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An Implementable Lossy Version of
the Lempel–Ziv Algorithm—Part I:
Optimality for Memoryless Sources

Ioannis Kontoyiannis,Member, IEEE

Abstract—A new lossy variant of the Fixed-Database Lem-
pel–Ziv coding algorithm for encoding at a fixed distortion
level is proposed, and its asymptotic optimality and universality
for memoryless sources (with respect to bounded single-letter
distortion measures) is demonstrated: As the database sizem
increases to infinity, the expected compression ratio approaches
the rate-distortion function. The complexity and redundancy
characteristics of the algorithm are comparable to those of its
lossless counterpart. A heuristic argument suggests that the
redundancy is of order (log log m)= log m, and this is also
confirmed experimentally; simulation results are presented that
agree well with this rate. Also, the complexity of the algorithm
is seen to be comparable to that of the corresponding lossless
scheme.

We show that there is a tradeoff between compression perfor-
mance and encoding complexity, and we discuss how the relevant
parameters can be chosen to balance this tradeoff in practice. We
also discuss the performance of the algorithm when applied to
sources with memory, and extensions to the cases of unbounded
distortion measures and infinite reproduction alphabets.

Index Terms—Fixed database, Lempel-Ziv, lossy data compres-
sion, universal source coding.

I. INTRODUCTION

OVER the past 25 years, the practical requirement for ef-
ficient data compression has become apparent in almost

every engineering application where large amounts of data are
transmitted or stored.

In applications where the data needs to be perfectly re-
constructed from its compressed form (losslesscoding), the
most prominent example of a successful practical scheme is
probably the Lempel–Ziv data compression algorithm. Varia-
tions of the original scheme [47], [48] are implemented on
most personal computers in use today. Although in terms
of compression performance they have been shown to be
asymptotically optimal and to achieve optimality universally
over several general classes of data sources (i.e., without prior
knowledge of the source) [47], [45], [48], [34], [28], [35],
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their practical success is mainly due to the fact that they
provide low-complexity algorithms that offer themselves to
easy on-line implementations. (A comprehensive introduction
to several lossless Lempel–Ziv schemes and their implementa-
tions is given in the recent text [16]; see also [3] for numerous
variants.)

On the other hand, there are several applications in which
the requirement for perfect reconstruction of the data can be
relaxed (lossycoding), for example, when images are transmit-
ted over the World-Wide Web. In this case, the story has been
somewhat less successful. From rate-distortion theory [4], we
know that one can achieve a sometimes dramatic improvement
in compression by allowing some amount of error in the
reconstructed data. In fact, it has been demonstrated that there
exist universal algorithms for lossy data compression that
asymptotically achieve optimal performance and, moreover,
there are explicit constructions of such universal codes; see
[17], the references therein, and the more recent work of
Zhang, Wei, and Yang [42], [43]. Typically, these construc-
tions either involve exhaustive searches over the space of
all possible codebooks or are of exponential complexity at
the encoder and therefore cannot be realistically implemented
in practice (cf. [46], [27], [25], and [37]). More practical
algorithms have been recently proposed by Yang, Zhang, and
Berger [39] (partly expanding on the ideas of Muramatsu and
Kanaya [25]), where they suggest a new way for circumventing
the exponential encoding complexity of earlier schemes.

Motivated by the success of the lossless Lempel–Ziv
schemes, several attempts were made to extend them to the
case of lossy coding, most notably by Morita and Kobayashi
[24] and by Steinberg and Gutman [29]. Although fairly easy
to implement, these schemes unfortunately turned out to have
strictly suboptimal compression performance; see [23], [38],
[12], and the discussion in Section III.

The purpose of this paper is to present and analyze a new
universal lossy compression algorithm, generalizing the Fixed-
Database Lempel–Ziv (FDLZ) lossless compression algorithm
[34] to the lossy case. As we describe in the next section,
it is a scheme for encoding memoryless sources at a fixed-
distortion level. We show that its compression performance
is asymptotically optimal with respect to bounded single-
letter distortion measures, and in Section V we argue that
its encoding complexity is comparable to that of its lossless
counterpart, in that it is only polynomial in the length of the
encoded message. We give simple (and rather crude) upper
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bounds on the complexity, and we also discuss some of the
algorithm’s practical limitations.

The gist of our approach is that, instead of using a database
generated by the same distribution as the data, the encoder is
allowed to havemultiple databasessimultaneously available,
and to adaptively choose which one to use at each step in a
“greedy” way. As the database length grows, the number of
available databases also grows so that, in effect, codebooks are
generated according to all possible reproduction distributions.
By controlling the rate at which the number of databases
grows, we can make sure that reasonable complexity is main-
tained at the encoder, while at the same time the set of possible
codebook distributions is refined to cover an asymptotically
dense set.

Although the notion of using multiple codebooks for source
coding is well known in information theory [44], [26], multiple
codebook algorithms typically involve either a training stage,
or a large search over (essentially) all possible codebooks.
For example, Chou, Effros, and Gray’s [7] vector-quantization
interpretation of universal lossy source coding is in terms of
two-pass (or “two-stage”) weighted universal codes. Another
family of two-pass lossy compression algorithms is that of
empirically designed vector quantizers, discussed by Linder,
Lugosi, and Zeger [22] among many others. (More pointers to
the large literature on vector quantization can be found in the
recent review paper by Gray and Neuhoff [15].) Preliminary
results from a work closer in spirit to our approach were
recently reported by Zamir and Rose in [40] and [41].

We analyze the performance of the new algorithm (presented
in Section II-B) by studying the asymptotic behavior ofwaiting
times between stationary processes. The connection between
waiting times and data compression seems to have been first
made by Willems [31]. At about the same time, Wyner and Ziv
[33] showed that the asymptotics of waiting (and recurrence)
times are intimately connected to the performance of several
variants of the Lempel–Ziv scheme, and, since then, a number
of papers have appeared exploiting this connection (see, e.g.,
[34], [35], [29], [30], and [32]). The first step in our analysis,
carried out in Section III, is to study the performance of
an idealized version of the algorithm in terms of waiting
times, whose asymptotic behavior is determined by the strategy
that was introduced in [19] and [12], namely, the waiting
times are first approximated by a sequence of large-deviation
probabilities (Lemma 1), and then large-deviations techniques
are used to identify the exponent of decay of these probabilities
(Lemma 2). We should note that a related approach was
adopted by Bucklew in [5] and [6], where he utilizes large
deviations for distortion balls to prove direct coding theorems.

In Section IV, we relate this idealized scheme to the
practical algorithm. This is done by realizing that there is a
duality relationship between waiting times and match lengths.
This relationship is not as straightforward as in the lossless
case, and some new subtleties arise in the proofs. Nevertheless,
the optimality of the practical algorithm can be deduced
from carefully exploiting this duality, in combination with the
waiting times results of the previous section.

The reason why this algorithm compresses optimally can
be explained intuitively as follows: We know from rate-

distortion theory that, unlike in the case of lossless coding,
when distortion is allowed the optimal codebook distribution
is typically different from the distribution of the source. The
most straightforward way to fix this mismatch between a
fixed database and the optimum one is to maintain multiple
databases at the encoder and decoder, so that a good enough
match can always be found. In this way, two objectives are
simultaneously achieved.

i) Universality; the same algorithm with the same set of
databases works for any memoryless source.

ii) Reasonable complexity; like FDLZ in the lossless case,
what makes this algorithm potentially attractive is that
it provides a sequence of suboptimal coding schemes,
indexed by the database length and the number of
available databases, that offer a handle on the complex-
ity/redundancy tradeoff: Using a few short databases, we
get efficient, easily implementable algorithms with high
redundancy. On the other hand, increasing the length
and the number of databases provides algorithms with
compression performance that can be made arbitrarily
close to being optimal, at the cost of increasing the
encoding complexity. Quantitative bounds on the precise
form of this tradeoff are given in Section V.

We also note that there is a wealth of approximate string
matching algorithms (see [10], [1], [2], [9], and the references
therein) allowing for efficient implementations.

The rest of the paper is organized as follows. In the next
section we describe the algorithm in detail and present our
main theoretical result, Theorem 1, stating its asymptotic
optimality. In Section III we first give an informal explanation
of this optimality, and we state and prove the theoretical
results that are needed in order to establish it formally. This is
done in Section IV. In Section V we discuss implementation
issues, and present some details on the quantitative nature
of the complexity/redundancy tradeoff. A heuristic argument
suggests that the redundancy of the algorithm is of the same
order of magnitude as that of the lossless FDLZ, and we
present simulation results that seem to confirm this rate. In
Section VI we describe extensions of the algorithm in several
directions: more general classes of sources, unbounded distor-
tion measures, fixed-rate coding. Section VII and Appendices I
and II contain the proofs of the theoretical results in Sections
III and IV.

II. DESCRIPTION OF THEALGORITHM

After some preliminary definitions, in Section II-B we
describe the compression algorithm in its simplest form and we
state our first result, Theorem 1, which establishes its asymp-
totic optimality. The algorithm is a lossy source-coding scheme
for encoding memoryless sources at a fixed distortion level,
with respect to single-letter distortion measures. Extensions
of the use of the algorithm to more general situations are
discussed in Section VI.

A. Preliminaries

Let be a memoryless source with values
in the source alphabet , where is a Polish space (namely,
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a complete, separable metric space) equipped with its Borel-
field The distribution of is determined by specifying that
the random variables are independent and identically
distributed (i.i.d.) according to some fixed measureon

Let denote thereproduction alphabet, and assume
that it is finite. Let denote an infinite
realization (or “message”) produced by the source, and,
given integers , write for the string
corresponding to the part of the realization betweenand
, We also write for the vector

of random variables , and, similarly, for
sequences and in the
reproduction alphabet.

Given an integer , a probability mass function (pmf) on
is called a -type if for every , is of the form

for some nonnegative integer
Let be a fixed, nonnegative (measurable)

distortion measure, and define a sequence of single-letter
distortion measures on by

Without loss of generality, throughout the paper we assume
as usual that

(1)

and also that the distortion measureis bounded

Given and a string let denote the
distortion-ball of all -strings in that are within distortion

of

Given a source distribution , we define

and assume that Given , let denote
the rate-distortion function of with respect to

(2)

where denotes the mutual information (in bits) be-
tween and , and the infimum is taken over all jointly
distributed random variables with values in ,
such that and Following the standard
convention, we let the infimum of an empty set be equal to

, so if there is no such pair It is
easy to check that for , so we restrict our
attention to the interesting range of allowable distortion values

Moreover, condition (1) and the finiteness of
immediately guarantee that for all

Fig. 1. The set of alldlog me-types, correpsonding to the vertices of a
uniform grid of width1=dlog me placed on the simplex of pmf’s on̂A:

B. The Algorithm

Let be a message of length
generated by some memoryless sourceof unknown

distribution on , and let a distortion level be fixed.
Let be a nondecreasing sequence of integers, write

for the number of -types on , and recall [11] that
is at most polynomial in

(3)

For each , we describe an encoding algorithm that uses
databases of length

Choose and fix an for now. Assume that the encoder and
decoder both have access to memoryless databases

i.i.d.

i.i.d.
...

i.i.d.

where each database has the same length, they are all
generated independently of the message, and each one is
i.i.d. according some -type on , for .
Fig. 1 shows schematically the set of all -types for the
specific choice of (here and throughout the
paper “ ” denotes the logarithm taken to base two).

We can either assume that these databases are available to
the encoder and decoder before the coding process begins, or
that they are generated at the encoder and transmitted to the
decoder using an overhead of

bits. (4)

The encoding algorithm is as follows: First, the encoder
calculates the length of the longest match of an initial portion
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of the message, within distortion , in any one of the
databases. Let denote the length of this
longest match

for some and

and let denote the initial phrase of length in

Observe that by assumption (1). Then the encoder
describes to the decoder

a) the length ; this takes at most bits,
where is a universal constant (cf. [14], [35]);

b) the index of the database in which this longest match
was found; this takes bits;

c) the position in database where the match occurs; this
takes bits.

Clearly, from a), b) and c) the decoder can easily recover the
string

which is within distortion of The description length
of a), b), and c) is bounded above by

bits. (5)

Alternatively, can be described by first describing its
length as before, and then describing directly using

bits. (6)

The encoder uses whichever one of the two descriptions is
shorter, together with a one-bit flag to indicate which one was
chosen. Therefore, from (5), (6), and (3), the length of the
description of is bounded above by

bits (7)

for some fixed constants and independent of
and of the source message

After has been described within distortion, the same
process is repeated to encode the rest of the message: The
encoder finds the length of the longest string
starting at position in that matches within
distortion into any one of the databases, and describes

to the decoder by repeating the above steps.
The algorithm is terminated, in the natural way, when the

entire string has been exhausted. At that point, has
been parsed into distinct phrases ,
each of length

with the possible exception of the last phrase, which may
be shorter. Since each substring is described within

distortion , also the concatenation of all the reproduction
strings

will be within distortion of
Let denote the overall description

length for From (4) and (7), is bounded
above by

bits. (8)

The following result establishes the asymptotic optimality of
this algorithm by showing that, for long messages ,
the expected compression ratio achieved does not exceed the
rate-distortion function , as tends to infinity. In fact, a
somewhat stronger result is proved, namely, that for (almost)
any message emitted by the source, the compression ratio
achieved, averaged over all possible databases, is asymptot-
ically no larger than Theorem 1 is proved in Sec-
tion VII-D.

Theorem 1. Algorithm Optimality:Let If
the rate at which the databases are refined is

, then, with probability one in the source messages
(or “almost surely,” denoted “a.s.”)

a.s. (9)

where the expectation is over all databases. Therefore,

(10)

with the expectation here being over both the message
and the databases. Moreover, (9) and (10) hold for any choice
of with , as

Remark: The case of lossless compression can be regarded
as a special case of the above algorithm, where the encoder
looks for exact matches between the source and the database.
In fact, implicit in the proof of Theorem 1 is a proof that the
compression ratio achieved by the lossless FDLZ algorithm
[34] applied to a memoryless source converges to the
entropy rate of , for almost all source messages:

Corollary 1. Strong Optimality of Lossless FDLZ:Let
be a discrete memoryless source of entropy rate, and let

denote the description length for using the FDLZ
algorithm. Then

a.s.
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III. W AITING TIMES RESULTS

A. Motivation

The first extensions of the Lempel–Ziv algorithm to the
lossy case [24], [29] suggested using a database of the same
distribution as the source, and doing approximate string match-
ing with respect to that database. As it later turned out
[23], [38], [12], this results in strictly suboptimal compression
performance. In this section we illustrate how this performance
can be understood by studying an idealized coding scenario in
terms of waiting times (this reduction of a practical scheme to
an idealized one was introduced by Wyner and Ziv [33] and it
is described in detail in [18]), and in the next section we show
how the idealized coding scheme can be modified to achieve
optimal compression.

Let be a memoryless source with values in and
distribution , and suppose that a distortion levelis chosen
and fixed. Assume that the encoder and decoder both have
available to them an infinite database
with values in , distributed i.i.d. according to the pmf ,
and independent of the source The encoder’s task is to
describe the first -string produced by to the decoder,
with distortion no more than This is done as follows:
The encoder looks for the first position in the database where

appears within distortion and communicates it to the
decoder. We call this position thewaiting time for and
denote it by

Since [14], [35] it takes approximately

bits to describe , the rate of this code is, to first order,

bits per symbol.

Theorem [23], [38], [12]:

a.s.

where

(11)

(12)

and the infimum is taken over all random variables on
with , and , with

denoting the relative entropy between two pmf’sand ,
denoting the conditional distribution of given , and

denoting the marginal of As before, we let
if there is no such pair

If we compare (12) with (2) it becomes clear that the
asymptotic rate of the code is generally strictly

greater than the optimal rate (the rate-distortion function
of ). In fact, satisfies

(13)

(with the infimum over all pmf’s on , so the problem
is that we do not knowa priori which database distribution
achieves the infimum in (13). The simple intuition behind
our algorithm is to compensate for this by using multiple
databases: We allow the encoder to generate one memoryless
database for each-type on , and then encode using the best
one, i.e., the one for which has the shortest waiting time.
The additional coding cost incurred is that we must identify
which database was used, but since there are only polynomially
many -types this extra cost is asymptotically negligible.

B. Results

Let be a nondecreasing sequence of positive inte-
gers. For each , let be the number of -types on
and write , , for each one of these -
types. Assume that for eachwe have processes ,

, where is independent of and distributed
i.i.d. according to For each let be the waiting
time until appears in within distortion

and write for the shortest one of these waiting times

Theorem 2. Waiting Times:Let If
then

a.s.

Before we give the proof of the Theorem we need to in-
troduce some notation and definitions. First, let denote
the rate-distortion function of in nats rather than bits, and
similarly write for the function defined as in (11)
but with relative entropy in nats rather than in bits, i.e., with

replaced by
Equation (13) is equivalent to

and we write for the pmf on that achieves the infimum.
(The fact that there does exist an achieving is easy to see:
Let be a sequence of pmf’s such that

Since the simplex of pmf’s on the finite set is a
compact (Euclidean) subset of , the sequence has
a convergent subsequence with some But

is continuous in for pmf’s is a neighborhood
of (this follows easily from Lemma 4 of Section VII-B by
an application of the dominated convergence theorem), and

is a subsequence of so we must have
.)
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For large enough we can choose an -type on
such that for all , and

for all (14)

(this is outlined in Appendix I). From now and until the end of
this section we assume thatis large enough so that can
be chosen as above. Write for the waiting time until
a -close version of appears in the -process distributed
according to , let denote the product measure on
the product space of infinite sequences drawn
from , and, similarly, write for the product measure

on , where is the -field on generated
by finite-dimensional cylinders.

Proof of Theorem 2:Theorem 2 follows by combining
Lemmas 1 and 2, below, together with the trivial observation
that with probability one.

Lemma 1 shows that asymptotically, on an exponential
scale, the waiting time for a -close match of
into cannot be significantly larger than the reciprocal of
the probability of the event that such a match
occurs. Its proof parallels those of the corresponding strong
approximation theorems in [19] and [21].

Lemma 1. Strong Approximation:

a.s.

Lemma 2 is a large deviations result; it will follow by an
application of the G̈artner–Ellis theorem [13, Theorem 2.3.6].

Lemma 2. Large Deviations:

a.s.

Lemmas 1 and 2 are proved in Sections VII-A and VII-B,
respectively.

IV. A LGORITHM OPTIMALITY

We will use the waiting times results of the previous
section to prove Theorem 1, establishing the optimality of the
algorithm presented in Section II-B.

First observe that there is a duality relationship between the
waiting times and the match lengths in that

(15)

Strictly speaking, since the definitions of and
depend on the choices of the underlying sequences and

, respectively, we should say that: If defined
with respect to a fixed sequence satisfies

then defined with respect to some sequence
such that satisfies

Unlike in the case of no distortion, the implication in (15) is
generallynot an equivalence. Nevertheless, (15) is sufficient to
translate the asymptotic upper bound for of Theorem
2 to an asymptotic lower bound for .

Corollary 2. Match Lengths:Let If
then

a.s.

The proof of Corollary 2 is a straightforward but tedious
calculation, very similar to the ones done in the lossless case,
and therefore omitted here. The optimality of the algorithm
(proof of Theorem 1 below) essentially follows from the fact
that the match lengths grow like , similarly,
at least in spirit, to the lossless case, where the optimality
of FDLZ follows from the fact that the lengths of the
longest exact matches grow like Unfortunately,
the elegant combinatorial argument used by Wyner and Ziv in
[33] and [35] no longer works when distortion is allowed, and
for that reason in the proof of Theorem 1 we need a stronger
bound on the (conditional) lower tails of ; its proof
is given in Section VII-C.

Corollary 3. Tails of Match Lengths:Let
If then for any

a.s.

V. COMPLEXITY, REDUNDANCY, AND IMPLEMENTATION

A useful feature of the algorithm is that it provides a
handle in balancing the tradeoff of encoding complexity versus
compression redundancy, depending on the requirements of
particular applications. This tradeoff is discussed in some more
detail below. First an upper bound is given for the complexity
of the algorithm, and then a heuristic argument is presented,
suggesting that if the rate at which the databases are being
refined is chosen appropriately the redundancy of the algorithm
is of the same order as that of the lossless FDLZ (where
“redundancy” refers to the difference between the expected
compression ratio achieved by the algorithm and the rate-
distortion function). This heuristic rate is also confirmed by
brief simulation results presented in Section V-C.

A. Complexity

The worst case complexity of the algorithm can be roughly
upper-bounded as follows. In the worst conceivable case,
for each position of the message string (such positions)
the algorithm might have to look for a match starting in
every position of each of the databases ( of them),
and make comparisons between the source string and the
corresponding database string, resulting in at most

operations.

Of course this is an extremely crude upper bound, but it
illustrates the facts that 1) the complexity of the algorithm
is certainly not exponential in the message length; and 2)
that increasing the number or the lengths of the databases
improves the compression performance and also increases the
complexity. Much more accurate bounds based on efficient
implementations of approximate string-matching algorithms
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can be derived from those reported in [2] (see also [10], [1],
[9], and the references therein).

B. Redundancy Versus Complexity

There are three “terms” contributing to the redundancy of
the algorithm, due to three different reasons.

i) Finite-length databases.Since the databases used by the
algorithm are finite, the compression will not be optimal
even if we encode with respect to a database with the
optimal distribution. As with FDLZ in the lossless case,
we expect that the penalty incurred by using a database
of finite length will be of the order of

The main ingredient in deriving this rate for FDLZ [36] is
the fact that the expectations of the exact match lengths

grow like , where denotes
the longest exact match between the initial portion of the
message and a single database of lengthwith the same
distribution as the source. We expect that, to some extent,
the same behavior persists in the case when distortion is
allowed, and that when only one database of distribution

is used we will have

as

(in the notation of Section III, and under some regularity
conditions on the distortion measure). This should not
come as a surprise, particularly in view of [12] where
it is demonstrated that, in addition to their first-order
behavior, various second-order properties of the match-
lengths (when only one database of distribution

is used) are analogous to those obtained in the lossless
case (compare [12, Theorem 4] with [19, eq. (1.6), Corol-
lary 3]).

ii) Several databases.If the rate at which the
databases are refined is polynomial in , then
the coding cost of identifying which database was used
is also of the order of

This can be verified easily by reading through the proof
of Theorem 1 in Section VII-D, and it is also intuitively
clear since we use bits to identify one of
the databases each time we describe a string of length

In general, if grows at a different rate,
the contribution to the redundancy is of the order of

iii) Wrong database.Finally, there is an error associated
with the fact that for finite the optimal database is
(typically) not included among the databases currently
available to the algorithm, so that the data is encoded
with respect to a -type approximation to the
optimal database. In the idealized scenario of Section

III, this corresponds to comparing the rate in the expo-
nent of with that of
and (14) indicates that this difference is for
the choice Therefore, for the algorithm in
Section II-B we would expect an additional redundancy
term of order

corresponding to taking

Combining i)–iii) suggests that the leading term in
the redundancy of the algorithm is of the order of

just like in the lossless case [36].
In particular, now it should be clear why the choice

was singled out in Theorem 1; because it makes the
contributions of the terms in ii) and iii) comparable to the
contribution of i).

C. Implementation Issues and Simulation Results

As stated in Theorem 1, the algorithm converges to op-
timality if the rate at which the databases are refined
tends to infinity while tends to zero. More
generally, from the proof of Theorem 1 it is clear that
any asymptotically dense set of database distributions will
work, as long as the number of available databases
of length does not grow too fast, namely, as long as

as Therefore, in practice,
we have the freedom to choose any set of database distribu-
tions that fit the specific application better instead of uniformly
covering all possible distributions (as shown in Fig. 1). In
particular, prior knowledge about the distribution of the source
can easily be incorporated into the structure of the algorithm.

In terms of its complexity, the algorithm is comparable
to the lossless FDLZ in the following sense: For a fixed
database size , the FDLZ encoder typically searches though

possible starting positions to find an exact match of length
Similarly, when in the lossy case,

the encoder has to search through databases (where
is at most polynomial in —see (3)) to find an

approximate match of length And as in the lossless
case, there is a very extensive literature devoted to efficient
algorithms forapproximatestring matching. Implementation
details and algorithmic issues are discussed at length in the
text [10], and, in the context of data compression, in [1], [2],
and [9].

Although the above arguments indicate that the encoding
complexity of the lossy algorithm in certainly polynomial
in the message length, the upper bound for the number of
databases provided by (3), , reveals
one of the algorithms’ major practical limitations: that for
finite database lengths , the number of databases becomes
unreasonably large when the reproduction alphabetbecomes
large. For example, even in the (rather modest) case when

(corresponding, say, to 256 gray levels of an image)
and , the above upper bound for becomes

, obviously an impossibility.
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Fig. 2. Compression performance on a memoryless Bernoulli(0:4) source, with respect to Hamming distortion andD = 0:22: The compression ratios
achieved by the algortihm for different database sizesm are denoted by (�); the ideal compression ratio (rate-distortion function) is shown as (�); the
performance suggested by the heuristic argument in Section V-B, namely,R(D) + C(log log m)= log m, is shown as a solid line, with the constant
C � 0:53 empirically fitted to the data.

To illustrate the algorithm’s performance, we chose the
simple example of lossy compression of a binary memoryless
source with respect to Hamming distortion. We pseudoran-
domly generated binary Bernoulli data, and implemented
the algorithm as described in Section III, with some minor
practical modifications.

Fig. 2 shows its compression performance on a sequence of
524 288 bits (64 kbytes), with the distortion levelset to ,
and for a total of 15 databases of lengths
bits each. For reference, we note that typical values ofin
current implementations of lossless versions of Lempel–Ziv
are around bits (for example, corresponding to
the window size used by LZ77 as implemented in the Unix
command ; see [16]).

As in several current implementations of lossless versions
of Lempel–Ziv coding, we set a maximum possible match
length of 128 bits. This restriction allowed us to describe each

using a fixed 7 bits rather than the bits
suggested in Section III.

VI. EXTENSIONS

A. A Fixed-Rate Version

We informally outline how the algorithm can be modified to
provide fixed-rate lossy compression for memoryless sources.
The main difference is that instead of looking for thelongest
match with distortion smaller than a fixed, here we look for
the most accuratematch with length greater than some fixed
length

Let be the target rate, and recall from (7) that a string
of length in the message that matches somewhere in one of
the databases, can be encoded using no more than

bits. (16)

To guarantee an encoding rate belowbits per symbol, we
consider initial strings of the message of lengths
large enough so that , i.e., , where

(since the function is nonincreasing in ,
implies Of all such strings ,

choose the one that matches somewhere into one of the
databases with minimal distortion; let

and write for the achieving in the above definition.
Then the initial string in of length
can be encoded, within distortion , using

bits per symbol (17)
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The same process can be repeated iteratively until the entire
message has been encoded, yielding a total ofsubstrings of

, of lengths , and corresponding description-

lengths By (17) and the log-sum inequality
[8, Theorem 2.7.1] it follows that

so the overall encoding rate of is

bits per symbol.

Now let us look at the distortion achieved. From the
definition of it is clear that the dominant term in the right-
hand side of (16) is the -term, which means that, for
large , and
Therefore, is the minimal distortion that can be
achieved between the source and any one of the databases by
strings of lengths longer than But from Corollary
2 we know that there exist -close matches of length at least

, which suggests that

a.s. (18)

with denoting the distortion-rate function of the source.
So, in the same way that Corollary 2 is the essential technical
ingredient in proving Theorem 1, it is plausible that the opti-
mality of the above scheme (i.e., that the overall description
of the message is asymptotically within distortion )
will similarly follow from (18).

B. Sources with Memory

A simple inspection of the proofs immediately reveals that
all the results from Sections II–IV remain true in the case
when the assumption that is memoryless is replaced with the
assumption that it is a stationary ergodic process. In particular,
the asymptotic compression ratio achieved by the algorithm
is equal to the first-order approximation to the rate-distortion
function of , which is, in general, larger than the rate-
distortion function itself. In the companion paper [21] we
present a different modification of FDLZ that achieves the
rate-distortion function for a wide class of processes with
memory.

C. Unbounded Distortion Measures

The assumption that is bounded is a technical assumption
that can be significantly relaxed at the price of more complex
proofs. We expect that the algorithm optimality, as well as
the waiting times results of Section III, remain valid for a
much more general class of distortion measures, satisfying
only certain moment conditions.

D. General Reproduction Alphabets

As already mentioned in Section V, the algorithm optimality
does not depend on the exact form of the database distributions
chosen, as long as 1) they are asymptotically dense, and
2) their number satisfies as

In the case of general reproduction alphabets,
the algorithm can be extended in a straightforward way, by
including several databases uniformly covering the space of all
possible reproduction distributions. Such asymptotically dense
finite covers should be possible to construct in a systematic
manner, at least as long as the space of database distributions
is “compact,” in a natural sense.

VII. PROOFS

A. Proof of Lemma 1

Fix , write for the empirical measure
induced by on , i.e., the measure which assigns mass

to each one of the values Recall
that the -types were chosen such that for
all Since by (1) we have

it follows that for any the ball is not
empty, and hence

a.s. (19)

Now choose and fix any realization, let arbitrary, and
assume is some fixed constant. For anylarge enough
so that , we have

for all

(since by definition we need not consider values
of Letting above, and
noting that for all and
yields

(20)

Averaging over all strings and applying the Borel–
Cantelli lemma completes the proof.
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B. Proof of Lemma 2

To avoid cumbersome notation, we prove Lemma 2 in terms
of natural logarithms (denoted by ) instead of logarithms
taken to base , i.e., we will show that

a.s. (21)

(recall that is the rate-distortion function of in nats).
In the proof of (21) we will use two more technical Lemmas
from [20] and [12]. Lemma 3 is simply a restatement of [12,
Lemma 1] (or [20, Lemma 2.1], where it is proved). Lemma
4 ii) corresponds to [12, Proposition 1] or [20, Proposition
2.2], and Lemma 4 i) is an immediate consequence of the
corresponding proof.

Lemma 3 [20], [12]: Let and be arbitrary probability
measures on and , respectively. Let

and for define

and its Fenchel–Legendre transform

Clearly,

i) is infinitely differentiable on
and as

ii) for all ; if, moreover, ,
then for all

iii) If and then there
exists a unique such that and

Therefore, is finite,
continuous, and decreasing for

Lemma 4 [20], [12]: In the notation of Lemma 3, with
and as arbitrary probability measures on and ,

respectively, we have:

i) For all ,

ii) For all ,

(Recall that is defined as in (11), but with
relative entropy in nats instead of bits.)

Proof of Lemma 2:For all and define

so that, by expanding as a sum and using independence

where

If we define on like , but with replaced by
, then

where

But from (14)

for all

which implies that

a.s. (22)

Also, since is bounded (by assumption), so is, and by the
ergodic theorem

a.s. (23)

From (22) and (23) we get that

a.s.

This, together with Lemma 3, allows us to apply the
Gärtner–Ellis theorem [13, Theorem 2.3.6] along (almost)
every realization of , to obtain that, with -probability one

(by the G̈artner–Ellis theorem)

(by Lemma 3)

(by Lemma 4)

(by the definition of

and this proves (21) and the lemma. But notice that, in
applying Lemmas 3 and 4, we are implicitly assuming that

The outline of an argument verifying
this is provided in Appendix II.
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C. Proof of Corollary 3

We follow the notation in the proofs of Theorem 2 and
Lemma 1.

Let be given, and pick one of the (almost all)
realizations of such that the result of Lemma
2 holds. By Lemma 2, we can choose (depending on
large enough so that

for all

(24)
Then, by the duality relationship (15) and the fact that

where If we take large enough,
say , so that and

then this is bounded above by

where the last inequality follows by (24). Finally, take
sufficiently large to make the corresponding large

enough so that the bound (20) from the proof of Lemma 1
applies. Combining (20) with the above bounds yields

for some fixed constants ; since this argument holds
for -almost any , the result of Corollary 3 follows.

D. Proof of Theorem 1

Let be given, and choose and fix one of the (almost all)
realizations of such that Corollary 3 holds. Recall
that the encoding algorithm parses up into distinct
words , each of length Let

Following [34] we assume, without loss of generality, that
is an integer and that the last phrase in the parsing of

is complete, i.e.,

has length

We call a phrase shortif its length satisfies ;
otherwise, is called long.

Next, the upper bound (8) for the description length
is broken into three parts

(25)

The first term is nonrandom and independent of, so that
dividing by and letting it tends to zero. The
second term, after taking its conditional expectation, can be
bounded above as

where the first inequality follows from the definition of being
“short,” , denotes the indicator
function of an event , and the second inequality follows
by considering not just all ’s but all the possible positions on

where a short match can occur. We can now divide by,
let , and apply Corollary 3 to see that the conditional
expectation of the second term in (25) also converges to zero,

-almost surely.
Finally, we turn to the third—and dominant—term in (25).

By the assumptions of Theorem 1, for all large enough
(independently of and ) we have

(26)

From now and until the end of the proof we assume thatis
large enough for (26) to hold. Also, let be the number of
long phrases Since each long has length ,
we must have

(27)

Now, as in the lossless case [34], we can bound above the
third term in (25) by

which, applying Jensen’s inequality and (26), is bounded
above by
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where follows by the fact that the sum of the lengths
of long phrases cannot exceed; follows from (27);
follows from (27) together with the fact that the function

is increasing for all ; and follows from
the definition of in terms of , with

Combining this with the fact that the first two terms in (25)
vanish, immediately yields

a.s.

and since was arbitrary we get (9). Finally, (10) follows
from (9) and Fatou’s lemma.

APPENDIX I

Choice of -types: Since and it is nonde-
creasing, for all large enough we have

with

Pick with and define

if and

if
if

It is now trivial to check that has the required properties.

APPENDIX II

Here we give an argument verifying that, if ,
then, in fact, First note that

so since by assumption, we also have
On the other hand, if , then it is clear from the

definition (11) of that
, but as noted in Section II-A, this is impossible. Finally, it

remains to rule out the case , so we assume that,
in fact, , and next we outline how this leads to
a contradiction: Since is a convex function of [4, p.
270] and for all , it must have a one-sided
derivative at

therefore, there exist constants and such
that, for all

(28)

where the last inequality follows from the observation (13)
and Lemma 4. Now from Lemmas 3 and 4 it easily follows
that for each there exists a such that

(29)

and also it can be seen that, since , the quantity

increases to as Combining this with
(28) and (29) yields

where the quantity in the curly brackets on the right-
hand side above decreases as Therefore, taking

we get

(30)

But from Lemma 3 we see that, by taking close enough
to , can be made arbitrarily small toward , and this
contradicts (30).
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