
An Implementation of DES and AES,
Secure against Some Attacks

Mehdi-Laurent Akkar1 and Christophe Giraud2

1 Schlumberger CP8,
68 route de Versailles, 78431 Louveciennes, France.

ml.akkar@free.fr
2 Oberthur Card Systems,

25, rue Auguste Blanche, 92800 Puteaux, France.
c.giraud@oberthurcs.com

Abstract. Since Power Analysis on smart cards was introduced by Paul
Kocher [7], many countermeasures have been proposed to protect imple-
mentations of cryptographic algorithms. In this paper we propose a new
protection principle: the transformed masking method. We apply this
method to protect two of the most popular block ciphers: DES and the
AES Rijndael. To this end we introduce some transformed S-boxes for
DES and a new masking method and its applications to the non-linear
part of Rijndael.

Keywords:AES, Rijndael, DES, Transformed mask, Multiplicative mask,
Power analysis, DPA, SPA, Smart Cards.

1 Introduction

Since Kocher, Jaffe and Jun introduced Differential Power Analysis, many
countermeasures have been proposed to protect the card against power analysis
type attacks (SPA, DPA, HODPA):

– insertion of dummy instructions;
– randomization of operations;
– transformation of the data (i.e. Duplication Method [6]);
– masking of the data [2,3]: boolean, arithmetic...

In this paper we present a practical implementation of DES ([10]) and AES
([5]) using some of these countermeasures combined with new methods. We will
essentially use a new idea -an adapted masking method- combined with a bit-
per-bit randomization of many operations during the computation.

2 Transformed Masking Method

2.1 Principle

The idea is the following: the message is masked at the beginning of the
algorithm and after this, everything (or nearly) is as usual. Most of the pre-
vious proposed methods must respect a masking condition at each step of the

Ç.K. Koç, D. Naccache, and C. Paar (Eds.): CHES 2001, LNCS 2162, pp. 309–318, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



310 M.-L. Akkar and C. Giraud

algorithm, but here we only need to know the value of the mask at a fixed step
(for example at the end of a round or at the end of a non-linear part) and we
reestablish the expected value at the end of the algorithm.

It is easy to see that the problem of implementing a masking countermeasure
comes from the non-linear parts of the algorithm. Furthermore the security of a
symmetric cryptographic algorithm is essentially based in these parts.

2.2 DES

In the case of the DES, the most appropriate mask is a boolean mask X
which is applied before the Initial Permutation IP (we XOR the 64-bit message
M with a 64-bit value X). The only non-linear part of the DES is the S-Box,
so when using a masking countermeasure, we use a modified S-Box. This also
enables us to reestablish the mask value. It is only after the Final Permutation
FP that the mask will be removed to obtain the right result.

2.3 AES

For this algorithm, the method is slightly different. We still use a XOR oper-
ation as a masking countermeasure, but now the mask is arithmetic on GF(28).
This operation is compatible with the AES structure except for the inversion in
GF(28). For this, we use a new technique to transform the boolean mask into a
multiplicative mask. This allows us to keep the same level of security throughout
the algorithm. As for the DES, the mask will be reestablished at the end of each
round and the value will be unmasked at the end of the algorithm.

3 Applications

3.1 Securing the DES

DES Structure We want to cipher a 64-bit message M with the DES. We
choose a 64-bit mask X which will be XOR-ed with the message M at the
beginning of the DES. Then we start with the value M ⊕ X.

Just before the S-box, it is easy to see (fig.1) that we have an intermediary
value masked with X2 = EP (X132−63) where:

– X1 represents the 64-bit value IP (X);
– IP represents the initial permutation;
– X10−31 (respectively X132−63) represents the 32-bit low-weight (respectively

high-weight) part of the 64-bit mask X;
– X2 represents the 48-bit value EP (X132−63);
– EP represents the expansive permutation of a DES round.

The method chosen in the case of the DES is to reestablish the mask X1 at
each round. To obtain this result, we will use a modified S-box, denoted SM-Box.
The output of the SM-Box, after the permutation P and after being XOR-ed



An Implementation of DES and AES, Secure against Some Attacks 311

Fig. 1. Differences between a DES without countermeasure and a DES with masking
countermeasure.



312 M.-L. Akkar and C. Giraud

with the left part of the message, must have a mask corresponding to X132−63.
So, the SM-box is now defined by:

SM -Box(A) = S-Box(A ⊕ X2) ⊕ P−1(X10−31 ⊕ X132−63) (1)

where P−1 is the inverse of the permutation P applied after the S-Box.
It is also necessary to modify the left part of the message, we XOR it with

X10−31 ⊕ X132−63. So, at the end of the round, the mask X1 will be preserved.
After the last round, the two 32-bit parts are interchanged, so it will be

necessary to XOR these two parts with the 32-bit value X10−31 ⊕ X132−63
before the final permutation FP . The correct cipher is obtained after the final
permutation by unmasking the value with the 64-bit mask X.

To sum up, the following scheme represents the differences between a DES
without countermeasure and a DES with masking countermeasure. Operations
added to implement the masking countermeasure are represented with dotted
lines.

Mask Preparation It is important to note that the preparation of the different
values used as mask during the cipher (X, X1 and X2) must be computed in
a very secure way. Indeed, if an attacker succeeds in finding X, X1 or X2 then
he will be able to break our countermeasure. So the method used is to compute
these values with a randomized bit-per-bit calculation. This computation is slow
but is done only once at the beginning of each DES and guarantees high-level
security. In the worst case, the attacker will learn only the Hamming weight of
the mask.

Put into Practice We have implemented this countermeasure twice. The first
implementation was done entirely in C using a 32-bit risc CPU and the sec-
ond was done in assembly code using another 32-bit risc CPU with specialized
assembly instructions to facilitate a DES implementation.

For the first implementation we obtain the following results:

Type of DES Timing at 5 Mhz Space of ROM in bytes Space of RAM in bytes
Normal DES 9.4 ms 1540 42
DES with CM1 18.6 ms 2660 187
DES with CM2 21.2 ms 2656 452

Fig. 2. Timings and memory space used for non-optimized C code.

And for the second implementation we obtain:



An Implementation of DES and AES, Secure against Some Attacks 313

Type of DES Timing at 5 Mhz Space of ROM in bytes Space of RAM in bytes
Normal DES 46.2 µs 596 16
DES with CM2 237.6 µs 2017 272

Fig. 3. Timings and memory space used for assembly code.

Where:

– Normal DES : a non-optimized implementation without countermeasure.
This DES served as a basis for the construction of the “secure” implemen-
tations,

– CM1 : classical countermeasure (cf. [1]) where the message or its complement
is ciphered,

– CM2 : DES with the masking countermeasure on the message and with
randomization.

3.2 AES

For the AES algorithm, the method is close to the one used for the DES when
we want to secure the affine and linear parts of the algorithm: we simply keep
the same mask at each round. Next, we show how to deal with the non-linear
parts.

The first part of an AES round is the ByteSub transformation which is the
only non-linear part of the AES. It is an S-Box which is the composition of two
transformations (a multiplicative inversion in GF(28) and an affine transforma-
tion f) applied on each byte Ai,j of the input A:

Fig. 4. The ByteSub transformation.

With the masking countermeasure, we want to obtain the following scheme
where Xi,j is the 8-bit value which masks Ai,j and X1i,j = f(Xi,j)⊕ 0x63 (this
comes from the affine property of f):

Fig. 5. The ByteSub transformation with masking countermeasure.

We must resolve the following problem: how to obtain Ai,j
−1 ⊕Xi,j when we

have Ai,j ⊕ Xi,j without compromising the 8-bit value Ai,j .



314 M.-L. Akkar and C. Giraud

Fig. 6. Modified inversion in GF(28) with masking countermeasure.

The first idea is, like in the DES algorithm, to use a modified S-Box computed
each time we start an AES. However, in the AES case, the size of the table goes
from 256 bytes to (256 ∗ 16) bytes, equal to 4 Ko when we choose a 128-bit
message. This solution is not possible when working in a smart card environment
(this table is dynamic and must be located in RAM).
The approach selected is the following: an operation compatible with inversion
is multiplication, so we obtain the trivial formula: (X.Y )−1 = X−1.Y −1. The
problem lies in transforming a boolean mask into a multiplicative mask. If we
denote by Yi,j an 8-bit random different from zero and by ⊗ the multiplication
in GF(28) using the irreducible polynomial m(x) = x8 + x4 + x3 + x + 1 as
modulus, the mask transformation is obtained as follows:



An Implementation of DES and AES, Secure against Some Attacks 315

During all stages of the transformation boolean mask / multiplicative mask,
intermediary values are independent of Ai,j :

1. we multiply with a non-zero 8-bit random Yi,j ,
2. and we XOR with Xi,j ⊗ Yi,j .

After the inversion in GF(28) we have a multiplicative mask and to reestablish
the boolean mask we use values independent of Ai,j :

1. we XOR with Xi,j ⊗ Yi,j
−1,

2. and we multiply with Yi,j .

Now, let us see the difference between a round of the AES without counter-
measure and a round with masking countermeasure (fig.7).

Fig. 7. The round i of the AES without and with masking countermeasure.

Where:



316 M.-L. Akkar and C. Giraud

– X represents the mask applied;
– X1 = f1(X) where f1 is the linear part of the affine transformation f of

ByteSub;
– X2 = ShiftRow(X1);
– X3 = MixColumn(X2);
– Ki represents the round key i.

With this, it is possible to compute an AES and to keep the same random
mask at each round.

Put into practice. The following timings come from the encryption of a 128-
bit message using a 128-bit key. The implementation was done in assembly code
using a 8-bit CPU.

Type of AES Timing at 5 Mhz Space of ROM in bytes Space of RAM in bytes
Normal AES 18.1 ms 730 41
AES with CM2 58.7 ms 1752 121

Fig. 8. Timings and memory space used for assembly code.

Where:

– Normal AES : a non-optimized implementation without countermeasure,
– AES with CM2 : AES with masking countermeasure.

4 Some Security Considerations

4.1 Against SPA

All the permutations have been randomized so (presumably) the only thing
the attacker can read is the Hamming weight (HW) of the permuted value.
Moreover the values are masked meaning that an attacker would need to know
the value of the mask too.

During the key scheduling of DES, the attacker could get the HW of the round
keys Ki, construct linear equations on the 16 rounds and acquire information
about the key. To avoid such problems the bits of the entire key (56 bits or
even 64) are processed at each round. Therefore the only information that the
attacker could obtain is the HW of the key.

During the other operations (XOR, load, store), we think that the 32-bit
operations prevent an attacker from being able to get the precise 32-bit value
that is loaded in one operation. But due to high-order DPA (HODPA) it would
be better to randomly load, store and XOR these values bit-per-bit.

Of course, at the beginning of the DES while computing X1 and X2, one
should be careful and use randomization too. It is still true for the AES; moreover
the operations involved in the AES are well adapted to usual processors and the
problem of the bit-permutation does not exist here.



An Implementation of DES and AES, Secure against Some Attacks 317

4.2 Against DPA

We will not present the general DPA attack but simply consider the following
fact: an ordinary DPA attack is based on the prediction of one intermediate value
of the computation during the algorithm. Based on this fact, it seems that our
implementation is fully protected against such a -simple- attack. Indeed, from
the beginning of the DES (input message) to the end of it (cipher text) none of
the “real” intermediate values appear.

Due to the general random mask, we are not vulnerable to the kind of attacks
described in either [4] or [1]. Indeed, at each computation, unless one knows
the mask used, the output of the non-linear part (S-Box for DES / ByteSub
transformation for the AES) is random and not just masked by 0x00 or 0xFF .

Fundamentally we are subject to second-order DPA (see [8,9]) due to the
method of masking. But if we consider a real high-order DPA, some other aspects
appear: due to the randomization of all operations, the place, (i, j) for example,
showing correlation in a HODPA attack, changes a lot. Indeed, in the general
case the value i and j will both have 32 possibilities (if we consider that the bit
in question is in a 32-bit value). Therefore this gives 1024 positions for the DPA
peak and considerably increases a “normal” HODPA.

5 Conclusion

We have described some new ideas for a practical implementation of DES and
AES: adapted mask, modified S-Box, transformation boolean mask / multiplica-
tive mask. As is seen from the timings of our implementations, these countermea-
sures against SPA and DPA can be implemented in a smart-card environment
where the memory space is restricted and the processor speed is slow.

References

1. M.-L. Akkar, R. Bévan, P. Dischamp, and D. Moyart. Power analysis, what is now
possible. Asiacrypt, 2000.

2. S. Chari, C. Jutla, J.R. Rao, and P. Rohatgi. A cautionary note regarding eval-
uation of aes candidates on smart-cards. The Second AES Candidate Conference,
1999.

3. S. Chari, C. Jutla, J.R. Rao, and P. Rohatgi. Towards sound approaches to coun-
teract power-analysis attacks. Crypto, 1999.

4. J.-S. Coron and L. Goubin. On boolean and arithmetic masking against differential
power analysis. CHES, 2000.

5. Joan Daemen and Vincent Rijmen. The block cipher rijndael. Web Page:
http://www.esat.kuleuven.ac.be/∼rijmen/rijndael/, 2000.

6. L. Goubin and J. Patarin. Des and differential power analysis, the duplication
method. CHES, 1999.

7. P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. Web Site:
www.cryptography.com/dpa, 1998.

8. P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. Crypto, 1999.



318 M.-L. Akkar and C. Giraud

9. T.S. Messerges. Using second-order power analysis to attack dpa resistant software.
CHES, 2000.

10. National Bureau of Standards. The data encryption standard. FIPS PUB 46,
1977.


	1 Introduction
	2 Transformed Masking Method
	2.1 Principle
	2.2 DES
	2.3 AES

	3 Applications
	3.1 Securing the DES
	3.2 AES

	4 Some Security Considerations
	4.1 Against SPA
	4.2 Against DPA

	5 Conclusion
	References

