
An Implementation of Affix Grammars

Hans Meijer

Informatics Department, Nijmegen University, The Netherlands

Summary. Intermediate results and current problems in an on-

going implemention of minimally restricted, possibly ambiguous

Affix Grammars are described. Affix Grammars are informally

introduced. A Recursive Backup Parsing Algorithm, suitable for

any context-free grammar which is not left-recursive is

presented, together with a heuristic scheme which is

particularly effective at the lexical level. The main

intermediate result is a transcription for affixes which allows

affixes to be referenced before they are defined. The

implementation of context sensitivity, which is the main

current problem, is discussed. Other remaining problems are

listed.

This publication contains material which may be used in the

author's forthcoming doctoral dissertation.

I. Introduction

Affix Grammars were developed by C. H. A. Koster [KOSTER

1971]. A modification was proposed by D. A. Watt [WATT]. Like

other two-level grammars (Two Level Van Wljngaarden Grammars

and Attribute Grammars), Affix Grammars are extensions of

context-free grammars.

321

This implies that many of the theoretical results concerning

context-free grammars are applicable. Moreover, Affix Grammars

formalize the semantic aspects of languages, which makes them

suitable for parsing. For the user, Affix Grammars are very

much like Two Level Van Wijngaarden Grammars. For the

implementer there are many similarities with Attribute

Grammars.

1.!. An Example

First we give an example of a simple Affix Grammar for a

first glance at the style we shall use throughout this paper.

five any to unary (unary value>):

number ("", unary value), ".".

number (>prefix, value>):

digit (digit value), number (new prefix, value),

times 5 plus (prefix, digit value, new prefix).

number (>prefix, prefix>):

digit (zero>): "0"°

digit (one>): "1".

digit (two>): "2"

digit (three>): "3"

digit (four>): "4"

times 5 plus (>n, >d, n4+n+d>):

times 2 (n, n2), times 2 (n2, n4).

times 2 (>n, n+n>): .

zero::"", one::"i", two::"ii", three::"iii", foun::"iiii'.

five any to unary.

This grammar accepts 5-ary numbers, like 23. and generates

their values in unary, in this case iiiiiiiiiiiil. It is a

context-free grammar in one-level Van Wijngaarden notation,

extended with affixes. Left hand side and right hand side of

rules are separated by colons. Members at the right hand side

are separated by commaVs. Rules are terminated by dots. For

each alternative of a nonterminal a separate rule is written,

we do not collect alternatives in one rule. The affixes are

separated by comma's and enclosed in parentheses. Affix

expressions are sequences of affix variables and constants

separated by plusses.

The rule for times 5 plus inputs two afflxes, named n and d

(the flow symbol (">") is written here before the affixes).

The first member times 2 takes the affix n, doubles it and

names the result n2. The second member time8 2 takes the value

of n2, doubles it and names the result n4. Finally, the rule

produces (the flow symbol is written after the affix

expression) an affix which contains a*5+b i's, where a is the

322

number of i's in n and b is the number of i's in d.

The affix variables aeeo, one, etc. are defined using

metarules. Metarules are also terminated by a dot, have an

affix variable as their left hand side and an affix expression

as their right hand side, separated by two colons.

Terminals and affix constants are written as string

constants. The last line in the example is the specification

of the initial symbol.

1.2. Project Goal

The set of Affix Grammars may be regarded as constituting a

programming language which is especially suited for writing

transducers or compilers. This idea has led in the past to the

definition and implementation of the language CDL [CDL]. The

purpose of our project is to write a compiler for Affix

Grammars with as few restrictions as possible. The two most

important aspects which we do not want to restrict are

ambiguity and affix evaluation order (i.e., an affix need not

already have a value when it is referenced).

We consider writing the (compiler-)compiler primarily as an

engineering task. As a result, in the current stage of the

project, no theoretical results are available for inclusion in

this paper.

1.3. Outline Of The Paper

Chapter 2 gives an informal introduction to Affix Grammars.

Readers who are familiar with Affix Grammars should skip this

chapter.

Chapter 3 explains the algorithm which we use for parsing

the context-free grammars underlying Affix Grammars.

Chapter 4 describes the main results of the project up to

the current stage: the implementation of transducers, i.e.,

Affix Grammars which do not specify context conditions.

Chapter 5 very briefly indicates the problem which is

currently being investigated: the implementation of context

sensitivity.

Chapter 6 mentions some minor problems to be solved in the

future.

In the text we assume some familiarity with (context-free)

grammars and the languages Algol 60 and Algol 68.

323

1.4. Current Status

A transducer-compiler, written in Algol 68, generating

transducers in Algol 60, runs under MVS on an IBM 370/158.

Using this program, several transducers were generated:

- accepting context-free grammars with regular right parts,

- generating transducers with various optimizations,

- generating transducers in machine language,

- generating a compiler with a very general but expensive

implementation of context sensitivity (for experimental

purposes, see chapter 5).

Also a compiler for context-free grammars, utilizing the

heuristics described in chapter 3, which generates parsers in

assembler language, runs on the IBM 370/158. The generated

parsers are callable as Algol 68 procedures. After each

successful parse, the parse tree is available for inspection.

This compiler is successfully being used in the department of

Computer Linguistics of the Nijmegen University.

A compiler for transducer grammars was recently finished.

It is written in CDL2 [CDL] and generates programs for an

abstract, low level, stack-oriented machine. The compiler

currently runs on a VAX, under VMS, but is easily portable to

many other machines (CDL2 is a highly portable language). This

compiler is the embryo of the final (compiler-)compiler

mentioned above. For the time being it allows quick

implementation of experimental transducers, written as Affix

Grammars.

2. Affix Grammars

This chapter presents a brief outline of different versions

of Affix Grammars. As indicated earlier, we follow a pragmatic

approach and try to avoid formalism.

For most programming languages, one of the aspects which

cannot be defined by a context-free grammar is the

identification of properties of objects in the context where

they are used. Part of the definition of a senial clause in

Algol 68, like

INT i = 3; ...; REAL E := a'i; ...; y

using a context-free grammar might be

324

serial clause: declarations, expression.

declarations: declaration, semicolon symbol, declarations.
declarations:

declaration: declarer, defining identifier,
equals symbol, expression.

expression: applied identifier.

This grammar allows the applied identifier to be any

identifier, independent of the defining identifiers. Moreover,

the identification of certain properties such as the mode,

necessary for a correct interpretation of an applied

identifier, is not defined. These context dependencies can not

be expressed in a context free grammar: as there is an infinity

of identifiers and modes, an infinite number of rules is

required.

Affix Grammars, like other two level grammars, allow the

(finite) specification of an infinite number of rules by

parametrizing the rules of an underlying context-free grammar.

A nonterminal may be associated with parameters or affix

positions. For each affix position a set of affix values is

defined (the domain of the affix position). In the rules of

the grammar, each affix position is occupied by an affix

variable or affix value. When applying a rule in the

derivation of a sentence (program) each affix variable must be

replaced by an affix value in the domain of its position. This

replacement must be done systematically, i.e., affix variables

occurring more than once in the rule must be replaced by the

same affix value.

In our example, we associate both the defining identifier
and the applied identifier with one affix position, whose

domain is the set of 'tag's. A tag may be considered as the

"internal representation" of an identifier. We further

associate the declaeer with one affix position, whose domain is

the set of 'mode's. For the moment, we extend our rule for

declaration to

declaration (...):
declarer (mode), defining identifier (tag),
equals symbol,
expression (...).

In [KOSTER 1971] and [WATT] other conventions are

delimiting nonterminals and affix variables or values.

confusing, but using the original notation from [KOSTER

would cause even greater confusion within this paper.

used for

This is

1971]

At this point we assume that for some particular tag T the

external representation of T will be generated by defining

identifier (T). Likewise we require that all possible

325

representations for some particular mode M are derivable from

declarer (M).

We also introduce one affix position for declaration. Its

domain is the set of all definitions, i.e., all tag/mode-pairs.

It should be clear that we have to establish a relationship

between the affix variables definition, mode and tag: the value

of the definition is composed of that of the mode and the tag.

For this purpose, Affix Grammars introduce predicates.

A predicate is written as a nonterminal with affix

positions, but its "only" purpose is to operate on its affixes.

Its contribution to the derivation of the sentence (program) is

either the empty symbol or the "forbidden symbol" omega.
Whether it produces the empty symbol or omega depends on the

values at its affix positions. The predicates are defined by

computable functions of the affix values, essentially:

IF the affix values satisfy a certain condition
THEN produce the empty symbol
ELSE pnoduse omega
FI

No sentence (program) is allowed to contain the forbidden

symbol. Thus, no sentence can be derived which does not satisfy

the predicate's condition.

In our case, we introduce the predicate

define (definition, mode, tag)

with the trivial condition that the value of the affix variable

definition must be composed of the values of the affix

variables mode and tag. Now we can write the rule for

declaration as

declaration (definition):
declarer (mode), defining identifier (tag),
define (definition, mode, tag),
equals symbol,
expression (...).

In order to identify the mode of an applied identifier, we

must have all definitions available which are valid in the

context of that applied identifier. For this, we introduce an

affix variable environ, which stands for a set of definitions

(its domain is the set of all sets of definitions). We also

introduce a predicate

compose (environ, definition, old environ)

which checks whether the environ is composed of the definition
and the old environ. It furthermore fails if the definition is

already in the old environ. Using this we can write

326

declarations (environ):
declaration (definition), semicolon symbol,
declarations (old environ),
compose (environ, definition, old environ).

declanations (E):

where E is the affix value representing an empty environ.

For the serial clause we can now write

serial clause (mode):
declaractions (environ), expression (environ, mode).

and for the expression

expression (environ, mode):

applied identifier (tag),
apply (environ, tag, mode).

with the predicate apply which checks whether the identifier

occurs in the environ with the given mode.

The grammar, as it is now, not only defines which sequences

of symbols contitute correct serial clauses, but also inhibits

multiple definitions of identifiers, requires applied

identifiers to be defined and states the mode of the value of

serial clauses.

It remains to associate affixes with the member expression
in the rule for declaration. Its mode must conform that of the

declaration. In, for instance,

INT i = expr,

the value of expr must be an integer. In Algol 68, expressions

in this context may apply all identifiers defined in the serial

clause. This requires that the complete environ must be

available in all declarations.

327

serial clause Cmode):
declarations {environ, environ),
expression (environ, mode).

declarations (environ, overall environ):
declaration (definition, overall environ),
semicolon symbol,
declarations (old environ, overall environ),
compose (environ, definition, old environ).

declarations (E, overall environ): .
declaration (definition, overall environ):

declarer {mode), defining identifier {tag),
define (definition, mode, tag),
equals symbol,
expression (overall environ, mode).

expression (environ, mode):
applied identifier {tag),
apply (environ, tag, mode).

2.1. Affix Flow

When using Affix Grammars, as they have been described up to

now, for deriving sentences of the language, we should try all

possible combinations of values for the affix variables, until

one is found which satisfies all predicates. In particular, we

should try all possible modes for the affix of serial clause.

On the other hand, if we think of parsing a given sentence

using this grammar, it is obvious that for instance the tag

associated with the defining identifier can have only one

value, the internal representation of that identifier. Instead

of trying all tags until the corresponding one is found, it can

be immediately derived from the identifier. The same is true

for the mode of the declarer. From these, the definition can

be derived, etc.

To make Affix Grammars suitable for parsing in this sense,

the affix positions of each nonterminal or predicate are

specified as either derived or inherited. An affix position

should be specified as derived, if its value contains

information about the "contents" of the nonterminal and as

inherited, if it contains information about the "context" of

the nonterminal.

In our notation, we indicate the flow of affix positions in

the left hand side of rules. An affix position is specified as

inherited/derived by writing a ">" preceding/following the

affix position. Our grammar fragment becomes

328

serial clause (mode>):
declarations (environ, environ),
expression (environ, mode).

declarations (environ>, >overall environ):

declaration (definition, overall environ),
semicolon symbol,
declarations (old environ, overall environ),
compose (environ, definition, old environ).

declarations (E>, >overall environ): .
declaration (definition>, >overall environ):

declarer (mode), defining identifier (tag),

define (definition, mode, tag),
equals symbol,
expression (overall environ, mode).

expression (>environ, mode>):
applied identifier (tag),
apply (environ, tag, mode).

with the assumption that

defining identifier (tag>): ...
applied identifier (tag>): ...
declarer (mode>): ...

and that the predicates are handled as if they have the left

hand sides

define (definition>, >mode, >tag)
apply (>environ, >tag, mode>)
compose (environ>, >definition, >old environ)

We now can follow the "flow" of the affixes. In the rule for

declaration for instance, if for each declarer there exists

exactly one mode and for each identifier exactly one tag, the

predicate define can map these on to exactly one definition,

which is in turn produced by declaration.

We observe that in this rule the identifier delivers a tag

and that define uses it. Likewise, define delivers a

definition, which is used by declaration, the left hand side,

for delivery in rules where it occurs in the right hand side.

In other words, the first affix position of define assigns a

value to the affix variable definition, which is assigned to

the first affix position of declaration. Therefore, derived

positions in the right hand side of rules and inherited

positions in the left hand side are called defining positions,

while derived positions in the left hand side and inherited

positions in the right hand side are called applied positions.

2.2. Well Formedness

Basically, the choice of flow for affix positions is free.

In order to make Affix Grammars suitable for parsing, however,

defining positions should not produce an infinite number of

329

affixes. For reasons of complexity, they should even produce

only very few affix values.

To this end, several well-formedness conditions were

introduced in [KOSTER 1971]. One of them states, that

predicates, if they do not fail, must uniquely map their

inherited affixes into their derived affixes. In our example we

have assumed that the predicates define, apply and compose
satisfy this condition. The condition could be weakened by

allowing predicates to produce only a finite (preferably small)

number of values, thus introducing ambiguity at the affix

level.

Another condition is that each variable occurring at an

applied position should have exactly one defining occurrence.

If it did not have a defining occurrence, all values in the

domain of the variable would be applicable at the applied

occurrence. Again, this might be allowed for finite domains.

On the other hand, if a variable is defined more than once,

the systematic-replacement rule requires that both occurrences

should define the same value.

There is yet another condition which states that variables

must be defined before they are applied: if the (unique)

defining occurrence appears at an affix position of the n'th

member at the right hand side, no applied occurrence should

appear in the first n members of the right hand side.

This condition ensures that the values of affixes, during a

left to right parse, are available when they are used. It

implies that affix variables may only depend on the left

context of the members which use them. This well-formedness

condition allows predicates to be evaluated during the parsing

of the sentence. Thus, certain context conditions are checked

during parsing and prohibit useless parsing (affix-directed

parsing).

In our example we have violated some of the well-formedness

conditions. In the rule for declaration the value of mode is

defined in both declarer and expression. This fact expresses

the context-condition that the mode of the expression must

conform to that of the declaration. Furthermore, in the rule

for serial clause the variable environ is both defined and
applied in the same member decla~ationa. This is a direct

consequence of the fact that in Algol 68 identifiers, etc. may

be applied before they are defined.

The main purpose of this project is to investigate

implementations of Affix Grammars with as weak well-formedness

restrictions as possible. Basically, the (parser/ transducer/

compiler)-generator should accept any Affix Grammar, but in

order for the generated program to be terminating, the grammar

should obey certain restrictions (defining affixes finite,

finite domains for only-applied affix variables, no circular

330

affix definitions, etc.), the analogue being a compiler which

also accepts non-terminating programs.

Of course, the generator must issue warnings or error-

messages for each dangerous situation it can statically detect.

2.3. Watt's Extension

In Affix Grammars, the predicates are defined to be any

computable function. In practice, these functions must be

actually expressed in some language like lambda calculus, Algol

68, machine language, etc. Thus Affix Grammars are, for their

interpretation, dependent on the semantics of that language.

The predicates allow trivialization of the grammatical

aspects of language definition. Any language could be defined

by an Affix Grammar like the following:

program (object>): read (sentence),
compile (sentence, object).

read (sentence>): symbol (token), read (remainder),
concatenate (token, remainder, sentence).

read (E>):

Here, concatenate is a very simple predicate and compile a very

complicated one. In [WATT] a modification called Extended

Affix Grammars is described which restricts Affix Grammars to

have only two predicates, synthesize and analyze, which are

predefined for each type of object in affix domains (integer,

string, set, tuple, etc.). Subsequently the grammars are

extended by allowing affix expressions at affix positions,

which embody the synthesize and analyze predicates. Affix

expressions at applied positions are synthesizing, affix

expressions at defining positions are analyzing.

In the (Extended) Affix Grammars used here, affix

expressions are written as sequences of affix variables and

constants (affix terminals), separated by the symbol +, which

can be interpreted as the operation concatenation (, addition,

set union, ...) for affix values of type string (, integer,

set). If not stated otherwise we shall assume that the

affix values are all of type string. We shall try to get by

with as few "pre-defined" predicates as possible.

In our example, the rule for declarations is now written

declarations (definition + environ>, >overall environ):

declaration (definition, overall environ),

semicolon symbol,
declarations (environ, overall environ).

which indeed is a simplification. On the other hand, the

predicate apply must now be written as a set of rules

apply (>tag + mode + environ, >tag, mode>): .

apply (>tag1 + model + environ, >tag, mode>):

not equal (tag, tag1),

apply (environ, tag, mode).

apply (>tag + mode, tag>, mode>): .

where not equal is assumed to be defined elsewhere. In

practice, a few rules like not equal will be predefined.

For domain specification of affix variables metarules are

used, like

definition:: tag + mode.

environ:: definition + environ.

environ:: .

overall environ:: environ.

These are again context free grammars, defining languages which

are the domains of the affix variables. Like Two Level Van

Wijngaarden Grammars, Affix Grammars are equivalent to Chomsky

Type 0 grammars.

3. Recursive Backup Parsing of Context Free Grammars

In this chapter we shall use a small,

free grammar as an example :
ambiguous, context-

(I) 8: x. (3) a: y, x. (6) x: "0".

(2) 8: x, a, 8. (4) a: 8, y, a. (7) y: "1".

8. (5) a: s, s.

The grammar is found in [HOPCROFT].

3.1. Characterization

The Recursive Backup Parsing Algorithm [KOSTER 1974] is a

top-down method, immediately based on leftmost rewriting. It

is suitable for any context-free grammar which is not left-

recursive. In particular, it handles ambiguity in a reasonably

efficient way, its backup administration is elegant and

transparent. Furthermore, if the grammar is LL(k), its

behaviour is linear.

3.2. The Algorithm

In leftmost rewriting, we maintain a string of terminals and

nonterminals, the rewrite string, which we manipulate by

replacing the leftmost nonterminal by some alternative for that

nonterminal. In a depth-first version, we replace the leftmost

nonterminal by one of its alternatives and explore recursively

all possible derivations of the updated string. It is then

332

replaced by a second alternative, and so on. The exploration

continues as long as the terminals to the left of the leftmost

nonterminal match the (leftmost part of the) input string. If

the grammar is not left-recursive, this process always

terminates.

After having replaced the leftmost nonterminal by an

alternative, we explore the updated string U. During

exploration the string may be changed at will, but we require

that after exploration, whether matches were found or not, the

string is restored to U and the alternative just explored is

replaced, reversely, by its left hand side.

This balancing is essential for the algorithm.

speaking, each routine undoes its own global effects.

Ro ug hl y

For backup we maintain a backup stack. When the leftmost

nonterminal is replaced by an alternative, an identification of

this alternative is saved on that stack. Returning from the

exploration of this alternative, we take the identification

from the stack, replace the nonterminal by the next

alternative, etc.

For the example grammar the algorithm will, parsing the

string 001100, eventually arrive at the rewrite string

00asyas

with a backup stack B. We have named the rules I, 2, ...

algorithm will run through the following configurations:

The

00 asyas B

O0 yxsyas B3

001 xsyas B37

0010 syas B376

001 xsyas B37 (6)

00 yxsyas B3 (7)

00 asyas B (3)

O0 syasyas B4

00 xyasyas B41

000 yasyas B416

00 xyasyas B41 (6)

O0 syasyas B4 (I)

O0 xasyasyas B42

000 asyasyas B426

00 xasyasyas B42 (6)

O0 syasyas B4 (2)

O0 asyas B (4)

O0 sssyas B5

° . o

00 sssyas B5

O0 asyas B (5)

{mismatch}

{last alternative for x}

{last alternative for y}

{mismatch}

{last alternative for x}

{mismatch}

{last alternative for x}

We write the top element of the backup stack in parentheses

when it is actually taken from it, but must be retained until

333

the next alternative, if any, has been determined.

This general approach can be simplified. We need not

actually maintain the terminal prefix of the rewrite string.

Instead, we may have a pointer into the input string. If the

leftmost nonterminal rewrites to a terminal string, we compare

it with the substring to the right of the pointer. If they do

not match, we backup immediately, i.e., we continue with the

next alternative, if any. If they do match, we increase the

input pointer by the length of the terminal string and continue

rewriting. After having explored this configuration, we

decrease the input pointer by the same amount. The input string

together with its pointer behave like a stack.

The remaining right part of the rewrite string is also a

stack. Returning from an alternative we remove this alternative

from the (rewrite) stack, but only put the left hand side back,

if there are no other alternatives: if we restore it and go on

with the next alternative, we must immediately remove it again.

This leads to the following transcription of the rules for
a:

a: push yx on the rewrite stack;

continue;

pop yx from the rewrite stack;

push sya on the rewrite stack;

continue;

pop sya from the rewrite stack;

push ss on the rewrite stack;

continue;

pop ss from the rewrite stack;

push a on the rewrite stack;

backup

where continue is:

pop I element from the rewrite stack;

call it as a subroutine

pushing the return point on the backup stack

and backup is:

pop 1 element from the backup stack;

jump to it

thus, a simple return-from-subroutine.

The transcription of the rule for x is:

334

x: IF the string with length 1 at the input pointer is "0"

THEN add 1 to the input pointer;

continue;

subtract 1 from the input pointer

FI;

push x to the rewrite stack;

backup

It remains to indicate if and when the input sentence has

been completely recognized. This is the case when the input

pointer points just beyond the input string and the rewrite

stack is empty. We shall leave the first part of this condition

to the grammar writer. He must choose a terminator character,

write it at the end of the input string and prescribe its

function in the grammar.

Detection of emptiness of the rewrite stack is very simple.

Let m be a name different from all nonterminals of the grammar.

The algorithm includes

m: write a message indicating that the input string

was matched;

push m to the rewrite stack;

backup

Now, the algorithm is fired by

initialize the backup- and rewrite stacks as empty stacks;

make the input pointer point to the first character of the

input string;

push m to the rewrite stack;

continue

It may be concluded that the algorithm is an enumeration of all

sentences of the language generated by the given grammar. It

terminates since the enumeration in the depth stops on a

mismatch and the grammar is not left-recursive. The backup

administration is completely covered by balancing the rewrite-,

input- and backupstacks.

3.3. Using An Algorithmi£ Stack

As we have seen, the backup stack behaves exactly like a

stack of return addresses for subroutine calls. The

continue~backup subalgorithms are essentially subroutine

call/return over the backup stack, respectively, where continue

POPs the subroutine to be called from the rewrite stack.

Thus the rewrite stack is a stack of subroutines. It is

only a small step to implement the rewrite stack as a

subroutine (representing the top element) which eventually

calls the subroutine which represents the remainder of the

stack. Then POPping the stack is just calling the subroutine

representing it and PUSHing the stack is creating a subroutine

335

which represents the PUSHed element and eventually calls the

remainder.

In a language like Algol 68 we can dynamically create

procedures from other procedures if we pass them as parameters.

Thus we do not maintain a global rewrite stack, but pass it as

a parameter to the procedures which are the transcriptions of

the rules of the grammar.

The transcription of the rules for s looks like:

RULE s = (STACK q) VOID:

BEGIN STACK ql = VOID: x (q);

ql;

STACK q2 = VOID: s (q);

STACK q3 = VOID: a (q2);

STACK q4 = VOID: x (q3);

q4

END

CO PUSH x CO

CO continue CO

CO PUSH s CO

CO PUSH a CO

CO PUSH x CO

The rewrite stack is wholly embedded in the call/return stack

of the Algol 68 implementation. In fact, the call/return stack

is both the rewrite and backup stack. No explicit balancing is

necessary since we use the parameter q in all alternatives

directly. It is a disadvantage that we no longer have "pure"

stack operations: any procedure may call any other procedure in

lower regions of the stack.

We observe that the last PUSH of each alternative is

superfluous: it is immediately POPped by a call. Also, we can

avoid the temporary identifiers by writing the routine texts

directly as actual parameters.

Then, the transcription of the rules for a is

RULE a = (STACK q) VOID:

BEGIN y (VOID: x (q));

a (VOID: y (VOID: a (q)));

s (VOID: a (q))

END

This is still rather ugly because of the many VOID's.

the next section for an elegant version in Algol 60.

The other rules are transcribed straightforwardly:

RULE x = (STACK q) VOID: match ("0", q);

RULE y = (STACK q) VOID: match ("1", q)

See

The match routine is

336

PROC match = (STRING t, STACK q) VOID:

IF INT index = scanner + UPB t - 1;

index <= UPB input CO will fit CO

THEN IF input [scanner:index] = t

THEN scanner +:= UPB t;

q;

scanner -:= UPB t

FI

FI

The calling program is

STRING input; read (input); INT scanner := 1;

STACK m = VOID: print (("match", new Sine));

s (m)

Although the parser and the transducer which will be

explained in the next chapter are actually implemented in

machine language using the version of the algorithm presented

in the former section, the implementations are illustrated here

by means of this Algol 68 version.

3.4. Algol 60 Version

Since Algol 60 knows the coercion "proceduring" by virtue of

its call-by-name mechanism, the Recursive Backup Parsing

Algorithm may be elegantly expressed in Algol 60. The body of

the procedure which implements the rules for a is, for

instance, written as

y (x (q));

8 (y (a (q)));

s (s (q))

Because of its simplicity, one need not even write the grammar

first. One can immediately write the parser with (almost) the

same effort of writing the grammar.

But in order to be able to use call-by-name, the actual

parameters, llke y (a (qJ) must be expressions. Thus, the rule

transcriptions must be type-procedures, not just procedures.

The type itself has no relevance, we may choose real, integer

or Boolean. From the Algol 60 Revised Report it is not clear

whether type-procedures may only be called in expressions nor

whether type-procedures always must return values (it only

states that it must if the procedure is called in an

expression). Most implementations allow type procedures to be

called in procedure statements. Under this assumption, the

parser for our sample grammar, in Algol 60, in an even more

condensed version, reads:

337

procedure parse (sentence, message);

integer array sentence; procedure message;

begin Boolean procedure s (q); Boolean q;

begin match (0, q);

match (0, a (s (q)))
end;

Boolean procedure a (q); Boolean q;

begin match (1, match (0, q));

s (match (1, a (q)));

s (s (q))

end;

Boolean procedure match (s, q);
integer s; Boolean q;

if s = sentence [pointer]
then begin pointer := pointer + I;

match := q;

pointer := pointer - 1

end;

Boolean procedure write; message;

integer pointer;

pointer := 1;

s (write)

end

3.5. Heuristics

In practice it is desireable to speed-up the Recursive

Backup Parsing Algorithm. We shall describe a heuristic which

showed good results in some experiments.

For some or all nonterminals and for some or all positions

in the input string all different lengths which were found for

these nonterminals at these positions are remembered. In

general this requires a 3-dimensional table, where the first

dimension indexes the nonterminals, the second one indexes the

input positions and the third one all possible lengths.

Before discussing the implementation of this table, let us

consider the implementation of its access. When entering the

procedure for nonterminal a we must first establish whether we

have already explored this nonterminal at this postition. For

the time being we shall assume that we have an array of truth

values named already. If we have already explored the

nonterminal here~ we can just iterate through the different

lengths:

338

RULE a = (STACK q) VOID:

IF already [index for a, scanner]

THEN FOR length FROM 0 TO max length

DO IF occurred [index for a, scanner, length]

THEN scanner +:= length;

q;

scanner -:= length

FI

OD

ELSE explore

FI

If we must explore, we must basically apply the usual

algorithm. But, for each match found for the nonterminal, we

must indicate the length of that match. We can take the same

approach that we took earlier for testing the emptiness of the

rewrite stack. Instead of passing just the STACK q to the

alternatives, we pass a reduce procedure which on its turn

calls q. This reduce procedure is called whenever a match for

the nonterminal starting at the current position is found. If

we also reserve a local variable to remember the current

position, we can easily establish the length of all matches (we

use a refinement notation):

explore:

INT start position = scanner;

STACK reduce = VOID:

BEGIN INT length = scanner - start position;

occurred [index for a,

start position,

length] := TRUE;

q

END;

y (VOID: x (reduce));

s (VOID: y (VOID: a (reduce)));

s (VOID: a (reduce)).

Experiments indicate that the average time consumption for

"normal" grammars is acceptable.

There are several ways to reduce the storage complexity by

increasing the time complexity. The bit table occurred is

sparse: only a relatively small number of different lengths

occurs and far from all nonterminals occur at all positions.

This indicates that a linked list implementation may be

profitable. Also worth investigating is hashing on the pair

[nonterminal index, position] and storing all different lengths

found for that pair in a linear linked list.

Also, it seems unnecessary to apply the heuristic to all

nonterminals. Some nonterminals may have optimized

transcriptions, others may not. In a syntax like that of Algol

68 it is probably sufficient to optimize only the rules for

'tag's and 'denotation's.

339

Again another, more elegant, dynamic approach is to allow

only a fixed number of [nonterminal index, position] pairs to

remember their lengths, with priority for the most frequently

occurring pairs. If a pair is thrown out, it must again follow

the more elaborate algorithm. This scheme probably stabilizes

at the most frequently used rules.

If we restrict the heuristic to the lexical level, all

attempts to derive or require a separate pass for the lexical

level are superfluous. However long-winded the rules for

'identifier', 'number', etc. are, the heuristic will usually

,'terminalize" these nonterminals completely. As to which

nonterminals are to be considered lexical may be determinable

by a simple calculus.

4.

is

numbers in binary notation, like

Transducers

In this chapter we use an example borrowed from [KNUTH]. It

a grammar which describes the transcription of rational

1001.011

into a sum of powers of two, in this case

2~(0+I+I+I)+0+0+2~(0)+0+2~(-(I+I+I)+I)+2~(-(I+I+I))

This result may seem of little interest but the grammar

few illuminating aspects.

has a

number (value>): rational (value), terminator.

The first alternative of rational is simple:

rational (value>): integer (value, "0", length).

Here, the length is ignored, the shift term, to be passed to

each digit, is fixed to "0" The second alternative reads

The initial symbol of the grammar is number, with

The idea is to handle both the integer and fractional part

as binary integers. A O-bit is transcribed into a term O. A

l-bit is transcribed into a power of two. The exponent is

written as a sum of two terms, the second being the position

value of the 1-bit. The first term, in case of the fractional

part, is the amount by which the binary point is shifted, i.e.,

the number of bits in the fractional part with a minus sign for

shifting left. In case of the integer part the first term is

O.

340

rational (whole value + plus + fraction value>):
integer (whole value, "0", whole length),

point symbol,

integer (fraction value,
minus + "(" + fraction length + ")",

fraction length).

where the first member is like the first alternative. In the

third member, the shift term is built from the fraction length.
Here, the second affix can not be evaluated before the whole

number is parsed, since the third affix depends on the last

digit.

The alternative for integer which does the main job is

integer (digit value + plus + integer value>,

>shift,
"1" + plus + integer length>):

digit (digit value, shift + plus + integer length),
integer (integer value,

shift,
integer length).

The value of the integer is the sum of the values of its

components. The length is increased by I. The exponent is

composed of the shift term and the length of the remainder.

This, too, is the use of an affix which is not yet available.

The other alternative for integer initializes values:

integer (digit value>, >shift, "1">):

digit (digit value, shift).

The integer length is I here. The exponent is just the shift

term, the position value is O.

The rules for digit are straightforward:

digit ("0">, >exponent): "0".

digit ("2" + power + "(" + exponent + ")">, >exponent): "I".

Other trivial rules are

point symbol: ". "

terminator: " ".

plus :: "+".
t ; t t • minus :: "~ "

power : :

341

4.1. Transducer Restriction

Recall that the example grammar represents a transducer: no

defining position contains an affix expression. For instance~

the first alternative for integer defines the affixes shift

(2nd position of left hand side), digit value (Ist position of

member digit), integer value (1st position of member integer)

and integen length (3rd position of member integer). From these

affixes, together with the meta-affixes and the constant terms

the other (applied) affixed are composed.

4.2. Affix Mappings

If we consider the first alternative for integer, we observe

that after having matched the member digit its defining affixes

(in this case digit value only) are determined up to the values

of its applied affixes. If the grammar were left-to-right

well-formed, the applied affixes would be determined at this

point and therefore also the defining affixes. In our case, as

in our example, the applied affix depends on ehift and integer

length. The latter also depends on shift, among others. This

means that we cannot even evaluate the derived affixes on the

left hand side, since they indirectly depend on shift, whose

value may not be known yet after having matched the nonterminal

at the left hand side (which in our case is true; the value of

shift is not known before the whole input string is matched)°

Thus, the derived affixes cannot be evaluated before the

whole input string is matched. They are determined up to the

values of the inherited affixes of the same (incarnation of

their) nonterminal.

This means that the derived affixes should not be evaluated

to elementary objects (strings), but to mappings yielding these

objects when called with the proper arguments (i.e., the values

of the inherited affixes).

In terms of Algol 68, let AFFIX be the mode of affix values.

Let a nonterminal have h inherited and d derived affix

positions. Then we express the inherited affixes as AFFIX

objects and the derived affixes as

PROC (AFFIX, AFFIX) AFFIX

mappings, with h parameters~ We call the mode of these derived

affixes DERh for h parameters. Thus

MODE DER2 = PROC (AFFIX, AFFIX) AFFIX

Let us now consider how these procedures are actually

constructed. The first derived affix of the left hand side of

our example rule is digit value + plus + integer value. It must

be written as a procedure with one parameter. The actual value

of this parameter will eventually be the value of the inherited

342

affix shift. Therefore, we can interpret the inherited affixes

at the left hand side as formal parameters:

(AFFIX shift) AFFIX: evaluate denived affix

The first term, digit value is a DERI object, which is to be

called with the expression shift + plus + integen length as

actual parameter. Here, integen length is a DERI object, to be

called with shift. It is easy to see, that ultimately the

original expression can be expressed in terms of constants,

meta-affixes and inherited/left affixes (the formal

parameters):

(AFFIX shift) AFFIX:
digit value (shift + plus + integer length (shift)) +
plus +
integen value (shift)

The other derived/left affix becomes

(AFFIX shift) AFFIX:
"I" + plus + integen length (shift)

We assume that string denotations are also denotations for mode

AFFIX. We can always introduce a conversion operator.

Having established how the derived affixes can be expressed

as functions of the inherited affixes we still must guarantee

the availability of the global terms in these procedures. The

meta-affixes cause no problems. We shall assume that these are

available throughout the program as objects of the mode AFFIX.
Since meta-affixes are expressed in terms of constants and

other meta-affixes only, this is easily accomplished.

The availability of the derived affixes at the right hand

side, in this case digit value, integen value and integer
length, is a little more complicated. The member digit must

produce the DERI object digit value, the member integen must

produce the DERI objects integen value and integer length. In

other words, we basically want digit to be a parameterless,

one-valued function of mode PROC DER1 and integen a
parameterless, even two-valued function. We could simulate

many-valued functions in Algol 68 by means of structures or try

to find another language, but procedure-valued-procedures lead

to scope problems, which would also appear in other languages.

These problems may be solvable, but we prefer an elegant

solution, based on the idea of continuations. It very nicely

combines with the Recursive Backup Parsing Algorithm. The

concept of continuations is already used for many years and

plays an important role in Denotational Semantics. The

application in Algol 68 looks complicated but its realization

in a low level language is simple and efficient.

343

The parsing procedure for our example rule is

RULE integer = (STACK q) VOID:

BEGIN digit (VOID:

integer (q));

END

The fact that an integer must be matched after a digit, is

expressed by specifying VOID: integer (q) as the continuation

of digit, while the continuation of the rule as a whole, q, is

specified as the continuation of member integer, the last

member of this alternative. Note that the actual

sequentialization is done in the procedure which implements the

terminals.

Thus everything to be done after the completion of digit is

expressed in its continuation. As a result, anything which

digit yields as a result, must be passed to its continuation.

Since digit yields one DERI object, its continuation must

have the mode

PROC (DER1) VOID

Likewise, integer must have a continuation with mode

PROC (DERI, DERI) VOID

We write CONTnXm for PROC (DERm, ..., DERm) VOID with

parameters.

The transcription of the rule for integer then becomes

PROC integer = (CONT2X1 q) VOID:
BEGIN digit ((DER1 digit value) VOID:

integer ((DER1 integer value,
integer length) VOID:

q (composed value,

composed length)));

digit ((DER1 digit value) VOID:
q (single value, single length))

END

with the refinements

composed value:
(AFFIX shift) AFFIX: digit value (shift +

plus +

integer length (shift)) +

plus +
integer value (shift).

344

composed length:

(AFFIX 8hilt) AFFIX: "1" + plus + integer length (shift).

single value:

(AFFIX shift) AFFIX: digit value (shift).

single length:

(AFFIX shift) AFFIX: "1"

There is one last complication, The transcription of the

last derived affix of the third member of the second

alternative of rational gives rise to an infinite expansion:

AFFIX: whole value ("0") +

plus +

fraction value

(minus +

"(" + fraction length

(minus +

"(" + fraction length (...

Therefore, we must also procedure the

affixes:

inherited/right

AFFIX:

BEGIN

INH zero = AFFIX: "0",

left shift =

AFFIX: minus +

"(" + fraction length (left shift) + ")";

whole value (zero) +

plus +

fraction value (left shift)

END

This recursion is very near circular affix definition. Some

results concerning transducers may be found in [KUEHLING].

5. Context Sensitivity

In this chapter we merely state the consequences of affix

expressions at defining positions and indicate one possible

solution.

5.1. Problem Statement

Recall that defining affix positions assign an affix value

to the affix variable(s) occurring at that position. It may be

that even a multiplicity of affix values is assigned, but then

only the degree of ambiguity is increased: via the backup

mechanism each of these values wil! be treated individually.

345

if a single affix variable occurs at the defining position,

as is always the case with transducers, the value is assigned

to that variable, which is thereby defined. If an affix

expression occurs at a defining position, all terms of that

expression are simultaneously defined. If A is the affix value

(a string) and a+b+c is the affix expression, we have to solve

the equation a+b+c = A If domain specifications are given for

a, b and c, each combination of values in these domains such

that the equation is satisfied constitute definitions for a, b

and c. Again, via backup, each possible combination must be

taken individually.

If one of the terms is a constant, it will be treated as a

variable with a domain of one value. If for one of the terms

no metarules are given, its domain is the set of all strings.

It is clear that at least the multiplicity of the defining

value must be finite. If we do not allow any of the terms on

an applied position and at most one of the terms on a defining

position to be infinite, this condition seems satisfied (it is

sometimes useful to name part of a defining value without

having to elaborately specify its structure).

If an affix variable occurs more than once as a term at a

defining position, one of them defines its value, which is

subsequently taken as single-valued domain for the other

occurrences, according to the systematic-replacement rule.

In the above example, the domains of a, b and c are

specified as context-free grammars (the metarules). Thus

x::a+b+c is a grammar. Parsing A according to x associates

parts of A with a, b and c. The part which is associated with b

for instance, will be used as affix value in any applied

occurrence of b and as grammar in any (other) defining

occurrence.

Affix values, in our implementation, are not strings but

functions which eventually produce the strings they represent.

As a consequence, the grammars for a, b and c must parse the

string represented by the function A and produce functions

which represent the strings which are found as values for a, b

and c.

5.2. An Experimental Solution

We have constructed a solution in Algol 68, which is very

complex, but is useful as a vehicle for developing new ideas.

We shall not give the details here.

The principle idea is that the function representing the

affix value and the grammar which parses it, call each other,

passing themselves as continuations. Each time both have

reached a terminal symbol and these are found equal, they call

their continuations like a ping-pong game. Furthermore the

grammars gradually build the function which represents the

346

~tring they match, which will be used in further applied and

lefining positions.

Using a transducer grammar, we generated an Algol 68 program

for a grammar describing

an bn n

which proved that the transcription basically works.

For a flavour of this transcription we give some modes and

the Algol 68 procedure which does the ping-pong:

MODE ELEMENT = CHAR,

EVAL = PROC(ACTION)VOID,

ACTION = PROC(ELEMENT, EVAL)VOID,

AFFIX = PBOC(ACTION, AFFIX)VOID;

PROC panse = (ELEMENT elem, EVAL object, cont)VOID:

object ((ELEMENT element, EVAL nemainden)VOID:

IF elem = element

THEN cont ((ELEMENT elem, EVAL cont)VOID:

pan~e (elem, nemainde~, cont))

FI)

6. Further Developments

This chapter lists a few minor points concerning

implementation of, and further research on, Affix Grammars.

the

6.1. Optimizations

Parsing time may be significantly reduced by traditional

methods like look ahead. Even if the grammar is ambiguous, the

degree of local ambiguity may be reduced by look ahead. Again,

the parsing algorithm allows easy implementation of look ahead.

Several well known transformations of the grammar into an

equivalent grammar should be applied: removal of empty

derivations, rule substitution, right recursion removal. The

consequences of these transformations for the affix level have

to be investigated. Rule substitution at the lexical level may

reduce parsing time by factors and also seems to cause few

problems at the affix level (the affix handling associated with

identifiers and numbers is generally simple).

During parsing the operations on the rewrite- and reduce

stacks are "pure" stack operations: no references are made to

lower regions of these stacks. Therefore, these lower regions

may be saved on background storage to reduce foreground storage

requirements. Even the stack which contains the incarnations

347

of affix procedures might be, possibly using a paging strategy

if the machine does not provide one.

The "very lexical" level, i.e., where nonterminals generate

only single characters, like letters and digits, might be

implemented in a special way using character-indexed class

tables. Again, this requires only a trivial change in the

parsing algorithm.

A more adventurous optimization is related to affix-directed

parsing. Each affix procedure must have its parameters

evaluable before it can be evaluated itself. It is worthwhile

searching for an algorithm where these affixes are evaluated as

soon as the parameters are available. This is especially

important for defining affixes since they may cut off lengthy

subparses when certain context conditions are locally not

satisfied. On the other hand affix directed parsing is not

always efficient. What is cheaper: avoiding parsing by early

detection of unsatisfied context conditions or avoiding affix

operations by earlier failing parses?

6.2. Extensions

There are several ways to extend the syntax and semantics of

Affix Grammars to make them more comfortable as a programming

language.

Like others [EAGLE] we should like to have a syntax which

more resembles Two Level Van Wijngaarden Grammars, although the

reasons for this are probably quite irrational.

As we have mentioned earlier, certain predicates should be

predefined for Affix Grammars, like unequal. Also a small set

of predicates to handle table-structured affixes (for symbol

tables and the like) which may be assumed to be implemented

e~ficiently would be of great practical value. Also the

existence of certain lexical-level rules for letters, digits,

numbers, identifiers, etc. would simplify the programming of

grammars.

The (nearly always empty) rules which are needed for the

"code generation" aspects could be avoided by introducing

parameters at the metalevel. This introduces more syntactical

tokens and structure, but our experience in writing several

non-trivial grammars shows that about half of the grammar

consists of artificial-looking rules which generate empty

strings and always do so since no context conditions are

involved.

Apart from strings, integers should be allowed as types for

affix variables, perhaps even sets. This immediately opens the

discussion concerning strong typing, dynamic typing, etc.

348

Allowing regular right parts seems very attractive. Many

repetitional structures like sequences and lists are defined

much more naturally using the closure operation than with

recursion. It also makes the restriction on left-recursion more

acceptable. Again, there are non-trivial consequences for the

affix-level.

It must be possible to define multi-pass grammars

explicitly. Basically this requires only the transfer of one

or more affix values from one initial symbol to another.

It might be helpful to allow more freedom in the

specification of the flow of affixes: specification at the

right hand side of rules, specification at more than one

occurrence of an affix position or no specification at all for

some positions (those which are "obvious" for the grammar

writer). [FRANZEN] describes an algorithm for automatic

determination of affix flow.

6.3. More Elaborate Questions

Is it possible to associate the way affixes are implemented

here with a bottom-up parsing algorithm?

How should the generated transducer~compiler handle errors

in its input string? Is there a way to create an error-handling

mechanism without any explicit specification by the grammar

writer? The wording of the error messages is possibly derivable

from the wording of the nonterminals and affix variables. We

are very much aware of the fact that if ever the generator must

be of practical use, it must at least provide a good quality

error handling which requires minimal effort from the user.

This is probably the hardest problem in the project.

What is the complexity of the generated transducers/

compilers? Are they correct?

References

[CDL] Koster, C.H.A.

Using the CDL Compiler Compiler.

In: Compiler Construction, An Advanced Course

(F.L. Bauer, J. Eickel, eds.),

Lecture Notes in Computer Science, 21,

Springer Verlag, Berlin-Heidelberg-New York, 1974.

[EAGLE] Franzen, H., Hoffman, B., Petersen, I.R.

Ein Parser-Generator fuer Erweiterte Affix-Grammatiken.

Diplomarbeit, Technische Universitaet Berlin,

Fachbereich Informatik, Bericht Nr. 76-24, Oktober 1976.

349

[FRANZEN] Franzen, H. and Hoffmann, B.

Automatic Determination of Data Flow in

Extended Affix Grammars.

Technische Universitaet Berlin, Fachbereich Informatik,

Bericht Nr. 79-20, September 1979.

[HOPCROFT] Hopcroft, J.E., Ullman, J.D.

Formal Languages and Their Relation to Automata.

Addison-Wesley, 1969.

[KNUTH] Knuth, D.E.

Semantics of Context-Free Languages.

Mathematical Systems Theory 2, 127-145 (1968).

[KOSTER 1971] Koster, C.H.A.

Affix Grammars.

In: ALGOL 68 Implementation (J.E. Peck, ed.),

North-Holland Publishing Company, Amsterdam, 1971.

[KOSTER 1974] Koster, C.H.A.

A Technique for Parsing Ambiguous Grammars°

In: Lecture Notes in Computer Science, 26,

Springer Verlag, Berlin-Heidelberg-New York, 1974.

[KUEHLING] Kuehling, P.

Affix-Grammatiken zur Beschreibung von

Programmiersprachen.

Dissertation, Technische Universitaet Berlin,

Fachbereich Informatik, Februar 1978.

[WATT] Watt, D.A.

Analysis-oriented Two-level Grammars.

Ph.D. thesis, University of Glasgow, January 1974.

Nijmegen, January 8, 1980.

