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Summary. Intermediate results and current problems in an on- 

going implemention of minimally restricted, possibly ambiguous 

Affix Grammars are described. Affix Grammars are informally 

introduced. A Recursive Backup Parsing Algorithm, suitable for 

any context-free grammar which is not left-recursive is 

presented, together with a heuristic scheme which is 

particularly effective at the lexical level. The main 

intermediate result is a transcription for affixes which allows 

affixes to be referenced before they are defined. The 

implementation of context sensitivity, which is the main 

current problem, is discussed. Other remaining problems are 

listed. 

This publication contains material which may be used in the 

author's forthcoming doctoral dissertation. 

I. Introduction 

Affix Grammars were developed by C. H. A. Koster [KOSTER 

1971]. A modification was proposed by D. A. Watt [WATT]. Like 

other two-level grammars (Two Level Van Wljngaarden Grammars 

and Attribute Grammars), Affix Grammars are extensions of 

context-free grammars. 
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This implies that many of the theoretical results concerning 

context-free grammars are applicable. Moreover, Affix Grammars 

formalize the semantic aspects of languages, which makes them 

suitable for parsing. For the user, Affix Grammars are very 

much like Two Level Van Wijngaarden Grammars. For the 

implementer there are many similarities with Attribute 

Grammars. 

1.!. An Example 

First we give an example of a simple Affix Grammar for a 

first glance at the style we shall use throughout this paper. 

five any to unary (unary value>): 

number ("", unary value), ".". 

number (>prefix, value>): 

digit (digit value), number (new prefix, value), 

times 5 plus (prefix, digit value, new prefix). 

number (>prefix, prefix>): 

digit (zero>): "0"° 

digit (one>): "1". 

digit (two>): "2" 

digit (three>): "3" 

digit (four>): "4" 

times 5 plus (>n, >d, n4+n+d>): 

times 2 (n, n2), times 2 (n2, n4). 

times 2 (>n, n+n>): . 

zero::"", one::"i", two::"ii", three::"iii", foun::"iiii'. 

five any to unary. 

This grammar accepts 5-ary numbers, like 23. and generates 

their values in unary, in this case iiiiiiiiiiiil. It is a 

context-free grammar in one-level Van Wijngaarden notation, 

extended with affixes. Left hand side and right hand side of 

rules are separated by colons. Members at the right hand side 

are separated by commaVs. Rules are terminated by dots. For 

each alternative of a nonterminal a separate rule is written, 

we do not collect alternatives in one rule. The affixes are 

separated by comma's and enclosed in parentheses. Affix 

expressions are sequences of affix variables and constants 

separated by plusses. 

The rule for times 5 plus inputs two afflxes, named n and d 

(the flow symbol (">") is written here before the affixes). 

The first member times 2 takes the affix n, doubles it and 

names the result n2. The second member time8 2 takes the value 

of n2, doubles it and names the result n4. Finally, the rule 

produces (the flow symbol is written after the affix 

expression) an affix which contains a*5+b i's, where a is the 
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number of i's in n and b is the number of i's in d. 

The affix variables aeeo, one, etc. are defined using 

metarules. Metarules are also terminated by a dot, have an 

affix variable as their left hand side and an affix expression 

as their right hand side, separated by two colons. 

Terminals and affix constants are written as string 

constants. The last line in the example is the specification 

of the initial symbol. 

1.2. Project Goal 

The set of Affix Grammars may be regarded as constituting a 

programming language which is especially suited for writing 

transducers or compilers. This idea has led in the past to the 

definition and implementation of the language CDL [CDL]. The 

purpose of our project is to write a compiler for Affix 

Grammars with as few restrictions as possible. The two most 

important aspects which we do not want to restrict are 

ambiguity and affix evaluation order (i.e., an affix need not 

already have a value when it is referenced). 

We consider writing the (compiler-)compiler primarily as an 

engineering task. As a result, in the current stage of the 

project, no theoretical results are available for inclusion in 

this paper. 

1.3. Outline Of The Paper 

Chapter 2 gives an informal introduction to Affix Grammars. 

Readers who are familiar with Affix Grammars should skip this 

chapter. 

Chapter 3 explains the algorithm which we use for parsing 

the context-free grammars underlying Affix Grammars. 

Chapter 4 describes the main results of the project up to 

the current stage: the implementation of transducers, i.e., 

Affix Grammars which do not specify context conditions. 

Chapter 5 very briefly indicates the problem which is 

currently being investigated: the implementation of context 

sensitivity. 

Chapter 6 mentions some minor problems to be solved in the 

future. 

In the text we assume some familiarity with (context-free) 

grammars and the languages Algol 60 and Algol 68. 



323 

1.4. Current Status 

A transducer-compiler, written in Algol 68, generating 

transducers in Algol 60, runs under MVS on an IBM 370/158. 

Using this program, several transducers were generated: 

- accepting context-free grammars with regular right parts, 

- generating transducers with various optimizations, 

- generating transducers in machine language, 

- generating a compiler with a very general but expensive 

implementation of context sensitivity (for experimental 

purposes, see chapter 5). 

Also a compiler for context-free grammars, utilizing the 

heuristics described in chapter 3, which generates parsers in 

assembler language, runs on the IBM 370/158. The generated 

parsers are callable as Algol 68 procedures. After each 

successful parse, the parse tree is available for inspection. 

This compiler is successfully being used in the department of 

Computer Linguistics of the Nijmegen University. 

A compiler for transducer grammars was recently finished. 

It is written in CDL2 [CDL] and generates programs for an 

abstract, low level, stack-oriented machine. The compiler 

currently runs on a VAX, under VMS, but is easily portable to 

many other machines (CDL2 is a highly portable language). This 

compiler is the embryo of the final (compiler-)compiler 

mentioned above. For the time being it allows quick 

implementation of experimental transducers, written as Affix 

Grammars. 

2. Affix Grammars 

This chapter presents a brief outline of different versions 

of Affix Grammars. As indicated earlier, we follow a pragmatic 

approach and try to avoid formalism. 

For most programming languages, one of the aspects which 

cannot be defined by a context-free grammar is the 

identification of properties of objects in the context where 

they are used. Part of the definition of a senial clause in 

Algol 68, like 

INT i = 3; ...; REAL E := a'i; ...; y 

using a context-free grammar might be 



324 

serial clause: declarations, expression. 

declarations: declaration, semicolon symbol, declarations. 
declarations: 

declaration: declarer, defining identifier, 
equals symbol, expression. 

expression: applied identifier. 

This grammar allows the applied identifier to be any 

identifier, independent of the defining identifiers. Moreover, 

the identification of certain properties such as the mode, 

necessary for a correct interpretation of an applied 

identifier, is not defined. These context dependencies can not 

be expressed in a context free grammar: as there is an infinity 

of identifiers and modes, an infinite number of rules is 

required. 

Affix Grammars, like other two level grammars, allow the 

(finite) specification of an infinite number of rules by 

parametrizing the rules of an underlying context-free grammar. 

A nonterminal may be associated with parameters or affix 

positions. For each affix position a set of affix values is 

defined (the domain of the affix position). In the rules of 

the grammar, each affix position is occupied by an affix 

variable or affix value. When applying a rule in the 

derivation of a sentence (program) each affix variable must be 

replaced by an affix value in the domain of its position. This 

replacement must be done systematically, i.e., affix variables 

occurring more than once in the rule must be replaced by the 

same affix value. 

In our example, we associate both the defining identifier 
and the applied identifier with one affix position, whose 

domain is the set of 'tag's. A tag may be considered as the 

"internal representation" of an identifier. We further 

associate the declaeer with one affix position, whose domain is 

the set of 'mode's. For the moment, we extend our rule for 

declaration to 

declaration (...): 
declarer (mode), defining identifier (tag), 
equals symbol, 
expression (...). 

In [KOSTER 1971] and [WATT] other conventions are 

delimiting nonterminals and affix variables or values. 

confusing, but using the original notation from [KOSTER 

would cause even greater confusion within this paper. 

used for 

This is 

1971] 

At this point we assume that for some particular tag T the 

external representation of T will be generated by defining 

identifier (T). Likewise we require that all possible 
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representations for some particular mode M are derivable from 

declarer (M). 

We also introduce one affix position for declaration. Its 

domain is the set of all definitions, i.e., all tag/mode-pairs. 

It should be clear that we have to establish a relationship 

between the affix variables definition, mode and tag: the value 

of the definition is composed of that of the mode and the tag. 

For this purpose, Affix Grammars introduce predicates. 

A predicate is written as a nonterminal with affix 

positions, but its "only" purpose is to operate on its affixes. 

Its contribution to the derivation of the sentence (program) is 

either the empty symbol or the "forbidden symbol" omega. 
Whether it produces the empty symbol or omega depends on the 

values at its affix positions. The predicates are defined by 

computable functions of the affix values, essentially: 

IF the affix values satisfy a certain condition 
THEN produce the empty symbol 
ELSE pnoduse omega 
FI 

No sentence (program) is allowed to contain the forbidden 

symbol. Thus, no sentence can be derived which does not satisfy 

the predicate's condition. 

In our case, we introduce the predicate 

define (definition, mode, tag) 

with the trivial condition that the value of the affix variable 

definition must be composed of the values of the affix 

variables mode and tag. Now we can write the rule for 

declaration as 

declaration (definition): 
declarer (mode), defining identifier (tag), 
define (definition, mode, tag), 
equals symbol, 
expression (...). 

In order to identify the mode of an applied identifier, we 

must have all definitions available which are valid in the 

context of that applied identifier. For this, we introduce an 

affix variable environ, which stands for a set of definitions 

(its domain is the set of all sets of definitions). We also 

introduce a predicate 

compose (environ, definition, old environ) 

which checks whether the environ is composed of the definition 
and the old environ. It furthermore fails if the definition is 

already in the old environ. Using this we can write 
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declarations (environ): 
declaration (definition), semicolon symbol, 
declarations (old environ), 
compose (environ, definition, old environ). 

declanations (E): 

where E is the affix value representing an empty environ. 

For the serial clause we can now write 

serial clause (mode): 
declaractions (environ), expression (environ, mode). 

and for the expression 

expression (environ, mode): 

applied identifier (tag), 
apply (environ, tag, mode). 

with the predicate apply which checks whether the identifier 

occurs in the environ with the given mode. 

The grammar, as it is now, not only defines which sequences 

of symbols contitute correct serial clauses, but also inhibits 

multiple definitions of identifiers, requires applied 

identifiers to be defined and states the mode of the value of 

serial clauses. 

It remains to associate affixes with the member expression 
in the rule for declaration. Its mode must conform that of the 

declaration. In, for instance, 

INT i = expr, 

the value of expr must be an integer. In Algol 68, expressions 

in this context may apply all identifiers defined in the serial 

clause. This requires that the complete environ must be 

available in all declarations. 
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serial clause Cmode): 
declarations {environ, environ), 
expression (environ, mode). 

declarations (environ, overall environ): 
declaration (definition, overall environ), 
semicolon symbol, 
declarations (old environ, overall environ), 
compose (environ, definition, old environ). 

declarations (E, overall environ): . 
declaration (definition, overall environ): 

declarer {mode), defining identifier {tag), 
define (definition, mode, tag), 
equals symbol, 
expression (overall environ, mode). 

expression (environ, mode): 
applied identifier {tag), 
apply (environ, tag, mode). 

2.1. Affix Flow 

When using Affix Grammars, as they have been described up to 

now, for deriving sentences of the language, we should try all 

possible combinations of values for the affix variables, until 

one is found which satisfies all predicates. In particular, we 

should try all possible modes for the affix of serial clause. 

On the other hand, if we think of parsing a given sentence 

using this grammar, it is obvious that for instance the tag 

associated with the defining identifier can have only one 

value, the internal representation of that identifier. Instead 

of trying all tags until the corresponding one is found, it can 

be immediately derived from the identifier. The same is true 

for the mode of the declarer. From these, the definition can 

be derived, etc. 

To make Affix Grammars suitable for parsing in this sense, 

the affix positions of each nonterminal or predicate are 

specified as either derived or inherited. An affix position 

should be specified as derived, if its value contains 

information about the "contents" of the nonterminal and as 

inherited, if it contains information about the "context" of 

the nonterminal. 

In our notation, we indicate the flow of affix positions in 

the left hand side of rules. An affix position is specified as 

inherited/derived by writing a ">" preceding/following the 

affix position. Our grammar fragment becomes 
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serial clause (mode>): 
declarations (environ, environ), 
expression (environ, mode). 

declarations (environ>, >overall environ): 

declaration (definition, overall environ), 
semicolon symbol, 
declarations (old environ, overall environ), 
compose (environ, definition, old environ). 

declarations (E>, >overall environ): . 
declaration (definition>, >overall environ): 

declarer (mode), defining identifier (tag), 

define (definition, mode, tag), 
equals symbol, 
expression (overall environ, mode). 

expression (>environ, mode>): 
applied identifier (tag), 
apply (environ, tag, mode). 

with the assumption that 

defining identifier (tag>): ... 
applied identifier (tag>): ... 
declarer (mode>): ... 

and that the predicates are handled as if they have the left 

hand sides 

define (definition>, >mode, >tag) 
apply (>environ, >tag, mode>) 
compose (environ>, >definition, >old environ) 

We now can follow the "flow" of the affixes. In the rule for 

declaration for instance, if for each declarer there exists 

exactly one mode and for each identifier exactly one tag, the 

predicate define can map these on to exactly one definition, 

which is in turn produced by declaration. 

We observe that in this rule the identifier delivers a tag 

and that define uses it. Likewise, define delivers a 

definition, which is used by declaration, the left hand side, 

for delivery in rules where it occurs in the right hand side. 

In other words, the first affix position of define assigns a 

value to the affix variable definition, which is assigned to 

the first affix position of declaration. Therefore, derived 

positions in the right hand side of rules and inherited 

positions in the left hand side are called defining positions, 

while derived positions in the left hand side and inherited 

positions in the right hand side are called applied positions. 

2.2. Well Formedness 

Basically, the choice of flow for affix positions is free. 

In order to make Affix Grammars suitable for parsing, however, 

defining positions should not produce an infinite number of 
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affixes. For reasons of complexity, they should even produce 

only very few affix values. 

To this end, several well-formedness conditions were 

introduced in [KOSTER 1971]. One of them states, that 

predicates, if they do not fail, must uniquely map their 

inherited affixes into their derived affixes. In our example we 

have assumed that the predicates define, apply and compose 
satisfy this condition. The condition could be weakened by 

allowing predicates to produce only a finite (preferably small) 

number of values, thus introducing ambiguity at the affix 

level. 

Another condition is that each variable occurring at an 

applied position should have exactly one defining occurrence. 

If it did not have a defining occurrence, all values in the 

domain of the variable would be applicable at the applied 

occurrence. Again, this might be allowed for finite domains. 

On the other hand, if a variable is defined more than once, 

the systematic-replacement rule requires that both occurrences 

should define the same value. 

There is yet another condition which states that variables 

must be defined before they are applied: if the (unique) 

defining occurrence appears at an affix position of the n'th 

member at the right hand side, no applied occurrence should 

appear in the first n members of the right hand side. 

This condition ensures that the values of affixes, during a 

left to right parse, are available when they are used. It 

implies that affix variables may only depend on the left 

context of the members which use them. This well-formedness 

condition allows predicates to be evaluated during the parsing 

of the sentence. Thus, certain context conditions are checked 

during parsing and prohibit useless parsing (affix-directed 

parsing). 

In our example we have violated some of the well-formedness 

conditions. In the rule for declaration the value of mode is 

defined in both declarer and expression. This fact expresses 

the context-condition that the mode of the expression must 

conform to that of the declaration. Furthermore, in the rule 

for serial clause the variable environ is both defined and 
applied in the same member decla~ationa. This is a direct 

consequence of the fact that in Algol 68 identifiers, etc. may 

be applied before they are defined. 

The main purpose of this project is to investigate 

implementations of Affix Grammars with as weak well-formedness 

restrictions as possible. Basically, the (parser/ transducer/ 

compiler)-generator should accept any Affix Grammar, but in 

order for the generated program to be terminating, the grammar 

should obey certain restrictions (defining affixes finite, 

finite domains for only-applied affix variables, no circular 
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affix definitions, etc.), the analogue being a compiler which 

also accepts non-terminating programs. 

Of course, the generator must issue warnings or error- 

messages for each dangerous situation it can statically detect. 

2.3. Watt's Extension 

In Affix Grammars, the predicates are defined to be any 

computable function. In practice, these functions must be 

actually expressed in some language like lambda calculus, Algol 

68, machine language, etc. Thus Affix Grammars are, for their 

interpretation, dependent on the semantics of that language. 

The predicates allow trivialization of the grammatical 

aspects of language definition. Any language could be defined 

by an Affix Grammar like the following: 

program (object>): read (sentence), 
compile (sentence, object). 

read (sentence>): symbol (token), read (remainder), 
concatenate (token, remainder, sentence). 

read (E>): 

Here, concatenate is a very simple predicate and compile a very 

complicated one. In [WATT] a modification called Extended 

Affix Grammars is described which restricts Affix Grammars to 

have only two predicates, synthesize and analyze, which are 

predefined for each type of object in affix domains (integer, 

string, set, tuple, etc.). Subsequently the grammars are 

extended by allowing affix expressions at affix positions, 

which embody the synthesize and analyze predicates. Affix 

expressions at applied positions are synthesizing, affix 

expressions at defining positions are analyzing. 

In the (Extended) Affix Grammars used here, affix 

expressions are written as sequences of affix variables and 

constants (affix terminals), separated by the symbol +, which 

can be interpreted as the operation concatenation (, addition, 

set union, ...) for affix values of type string (, integer, 

set .... ). If not stated otherwise we shall assume that the 

affix values are all of type string. We shall try to get by 

with as few "pre-defined" predicates as possible. 

In our example, the rule for declarations is now written 

declarations (definition + environ>, >overall environ): 

declaration (definition, overall environ), 

semicolon symbol, 
declarations (environ, overall environ). 

which indeed is a simplification. On the other hand, the 

predicate apply must now be written as a set of rules 



apply (>tag + mode + environ, >tag, mode>): . 

apply (>tag1 + model + environ, >tag, mode>): 

not equal (tag, tag1), 

apply (environ, tag, mode). 

apply (>tag + mode, tag>, mode>): . 

where not equal is assumed to be defined elsewhere. In 

practice, a few rules like not equal will be predefined. 

For domain specification of affix variables metarules are 

used, like 

definition:: tag + mode. 

environ:: definition + environ. 

environ:: . 

overall environ:: environ. 

These are again context free grammars, defining languages which 

are the domains of the affix variables. Like Two Level Van 

Wijngaarden Grammars, Affix Grammars are equivalent to Chomsky 

Type 0 grammars. 

3. Recursive Backup Parsing of Context Free Grammars 

In this chapter we shall use a small, 

free grammar as an example : 
ambiguous, context- 

(I) 8: x. (3) a: y, x. (6) x: "0". 

(2) 8: x, a, 8. (4) a: 8, y, a. (7) y: "1". 

8. (5) a: s, s. 

The grammar is found in [HOPCROFT]. 

3.1. Characterization 

The Recursive Backup Parsing Algorithm [KOSTER 1974] is a 

top-down method, immediately based on leftmost rewriting. It 

is suitable for any context-free grammar which is not left- 

recursive. In particular, it handles ambiguity in a reasonably 

efficient way, its backup administration is elegant and 

transparent. Furthermore, if the grammar is LL(k), its 

behaviour is linear. 

3.2. The Algorithm 

In leftmost rewriting, we maintain a string of terminals and 

nonterminals, the rewrite string, which we manipulate by 

replacing the leftmost nonterminal by some alternative for that 

nonterminal. In a depth-first version, we replace the leftmost 

nonterminal by one of its alternatives and explore recursively 

all possible derivations of the updated string. It is then 
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replaced by a second alternative, and so on. The exploration 

continues as long as the terminals to the left of the leftmost 

nonterminal match the (leftmost part of the) input string. If 

the grammar is not left-recursive, this process always 

terminates. 

After having replaced the leftmost nonterminal by an 

alternative, we explore the updated string U. During 

exploration the string may be changed at will, but we require 

that after exploration, whether matches were found or not, the 

string is restored to U and the alternative just explored is 

replaced, reversely, by its left hand side. 

This balancing is essential for the algorithm. 

speaking, each routine undoes its own global effects. 

Ro ug hl y 

For backup we maintain a backup stack. When the leftmost 

nonterminal is replaced by an alternative, an identification of 

this alternative is saved on that stack. Returning from the 

exploration of this alternative, we take the identification 

from the stack, replace the nonterminal by the next 

alternative, etc. 

For the example grammar the algorithm will, parsing the 

string 001100, eventually arrive at the rewrite string 

00asyas 

with a backup stack B. We have named the rules I, 2, ... 

algorithm will run through the following configurations: 

The 

00 asyas B 

O0 yxsyas B3 

001 xsyas B37 

0010 syas B376 

001 xsyas B37 (6) 

00 yxsyas B3 (7) 

00 asyas B (3) 

O0 syasyas B4 

00 xyasyas B41 

000 yasyas B416 

00 xyasyas B41 (6) 

O0 syasyas B4 (I) 

O0 xasyasyas B42 

000 asyasyas B426 

00 xasyasyas B42 (6) 

O0 syasyas B4 (2) 

O0 asyas B (4) 

O0 sssyas B5 

° . o  

00 sssyas B5 

O0 asyas B (5) 

{mismatch} 

{last alternative for x} 

{last alternative for y} 

{mismatch} 

{last alternative for x} 

{mismatch} 

{last alternative for x} 

We write the top element of the backup stack in parentheses 

when it is actually taken from it, but must be retained until 
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the next alternative, if any, has been determined. 

This general approach can be simplified. We need not 

actually maintain the terminal prefix of the rewrite string. 

Instead, we may have a pointer into the input string. If the 

leftmost nonterminal rewrites to a terminal string, we compare 

it with the substring to the right of the pointer. If they do 

not match, we backup immediately, i.e., we continue with the 

next alternative, if any. If they do match, we increase the 

input pointer by the length of the terminal string and continue 

rewriting. After having explored this configuration, we 

decrease the input pointer by the same amount. The input string 

together with its pointer behave like a stack. 

The remaining right part of the rewrite string is also a 

stack. Returning from an alternative we remove this alternative 

from the (rewrite) stack, but only put the left hand side back, 

if there are no other alternatives: if we restore it and go on 

with the next alternative, we must immediately remove it again. 

This leads to the following transcription of the rules for 
a: 

a: push yx on the rewrite stack; 

continue; 

pop yx from the rewrite stack; 

push sya on the rewrite stack; 

continue; 

pop sya from the rewrite stack; 

push ss on the rewrite stack; 

continue; 

pop ss from the rewrite stack; 

push a on the rewrite stack; 

backup 

where continue is: 

pop I element from the rewrite stack; 

call it as a subroutine 

pushing the return point on the backup stack 

and backup is: 

pop 1 element from the backup stack; 

jump to it 

thus, a simple return-from-subroutine. 

The transcription of the rule for x is: 
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x: IF the string with length 1 at the input pointer is "0" 

THEN add 1 to the input pointer; 

continue; 

subtract 1 from the input pointer 

FI; 

push x to the rewrite stack; 

backup 

It remains to indicate if and when the input sentence has 

been completely recognized. This is the case when the input 

pointer points just beyond the input string and the rewrite 

stack is empty. We shall leave the first part of this condition 

to the grammar writer. He must choose a terminator character, 

write it at the end of the input string and prescribe its 

function in the grammar. 

Detection of emptiness of the rewrite stack is very simple. 

Let m be a name different from all nonterminals of the grammar. 

The algorithm includes 

m: write a message indicating that the input string 

was matched; 

push m to the rewrite stack; 

backup 

Now, the algorithm is fired by 

initialize the backup- and rewrite stacks as empty stacks; 

make the input pointer point to the first character of the 

input string; 

push m to the rewrite stack; 

continue 

It may be concluded that the algorithm is an enumeration of all 

sentences of the language generated by the given grammar. It 

terminates since the enumeration in the depth stops on a 

mismatch and the grammar is not left-recursive. The backup 

administration is completely covered by balancing the rewrite-, 

input- and backupstacks. 

3.3. Using An Algorithmi£ Stack 

As we have seen, the backup stack behaves exactly like a 

stack of return addresses for subroutine calls. The 

continue~backup subalgorithms are essentially subroutine 

call/return over the backup stack, respectively, where continue 

POPs the subroutine to be called from the rewrite stack. 

Thus the rewrite stack is a stack of subroutines. It is 

only a small step to implement the rewrite stack as a 

subroutine (representing the top element) which eventually 

calls the subroutine which represents the remainder of the 

stack. Then POPping the stack is just calling the subroutine 

representing it and PUSHing the stack is creating a subroutine 
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which represents the PUSHed element and eventually calls the 

remainder. 

In a language like Algol 68 we can dynamically create 

procedures from other procedures if we pass them as parameters. 

Thus we do not maintain a global rewrite stack, but pass it as 

a parameter to the procedures which are the transcriptions of 

the rules of the grammar. 

The transcription of the rules for s looks like: 

RULE s = (STACK q) VOID: 

BEGIN STACK ql = VOID: x (q); 

ql; 

STACK q2 = VOID: s (q); 

STACK q3 = VOID: a (q2); 

STACK q4 = VOID: x (q3); 

q4 

END 

CO PUSH x CO 

CO continue CO 

CO PUSH s CO 

CO PUSH a CO 

CO PUSH x CO 

The rewrite stack is wholly embedded in the call/return stack 

of the Algol 68 implementation. In fact, the call/return stack 

is both the rewrite and backup stack. No explicit balancing is 

necessary since we use the parameter q in all alternatives 

directly. It is a disadvantage that we no longer have "pure" 

stack operations: any procedure may call any other procedure in 

lower regions of the stack. 

We observe that the last PUSH of each alternative is 

superfluous: it is immediately POPped by a call. Also, we can 

avoid the temporary identifiers by writing the routine texts 

directly as actual parameters. 

Then, the transcription of the rules for a is 

RULE a = (STACK q) VOID: 

BEGIN y (VOID: x (q)); 

a (VOID: y (VOID: a (q))); 

s (VOID: a (q)) 

END 

This is still rather ugly because of the many VOID's. 

the next section for an elegant version in Algol 60. 

The other rules are transcribed straightforwardly: 

RULE x = (STACK q) VOID: match ("0", q); 

RULE y = (STACK q) VOID: match ("1", q) 

See 

The match routine is 
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PROC match = (STRING t, STACK q) VOID: 

IF INT index = scanner + UPB t - 1; 

index <= UPB input CO will fit CO 

THEN IF input [scanner:index] = t 

THEN scanner +:= UPB t; 

q; 

scanner -:= UPB t 

FI 

FI 

The calling program is 

STRING input; read (input); INT scanner := 1; 

STACK m = VOID: print (("match", new Sine)); 

s (m) 

Although the parser and the transducer which will be 

explained in the next chapter are actually implemented in 

machine language using the version of the algorithm presented 

in the former section, the implementations are illustrated here 

by means of this Algol 68 version. 

3.4. Algol 60 Version 

Since Algol 60 knows the coercion "proceduring" by virtue of 

its call-by-name mechanism, the Recursive Backup Parsing 

Algorithm may be elegantly expressed in Algol 60. The body of 

the procedure which implements the rules for a is, for 

instance, written as 

y (x (q)); 

8 (y (a (q))); 

s (s (q)) 

Because of its simplicity, one need not even write the grammar 

first. One can immediately write the parser with (almost) the 

same effort of writing the grammar. 

But in order to be able to use call-by-name, the actual 

parameters, llke y (a (qJ) must be expressions. Thus, the rule 

transcriptions must be type-procedures, not just procedures. 

The type itself has no relevance, we may choose real, integer 

or Boolean. From the Algol 60 Revised Report it is not clear 

whether type-procedures may only be called in expressions nor 

whether type-procedures always must return values (it only 

states that it must if the procedure is called in an 

expression). Most implementations allow type procedures to be 

called in procedure statements. Under this assumption, the 

parser for our sample grammar, in Algol 60, in an even more 

condensed version, reads: 
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procedure parse (sentence, message); 

integer array sentence; procedure message; 

begin Boolean procedure s (q); Boolean q; 

begin match (0, q); 

match (0, a (s (q))) 
end; 

Boolean procedure a (q); Boolean q; 

begin match (1, match (0, q)); 

s (match (1, a (q))); 

s (s (q)) 

end; 

Boolean procedure match (s, q); 
integer s; Boolean q; 

if s = sentence [pointer] 
then begin pointer := pointer + I; 

match := q; 

pointer := pointer - 1 

end; 

Boolean procedure write; message; 

integer pointer; 

pointer := 1; 

s (write) 

end 

3.5. Heuristics 

In practice it is desireable to speed-up the Recursive 

Backup Parsing Algorithm. We shall describe a heuristic which 

showed good results in some experiments. 

For some or all nonterminals and for some or all positions 

in the input string all different lengths which were found for 

these nonterminals at these positions are remembered. In 

general this requires a 3-dimensional table, where the first 

dimension indexes the nonterminals, the second one indexes the 

input positions and the third one all possible lengths. 

Before discussing the implementation of this table, let us 

consider the implementation of its access. When entering the 

procedure for nonterminal a we must first establish whether we 

have already explored this nonterminal at this postition. For 

the time being we shall assume that we have an array of truth 

values named already. If we have already explored the 

nonterminal here~ we can just iterate through the different 

lengths: 
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RULE a = (STACK q) VOID: 

IF already [index for a, scanner] 

THEN FOR length FROM 0 TO max length 

DO IF occurred [index for a, scanner, length] 

THEN scanner +:= length; 

q; 

scanner -:= length 

FI 

OD 

ELSE explore 

FI 

If we must explore, we must basically apply the usual 

algorithm. But, for each match found for the nonterminal, we 

must indicate the length of that match. We can take the same 

approach that we took earlier for testing the emptiness of the 

rewrite stack. Instead of passing just the STACK q to the 

alternatives, we pass a reduce procedure which on its turn 

calls q. This reduce procedure is called whenever a match for 

the nonterminal starting at the current position is found. If 

we also reserve a local variable to remember the current 

position, we can easily establish the length of all matches (we 

use a refinement notation): 

explore: 

INT start position = scanner; 

STACK reduce = VOID: 

BEGIN INT length = scanner - start position; 

occurred [index for a, 

start position, 

length] := TRUE; 

q 

END; 

y (VOID: x (reduce)); 

s (VOID: y (VOID: a (reduce))); 

s (VOID: a (reduce)). 

Experiments indicate that the average time consumption for 

"normal" grammars is acceptable. 

There are several ways to reduce the storage complexity by 

increasing the time complexity. The bit table occurred is 

sparse: only a relatively small number of different lengths 

occurs and far from all nonterminals occur at all positions. 

This indicates that a linked list implementation may be 

profitable. Also worth investigating is hashing on the pair 

[nonterminal index, position] and storing all different lengths 

found for that pair in a linear linked list. 

Also, it seems unnecessary to apply the heuristic to all 

nonterminals. Some nonterminals may have optimized 

transcriptions, others may not. In a syntax like that of Algol 

68 it is probably sufficient to optimize only the rules for 

'tag's and 'denotation's. 
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Again another, more elegant, dynamic approach is to allow 

only a fixed number of [nonterminal index, position] pairs to 

remember their lengths, with priority for the most frequently 

occurring pairs. If a pair is thrown out, it must again follow 

the more elaborate algorithm. This scheme probably stabilizes 

at the most frequently used rules. 

If we restrict the heuristic to the lexical level, all 

attempts to derive or require a separate pass for the lexical 

level are superfluous. However long-winded the rules for 

'identifier', 'number', etc. are, the heuristic will usually 

,'terminalize" these nonterminals completely. As to which 

nonterminals are to be considered lexical may be determinable 

by a simple calculus. 

4. 

is 

numbers in binary notation, like 

Transducers 

In this chapter we use an example borrowed from [KNUTH]. It 

a grammar which describes the transcription of rational 

1001.011 

into a sum of powers of two, in this case 

2~(0+I+I+I)+0+0+2~(0)+0+2~(-(I+I+I)+I)+2~(-(I+I+I)) 

This result may seem of little interest but the grammar 

few illuminating aspects. 

has a 

number (value>): rational (value), terminator. 

The first alternative of rational is simple: 

rational (value>): integer (value, "0", length). 

Here, the length is ignored, the shift term, to be passed to 

each digit, is fixed to "0" The second alternative reads 

The initial symbol of the grammar is number, with 

The idea is to handle both the integer and fractional part 

as binary integers. A O-bit is transcribed into a term O. A 

l-bit is transcribed into a power of two. The exponent is 

written as a sum of two terms, the second being the position 

value of the 1-bit. The first term, in case of the fractional 

part, is the amount by which the binary point is shifted, i.e., 

the number of bits in the fractional part with a minus sign for 

shifting left. In case of the integer part the first term is 

O. 
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rational (whole value + plus + fraction value>): 
integer (whole value, "0", whole length), 

point symbol, 

integer (fraction value, 
minus + "(" + fraction length + ")", 

fraction length). 

where the first member is like the first alternative. In the 

third member, the shift term is built from the fraction length. 
Here, the second affix can not be evaluated before the whole 

number is parsed, since the third affix depends on the last 

digit. 

The alternative for integer which does the main job is 

integer (digit value + plus + integer value>, 

>shift, 
"1" + plus + integer length>): 

digit (digit value, shift + plus + integer length), 
integer (integer value, 

shift, 
integer length). 

The value of the integer is the sum of the values of its 

components. The length is increased by I. The exponent is 

composed of the shift term and the length of the remainder. 

This, too, is the use of an affix which is not yet available. 

The other alternative for integer initializes values: 

integer (digit value>, >shift, "1">): 

digit (digit value, shift). 

The integer length is I here. The exponent is just the shift 

term, the position value is O. 

The rules for digit are straightforward: 

digit ("0">, >exponent): "0". 

digit ("2" + power + "(" + exponent + ")">, >exponent): "I". 

Other trivial rules are 

point symbol: ". " 

terminator: " ". 

plus :: "+". 
t ;  t t  • minus :: "~ " 

power : : 
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4.1. Transducer Restriction 

Recall that the example grammar represents a transducer: no 

defining position contains an affix expression. For instance~ 

the first alternative for integer defines the affixes shift 

(2nd position of left hand side), digit value (Ist position of 

member digit), integer value (1st position of member integer) 

and integen length (3rd position of member integer). From these 

affixes, together with the meta-affixes and the constant terms 

the other (applied) affixed are composed. 

4.2. Affix Mappings 

If we consider the first alternative for integer, we observe 

that after having matched the member digit its defining affixes 

(in this case digit value only) are determined up to the values 

of its applied affixes. If the grammar were left-to-right 

well-formed, the applied affixes would be determined at this 

point and therefore also the defining affixes. In our case, as 

in our example, the applied affix depends on ehift and integer 

length. The latter also depends on shift, among others. This 

means that we cannot even evaluate the derived affixes on the 

left hand side, since they indirectly depend on shift, whose 

value may not be known yet after having matched the nonterminal 

at the left hand side (which in our case is true; the value of 

shift is not known before the whole input string is matched)° 

Thus, the derived affixes cannot be evaluated before the 

whole input string is matched. They are determined up to the 

values of the inherited affixes of the same (incarnation of 

their) nonterminal. 

This means that the derived affixes should not be evaluated 

to elementary objects (strings), but to mappings yielding these 

objects when called with the proper arguments (i.e., the values 

of the inherited affixes). 

In terms of Algol 68, let AFFIX be the mode of affix values. 

Let a nonterminal have h inherited and d derived affix 

positions. Then we express the inherited affixes as AFFIX 

objects and the derived affixes as 

PROC (AFFIX, .... AFFIX) AFFIX 

mappings, with h parameters~ We call the mode of these derived 

affixes DERh for h parameters. Thus 

MODE DER2 = PROC (AFFIX, AFFIX) AFFIX 

Let us now consider how these procedures are actually 

constructed. The first derived affix of the left hand side of 

our example rule is digit value + plus + integer value. It must 

be written as a procedure with one parameter. The actual value 

of this parameter will eventually be the value of the inherited 
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affix shift. Therefore, we can interpret the inherited affixes 

at the left hand side as formal parameters: 

(AFFIX shift) AFFIX: evaluate denived affix 

The first term, digit value is a DERI object, which is to be 

called with the expression shift + plus + integen length as 

actual parameter. Here, integen length is a DERI object, to be 

called with shift. It is easy to see, that ultimately the 

original expression can be expressed in terms of constants, 

meta-affixes and inherited/left affixes (the formal 

parameters): 

(AFFIX shift) AFFIX: 
digit value (shift + plus + integer length (shift)) + 
plus + 
integen value (shift) 

The other derived/left affix becomes 

(AFFIX shift) AFFIX: 
"I" + plus + integen length (shift) 

We assume that string denotations are also denotations for mode 

AFFIX. We can always introduce a conversion operator. 

Having established how the derived affixes can be expressed 

as functions of the inherited affixes we still must guarantee 

the availability of the global terms in these procedures. The 

meta-affixes cause no problems. We shall assume that these are 

available throughout the program as objects of the mode AFFIX. 
Since meta-affixes are expressed in terms of constants and 

other meta-affixes only, this is easily accomplished. 

The availability of the derived affixes at the right hand 

side, in this case digit value, integen value and integer 
length, is a little more complicated. The member digit must 

produce the DERI object digit value, the member integen must 

produce the DERI objects integen value and integer length. In 

other words, we basically want digit to be a parameterless, 

one-valued function of mode PROC DER1 and integen a 
parameterless, even two-valued function. We could simulate 

many-valued functions in Algol 68 by means of structures or try 

to find another language, but procedure-valued-procedures lead 

to scope problems, which would also appear in other languages. 

These problems may be solvable, but we prefer an elegant 

solution, based on the idea of continuations. It very nicely 

combines with the Recursive Backup Parsing Algorithm. The 

concept of continuations is already used for many years and 

plays an important role in Denotational Semantics. The 

application in Algol 68 looks complicated but its realization 

in a low level language is simple and efficient. 
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The parsing procedure for our example rule is 

RULE integer = (STACK q) VOID: 

BEGIN digit (VOID: 

integer (q)); 

END 

The fact that an integer must be matched after a digit, is 

expressed by specifying VOID: integer (q) as the continuation 

of digit, while the continuation of the rule as a whole, q, is 

specified as the continuation of member integer, the last 

member of this alternative. Note that the actual 

sequentialization is done in the procedure which implements the 

terminals. 

Thus everything to be done after the completion of digit is 

expressed in its continuation. As a result, anything which 

digit yields as a result, must be passed to its continuation. 

Since digit yields one DERI object, its continuation must 

have the mode 

PROC (DER1) VOID 

Likewise, integer must have a continuation with mode 

PROC (DERI, DERI) VOID 

We write CONTnXm for PROC (DERm, ..., DERm) VOID with 

parameters. 

The transcription of the rule for integer then becomes 

PROC integer = (CONT2X1 q) VOID: 
BEGIN digit ( (DER1 digit value) VOID: 

integer ( (DER1 integer value, 
integer length) VOID: 

q (composed value, 

composed length) ) ); 

digit ( (DER1 digit value) VOID: 
q (single value, single length) ) 

END 

with the refinements 

composed value: 
(AFFIX shift) AFFIX: digit value (shift + 

plus + 

integer length (shift)) + 

plus + 
integer value (shift). 
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composed length: 

(AFFIX 8hilt) AFFIX: "1" + plus + integer length (shift). 

single value: 

(AFFIX shift) AFFIX: digit value (shift). 

single length: 

(AFFIX shift) AFFIX: "1" 

There is one last complication, The transcription of the 

last derived affix of the third member of the second 

alternative of rational gives rise to an infinite expansion: 

AFFIX: whole value ("0") + 

plus + 

fraction value 

(minus + 

"(" + fraction length 

(minus + 

"(" + fraction length (... 

Therefore, we must also procedure the 

affixes: 

inherited/right 

AFFIX: 

BEGIN 

INH zero = AFFIX: "0", 

left shift = 

AFFIX: minus + 

"(" + fraction length (left shift) + ")"; 

whole value (zero) + 

plus + 

fraction value (left shift) 

END 

This recursion is very near circular affix definition. Some 

results concerning transducers may be found in [KUEHLING]. 

5. Context Sensitivity 

In this chapter we merely state the consequences of affix 

expressions at defining positions and indicate one possible 

solution. 

5.1. Problem Statement 

Recall that defining affix positions assign an affix value 

to the affix variable(s) occurring at that position. It may be 

that even a multiplicity of affix values is assigned, but then 

only the degree of ambiguity is increased: via the backup 

mechanism each of these values wil! be treated individually. 
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if a single affix variable occurs at the defining position, 

as is always the case with transducers, the value is assigned 

to that variable, which is thereby defined. If an affix 

expression occurs at a defining position, all terms of that 

expression are simultaneously defined. If A is the affix value 

(a string) and a+b+c is the affix expression, we have to solve 

the equation a+b+c = A If domain specifications are given for 

a, b and c, each combination of values in these domains such 

that the equation is satisfied constitute definitions for a, b 

and c. Again, via backup, each possible combination must be 

taken individually. 

If one of the terms is a constant, it will be treated as a 

variable with a domain of one value. If for one of the terms 

no metarules are given, its domain is the set of all strings. 

It is clear that at least the multiplicity of the defining 

value must be finite. If we do not allow any of the terms on 

an applied position and at most one of the terms on a defining 

position to be infinite, this condition seems satisfied (it is 

sometimes useful to name part of a defining value without 

having to elaborately specify its structure). 

If an affix variable occurs more than once as a term at a 

defining position, one of them defines its value, which is 

subsequently taken as single-valued domain for the other 

occurrences, according to the systematic-replacement rule. 

In the above example, the domains of a, b and c are 

specified as context-free grammars (the metarules). Thus 

x::a+b+c is a grammar. Parsing A according to x associates 

parts of A with a, b and c. The part which is associated with b 

for instance, will be used as affix value in any applied 

occurrence of b and as grammar in any (other) defining 

occurrence. 

Affix values, in our implementation, are not strings but 

functions which eventually produce the strings they represent. 

As a consequence, the grammars for a, b and c must parse the 

string represented by the function A and produce functions 

which represent the strings which are found as values for a, b 

and c. 

5.2. An Experimental Solution 

We have constructed a solution in Algol 68, which is very 

complex, but is useful as a vehicle for developing new ideas. 

We shall not give the details here. 

The principle idea is that the function representing the 

affix value and the grammar which parses it, call each other, 

passing themselves as continuations. Each time both have 

reached a terminal symbol and these are found equal, they call 

their continuations like a ping-pong game. Furthermore the 

grammars gradually build the function which represents the 
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~tring they match, which will be used in further applied and 

lefining positions. 

Using a transducer grammar, we generated an Algol 68 program 

for a grammar describing 

an bn n 

which proved that the transcription basically works. 

For a flavour of this transcription we give some modes and 

the Algol 68 procedure which does the ping-pong: 

MODE ELEMENT = CHAR, 

EVAL = PROC(ACTION)VOID, 

ACTION = PROC(ELEMENT, EVAL)VOID, 

AFFIX = PBOC(ACTION, AFFIX)VOID; 

PROC panse = (ELEMENT elem, EVAL object, cont)VOID: 

object ((ELEMENT element, EVAL nemainden)VOID: 

IF elem = element 

THEN cont ((ELEMENT elem, EVAL cont)VOID: 

pan~e (elem, nemainde~, cont)) 

FI) 

6. Further Developments 

This chapter lists a few minor points concerning 

implementation of, and further research on, Affix Grammars. 

the 

6.1. Optimizations 

Parsing time may be significantly reduced by traditional 

methods like look ahead. Even if the grammar is ambiguous, the 

degree of local ambiguity may be reduced by look ahead. Again, 

the parsing algorithm allows easy implementation of look ahead. 

Several well known transformations of the grammar into an 

equivalent grammar should be applied: removal of empty 

derivations, rule substitution, right recursion removal. The 

consequences of these transformations for the affix level have 

to be investigated. Rule substitution at the lexical level may 

reduce parsing time by factors and also seems to cause few 

problems at the affix level (the affix handling associated with 

identifiers and numbers is generally simple). 

During parsing the operations on the rewrite- and reduce 

stacks are "pure" stack operations: no references are made to 

lower regions of these stacks. Therefore, these lower regions 

may be saved on background storage to reduce foreground storage 

requirements. Even the stack which contains the incarnations 



347 

of affix procedures might be, possibly using a paging strategy 

if the machine does not provide one. 

The "very lexical" level, i.e., where nonterminals generate 

only single characters, like letters and digits, might be 

implemented in a special way using character-indexed class 

tables. Again, this requires only a trivial change in the 

parsing algorithm. 

A more adventurous optimization is related to affix-directed 

parsing. Each affix procedure must have its parameters 

evaluable before it can be evaluated itself. It is worthwhile 

searching for an algorithm where these affixes are evaluated as 

soon as the parameters are available. This is especially 

important for defining affixes since they may cut off lengthy 

subparses when certain context conditions are locally not 

satisfied. On the other hand affix directed parsing is not 

always efficient. What is cheaper: avoiding parsing by early 

detection of unsatisfied context conditions or avoiding affix 

operations by earlier failing parses? 

6.2. Extensions 

There are several ways to extend the syntax and semantics of 

Affix Grammars to make them more comfortable as a programming 

language. 

Like others [EAGLE] we should like to have a syntax which 

more resembles Two Level Van Wijngaarden Grammars, although the 

reasons for this are probably quite irrational. 

As we have mentioned earlier, certain predicates should be 

predefined for Affix Grammars, like unequal. Also a small set 

of predicates to handle table-structured affixes (for symbol 

tables and the like) which may be assumed to be implemented 

e~ficiently would be of great practical value. Also the 

existence of certain lexical-level rules for letters, digits, 

numbers, identifiers, etc. would simplify the programming of 

grammars. 

The (nearly always empty) rules which are needed for the 

"code generation" aspects could be avoided by introducing 

parameters at the metalevel. This introduces more syntactical 

tokens and structure, but our experience in writing several 

non-trivial grammars shows that about half of the grammar 

consists of artificial-looking rules which generate empty 

strings and always do so since no context conditions are 

involved. 

Apart from strings, integers should be allowed as types for 

affix variables, perhaps even sets. This immediately opens the 

discussion concerning strong typing, dynamic typing, etc. 
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Allowing regular right parts seems very attractive. Many 

repetitional structures like sequences and lists are defined 

much more naturally using the closure operation than with 

recursion. It also makes the restriction on left-recursion more 

acceptable. Again, there are non-trivial consequences for the 

affix-level. 

It must be possible to define multi-pass grammars 

explicitly. Basically this requires only the transfer of one 

or more affix values from one initial symbol to another. 

It might be helpful to allow more freedom in the 

specification of the flow of affixes: specification at the 

right hand side of rules, specification at more than one 

occurrence of an affix position or no specification at all for 

some positions (those which are "obvious" for the grammar 

writer). [FRANZEN] describes an algorithm for automatic 

determination of affix flow. 

6.3. More Elaborate Questions 

Is it possible to associate the way affixes are implemented 

here with a bottom-up parsing algorithm? 

How should the generated transducer~compiler handle errors 

in its input string? Is there a way to create an error-handling 

mechanism without any explicit specification by the grammar 

writer? The wording of the error messages is possibly derivable 

from the wording of the nonterminals and affix variables. We 

are very much aware of the fact that if ever the generator must 

be of practical use, it must at least provide a good quality 

error handling which requires minimal effort from the user. 

This is probably the hardest problem in the project. 

What is the complexity of the generated transducers/ 

compilers? Are they correct? 
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