:¥ | 1 Axp(An) — Apg-(\) as.
then AL (A) < 0forall A <o0. n

i) It DAY < Ditt and D € (DI% Disz), then there i, together with Lemma 3, allows us to apply the
exists a uniqueh < 0 such thatA), ,(A\) = D and artner= | 'St_ eotr;mt [ b,t X ?ﬁrtem thP ] Eol?'lg']t (almost)
A% (D) = AD— A, ,(\). Therefore A%, (D) is finite, every realization ofY, to obtain that, withP-probability one

continuous, and decreasing for € (D D pir ).

1
min? Tmax liminf —In @, (B(XT, D))
n—oo 1

Lemma 4 [20], [12]: In the notation of Lemma 3, with

i and v as arbitrary probability measures oA and A, :h,friio%f

respectively, we have: 1 1 & »
i) Forall D >0, Re(u,,D) > A%, (D). S P x@Quq-— > p(XiY, )SD‘XI”
i Hy v * i=1
”) For a” D 6 (Dnlln7 Dmax) RG(I’L7 V? D) A;L V(D) Z _ 7illf A?:Qt (Z)
(Recall thatR.(u,v, D) is defined as in (11), but with 2€(0,D) _

relative entropy in nats instead of bits.) (by the Gartner—Ellis theorem)
Proof of Lemma 2:For all 2} € A™ and X € R define = —Apq(D) (by Lemma 3)

=—-R.(P,Q*,D) (by Lemma 4)
= —R.(D), (by the definition of@™)
so that, by expanding,, as a sum and using independence 4nq this proves (21) and the lemma. But notice that, in

1 1 & applying Lemmas 3 and 4, we are implicitly assuming that
-~ Ay == Z () D e (DDQ" DPQ"y. The outline of an argument verifying

Mgy (X) = InE g, yn (1))

min ?

this is provided in Appendix II. O
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C. Proof of Corollary 3 We call a phras€ *) shortif its length satisfied, x(D) < n;
We follow the notation in the proofs of Theorem 2 an@therwise,Z*) is calledlong. o
Lemma 1. Next, the upper bound (8) for the description length

Let ¢ > 0 be given, and pick one of the (almost allfm(X1') is broken into three parts

realizationsz = xf° of X such that the result of Lemma ¢, (XN) <[mT(m)log|A[] +Cs > Lug

2 holds. By Lemma 2, we can choo3g (depending orr) k: Z09) is short

Ia;ge enough so that ) " Z [C1 log(Lu s + 1)
—log @, (B(z7,D))> — R(D) — 7 for all n > Nj. k: Z(5) s long
" (24) + Colog(t(m) + 1) +log m]. (25)
Then, by the duality relationship (15) and the fact thathe first term is nonrandom and independent?éf so that
Wi(D) < Wa(D) dividing by N and letting N — oo it tends to zero. The
Pr{L (D) < log m ‘ oo _ xoo} second term, after taking its conditional expectation, can be
™ =~ R(D)+e| L bounded above as
<SP xQ{Wn(D)>m—n+1|X° =25} E{03 S L X{"}
k: Z(k) is short

P, {1

> log(m — n+ 1)
n

XN }

- k: Z(%) is short

log m
<C3 ——=—E I "
Xfo—a:i’o} = P R(D)+e { 2 Mz

wheren = [(log m)/(R(D)+e€)]. If we takem large enough, < Cy(log m) N Pr {Lrn (D) < log m le\}
saym > My, so thatn > N, and ’ R(D) +e
o where the first inequality follows from the definition of being
o llog (m = n +1)]/n 2 R(D) +¢/2, “short,” C, = C3/(R(D) + ¢), I denotes the indicator
then this is bounded above by function of an event”, and the second inequality follows
PxQ {log W, (D) > R(D) + € Xo = xTo} by considering not just ak’s but all the possible positions on
™ n - 2 XN where a short match can occur. We can now divideMyy
log[W,(D)Q,,(B(z7, D))] let N — oo, and apply Corollary 3 to see that the conditional
< Px Qn{ n 2 R(D) expectation of the second term in (25) also converges to zero,

1 B P-almost surely.
+-log @, (B(ay, D)) + §‘Xf° = wi’o} Finally, we turn to the third—and dominant—term in (25).
By the assumptions of Theorem 1, for all large enough
CPxO {bg[wn,(D)Qn(B(x?,D))] ’ P 98 Snot

(independently ofV and X{¥) we have
o 0Bt
2—‘Xf°:xf°} log m
4 From now and until the end of the proof we assume thas
large enough for (26) to hold. Also, lét/, be the number of
long phrase<Z(*). Since each long*) has lengthL,,, . > n,

(26)

where the last inequality follows by (24). Finally, take >
M, sufficiently large to make the corresponding large
enough so that the bound (20) from the proof of Lemma

e must have
applies. Combining (20) with the above bounds yields
loz m I, n < N. (27)
Pr{ Ly (D) € oo —| X7 = 25 N in the lossl bound above th
s R(D) + ¢ ow, as in the lossless case [34], we can bound above the

< 224 < am—Plog m third term in (25) by

1
for some fixed constants, 3 > 0; since this argument holds C111/,, Z {H’ log( Ly 1 + 1)}
for P-almost anyz, the result of Corollary 3 follows. O k: Z(¥) is long

m

log t(m)
/ .
D. Proof of Theorem 1 L log m<1 O log m )

Lete > 0 be given, and choose and fix one of the (almost aNyhich, applying Jensen’s inequality and (26), is bounded
realizationse = z5° of X such that Corollary 3 holds. Recallabove by
that the encoding algorithm parses B3g" into II,,, distinct

words Z*), each of lengthL,,, ;.. Let n = (log m)/(R(D) + CLIT, log ( 1/ > (Lt 1))

e). Following [34] we assume, without loss of generality, that
n is an integer and that the last phrase in the parsing Of
is complete, i.e.,

™ k: Z() is long
+11, (log m) (1+ )

a) N
< CIT, log <1 + ) + 1T/, (log m) (1 +¢)

zM=) has lengthl,, i1, (D). 15,



2304

INE

CiN

I, . N
N 10g 1+H—;n

+ % (log m) (1 +¢)

INS

ClN% log (1 +n) + N(1 + )(R(D) + ¢)

2 N{(R(D) +e)(1+e) + C';)—IOglOg m}

log m

where a) follows by the fact that the sum of the lengths

of long phrases cannot exceéd, b) follows from (27); c)

follows from (27) together with the fact that the functiorand also it can be seen that, sinbe= D ;7 ,

x log (141/x) is increasing for all: > 0; andd) follows from
the definition ofn in terms ofm, with C5 = 2C1(R(D) + ¢).
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therefore, there exist constanis>0 and 0 < C < oo such

that, for all D' € (D, D + 6)

R(D/) - R(D) < R(P7 Q*vD/) - A}’,Q*
D' —D D' —D

where the last inequality follows from the observation (13)

and Lemma 4. Now from Lemmas 3 and 4 it easily follows
that for eachD’ > D there exists &’ < 0 such that

R(P,Q*,D')=XND" = Apqo-(X)

o< (D)

(28)

(29)

P97 the quantity

AD = Apge(N)

Combining this with the fact that the first two terms in (25jncreases taA%, . (D) as A — —oo. Combining this with

vanish, immediately yields

L (XN, D)
N

m—oo N—oo

limsup limsup E{ ‘Xl ' }

<(R(D)+)(1+¢) as.

(28) and (29) yields
lim {A’D’ ~Apg (V) = [AD — Apg-(M)] }

D —-D
where the quantity in the curly bracke{s--} on the right-
hand side above decreasesas— —oc. Therefore, taking

—C<

and since: > 0 was arbitrary we get (9). Finally, (10) follows y — y/ we get

from (9) and Fatou’s lemma. O

APPENDIX |

Choice ofs(n)-types: Since s(n) — oo and it is nonde-
creasing, for alln large enough we have

s(n) > |A|max{1/Q*(y):y € Awith Q*(y) > 0}.
Pick y, € A with Q*(y,) > 0, and define
Qn(y)

[mQ ()1, if y # yo andQ*(y) > 0
= it Q' (y) =0
1-— Z Qn(y); ity = yo.
YEA,YFEYo

It is now trivial to check that?,, has the required properties.

APPENDIX Il

Here we give an argument verifying that,/if € (0, Dyax),
then, in fact,D € (DL:?" DIQ"). First note that

min ’“~ max

— phe”

max

Dmax mu} Ep(p(X7 y)) S EPXQ¢p(X7 Y)

yeA

so sinceD < Dp,ax by assumption, we also have< DIQ.
On the other hand, i < DJ'?", then it is clear from the

definition (11) of R(P,Q*, D) that R(D) = R(P,Q*,D) =

oo, but as noted in Section II-A, this is impossible. Finally, it
1 so we assume that,
in fact, D = DP9 and next we outline how this leads to

remains to rule out the cage = D%

min !

min !

a contradiction: Sinc&(D) is a convex function oD [4, p.

270] and R(D) < o for all D >0, it must have a one-sided [9]

derivative atD >0
R(D'") — R(D)
D' —D

lim
D’LD

> —

—C <X, (30)

But from Lemma 3 we see that, by takin@' close enough
to D, X' can be made arbitrarily small towardoo, and this
contradicts (30). O

ACKNOWLEDGMENT

The author gratefully acknowledges several interesting con-
versations on the subject with A. Dembo and T. Cover, and
also wishes to thank W. Szpankowski and the referees for
their useful comments on an early version of this paper, and
for pointing out the similarities with the work of Bucklew [5],

[6].

REFERENCES
[1] D. Arnaud and W. Szpankowski, “Pattern matching image compression
with prediction loop: Preliminary experimental results,” Bnoc. Data

Compression Conf.—DCC 97 Los Alamitos, CA: IEEE Comput. Soc.

Press, 1997.

M. Atallah, Y. Génin, and W. Szpankowski, “Pattern matching image

compression: Algorithmic and empirical result$EEE Trans. Pattern

Anal. Machine Intell. vol. 21, pp. 614-627, July 1999.

J. G. Bell, T. C. Cleary, and |. H. Wittenfext Compression Engle-

wood Cliffs, NJ: Prentice-Hall, 1990.

T. Berger, Rate Distortion Theory: A Mathematical Basis for Data

Compression Englewood Cliffs, NJ: Prentice-Hall, 1971.

J. A. Bucklew, “The source coding theorem via Sanov’s theordEEE

Trans. Inform. Theoryvol. IT-33, pp. 907-909, Nov. 1987.

__, “Alarge deviation theory proof of the abstract alphabet source

coding theorem,IEEE Trans. Inform. Theoryol. 34, pp. 1081-1083,

Sept. 1988.

7] P.A.Chou, M. Effros, and R. M. Gray, “A vector quantization approach
to universal noiseless coding and quantizatiodhEEE Trans. Inform.
Theory vol. 42, pp. 1109-1138, July 1996.

8] T. M. Cover and J. A. Thomagslements of Information Theary New

York: Wiley, 1991.

M. Crochemore and T. Lecroq, “Pattern-matching and text-compression

algorithms,”ACM Comput. Suryvol. 28, no. 1, pp. 39-41, 1996.

M. Crochemore and W. Rytteifext Algorithms New York: Oxford

Univ. Press, 1994.

I. Csiszr and J. Kitner, Information Theory: Coding Theorems for

Discrete Memoryless SystemdNew York: Academic, 1981.

(2]

(3]
(4]
(5]
(6]

(20]

[11]



KONTOYIANNIS: AN IMPLEMENTABLE LOSSY VERSION OF THE LEMPEL-ZIV ALGORITHM—PART |

[12]

[13]
[14]
(18]

[16]

[17]

(18]

[29]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]
(28]
[29]

[30]

A. Dembo and I|. Kontoyiannis, “The asymptotics of waiting timeg31]
between stationary processes, allowing distortigxnh. Appl. Probah.
vol. 9, pp. 413-429, 1999.
A. Dembo and O. Zeitouni,.arge Deviations Techniques And Applica-
tions 2nd ed. New York: Springer-Verlag, 1998.
P. Elias, “Universal codeword sets and representations of the integerg3]
IEEE Trans. Inform. Theorwol. IT-21, pp. 194-203, 1975.
R. M. Gray and D. L. Neuhoff, “Quantization[EEE Trans. Inform.
Theory vol. 44, pp. 2325-2383, Oct. 1998. [34]
D. Hankerson, G. A. Harris, and P. D. Johnson, [htroduction to
Information Theory and Data CompressionBoca Raton, FL: CRC,
1998. [35]
J. C. Kieffer, “A survey of the theory of source coding with a fidelity
criterion,” IEEE Trans. Inform. Theoryol. 39, pp. 1473-1490, Sept. [36]
1993.
I. Kontoyiannis, “Second-order analysis of lossless and lossy versions
of Lempel-Ziv codes,” in31st Asilomar Conf. Signals, Systems anct37]
Computers (Monterey, CA, Nov. 1997).
, “Asymptotic recurrence and waiting times for stationary pro-
cesses,’l. Theoret. Probab.vol. 11, pp. 795-811, 1998. 38]
__,“Recurrence and waiting times in stationary processes, and thl:lr
applications in data compression,” Ph.D. dissertation, Dept. Elec. Eng.,
Stanford Univ.,Stanford, CA, May 1998. [39]
, “An implementable lossy version of the Lempel-Ziv algo-
rithm—Optimality for sources with memory,” in preparation, 1999.
T. Linder, G. Lugosi, and K. Zeger, “Rates of convergence in the souri 0]
coding theorem, in empirical quantizer design, and in universal los 5
source coding,lEEE Trans. Inform. Theoryvol. 40, pp. 1728-1740,
Nov. 1994.
T. kbuczak and W. Szpankowski, “A suboptimal lossy data compressiJﬁl]
algorithm based on approximate pattern matchifi§EE Trans. Inform.
Theory vol. 43, pp. 1439-1451, Sept. 1997.
H. Morita and K. Kobayashi, “An extension of LZW coding algorithm[42]
to source coding subject to a fidelity criterion,” #th Joint Sweed-
insh—Soviet Int. Worksh. Information Thedi@otland, Sweden, 1989),
pp. 105-109. [43]
J. Muramatsu and F. Kanaya, “Distortion-complexity and rate-distortion
function,” IEICE Trans. Fundamentalsvol. E77-A, pp. 1224-1229,
1994.
R. M. Neuhoff, D. L. Gray, and L. D. Davisson, “Fixed rate universal44]
block source coding with a fidelity criterion,/EEE Trans. Inform.
Theory vol. IT-21, pp. 511-523, Sept. 1975.
D. Ornstein and P. C. Shields, “Universal almost sure data compressiotft5]
Ann. Probabh, vol. 18, pp. 441-452, 1990.
D. Ornstein and B. Weiss, “Entropy and data compression schemef#6]
IEEE Trans. Inform. Theorwol. 39, pp. 78-83, Jan. 1993.
Y. Steinberg and M. Gutman, “An algorithm for source coding subjed#7]
to a fidelity criterion, based upon string matchinFEE Trans. Inform.
Theory vol. 39, pp. 877-886, May 1993.
W. Szpankowski, “Asymptotic properties of data compression and suff[48]
trees,”IEEE Trans. Inform. Theoryol. 39, pp. 1647-1659, Sept. 1993.

(32]

2305

F. M. J. Willems, “Universal data compression and repetition times,
IEEE Trans. Inform. Theorwol. 35, pp. 54-58, Jan. 1989.

A. D. Wyner and A. J. Wyner, “Improved redundancy of a version of
the Lempel-Ziv algorithm,""EEE Trans. Inform. Theoryvol. 35, pp.
723-731, May 1995.

A. D. Wyner and J. Ziv, “Some asymptotic properties of the entropy of
a stationary ergodic data source with applications to data compression,”
IEEE Trans. Inform. Theoryol. 35, pp. 1250-1258, Nov. 1989.

, “Fixed data base version of the Lempel-Ziv data compression
algorithm,” IEEE Trans. Inform. Theoryvol. 37, pp. 878-880, May
1991.

, “The sliding-window Lempel-Ziv algorithm is asymptotically
optimal,” Proc. IEEE vol. 82, pp. 872—-877, June 1994.

A. J. Wyner, “The redundancy and distribution of the phrase lengths of
the Fixed-Database Lempel-Ziv algorithni?EE Trans. Inform. Theory
vol. 43, pp. 1452-1464, Sept. 1997.

E.-H. Yang and J. C. Kieffer, “Simple universal lossy data data com-
pression schemes derived from the Lempel-Ziv algorithiBEE Trans.
Inform. Theory vol. 42, pp. 239-245, Jan. 1996.

, “On the performance of data compression algorithms based upon
string matching,”lEEE Trans. Inform. Theoryol. 44, pp. 47-65, Jan.
1998.

E.-H. Yang, Z. Zhang, and T. Berger, “Fixed-slope universal lossy data
compression,”IEEE Trans. Inform. Theoryvol. 43, pp. 1465-1476,
Sept. 1997.

R. Zamir and K. Rose, “Toward lossy Lempel-Ziv: Natural type selec-
tion,” in Proc. Information Theory Worksl{Haifa, Israel, June 1996),

p. 58.

, “A type generator model for adaptive lossy compression,”
in Proc. IEEE Internation Symp. Information Theofylm, Germany,
June/July 1997), p. 186.

Z. Zhang and V. K. Wei, “An on-line universal lossy data compression
algorithm by continuous codebook refinement—Part I: Basic reults,”
IEEE Trans. Inform. Theorwol. 42, pp. 803-821, May 1996.

Z. Zhang and E.-H. Yang, “An on-line universal lossy data compression
algorithm by continuous codebook refinement—Part Il: Optimality for
phi-mixing models,”|IEEE Trans. Inform. Theorwol. 42, pp. 822-836,
May 1996.

J. Ziv, “Coding of sources with unknown statistics—Part Il: Distortion
relative to a fidelity criterion,"EEE Trans. Inform. Theorwol. IT-18,

pp. 389-394, May 1972.

, “Coding theorems for individual sequence$EZEE Trans. In-
form. Theory vol. IT-24, pp. 405-412, July 1978.

, “Distortion-rate theory for individual sequence$EEE Trans.
Inform. Theory vol. 1Y-26, pp. 137-143, Mar. 1980.

J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,”lEEE Trans. Inform. Theoryvol. 1T-23, pp. 337-343,
May 1977.

, “Compression of individual sequences by variable rate coding,”
IEEE Trans. Inform. Theoryol. IT-24, pp. 530-536, Sept. 1978.




