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Abstract

DTAs are highly sparse (most transitions are undefined),
equivalence of states depends on multiple inputs, and care
must be taken in order to minimize them efficiently.
We fully describe a simple implementation of the standard
minimization algorithm that needs a time in O(|A|2).
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DTA as compact data structure/1

Minimal DTA can store (unranked ordered) tree data
efficiently:

1 Each subtree which is common to several trees is assigned
a single state.

2 A single state is assigned to groups of subtrees that may
appear interchangeably in the collection.
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DTA as compact data structure/2

Sample:
a

a a

a

a b

a

b a

a

b b

States: {1, 2,⊥}
Alphabet of labels: {a, b}
Accepting states: {2}
Transitions {(a, 1), (b, 1), (a, 1, 1, 2)}.

Bottom-up computations:
a

a a
=⇒

2

1 1

δ0(a) = 1
δ2(a, 1, 1) = 2

a

a
=⇒

⊥

1

δ0(a) = 1
δ1(a, 1) =⊥
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Congruences in DTA

In a minimal DTA p ≡ q implies

p ∈ F ↔ q ∈ F

and for all m > 0, all k ≤ m and all (σ, r1, ..., rm) ∈ Σ× Qm

δm(σ, r1, . . . , rk−1, p, rk+1 . . . , rm) ≡ δm(σ, r1, . . . , rk−1, q, rk+1 . . . , rm)
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DTAs vs DFAs

Compared to DFAs, DTAs

Lack initial states (transitions with m = 0 as (a, 1) and
(b, 1) are used as seeds).

Transitions depend on m states (all siblings).

Are highly sparse (there are nm possible inputs of size m,
n is num. states).
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DFA minimization/1

DFAs can be minimized in time O(kn log n) (k is alphabet
size).

Customary initialization is O(|A|2 log |A|) for sparse DFA.

A suitable finer initialization leads to O(|A| log |A|) cost.
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DFA minimization/2

Standard DFA minimization builds the partition
P0 = {F ,Q − F} and a coarse transition function for all
I , J ∈ P:

∆IaJ = {(i , a, j) ∈ ∆ : i ∈ I ∧ j ∈ J}

Whenever s = |∆Ia| > 1, I is split into s classes.

Finding such (I , a) and updating ∆IaJ is O(n).

Number of iterations is O(n).

Complexity O(kn log n) requires that the largest I subset
(that with largest ∆IaJ) remains as I .
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Signatures/1

Sparse DFA require:

Identify useless states and collapse them to ⊥.

Initialize the partition P with subsets of states with
identical signature and class (accepting or not).

The signature of q is

sig(q) = {a ∈ Σ : ∃(q, a, p) ∈ ∆}

Then, only defined transitions are checked.
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Signatures/2

In a DTA different definitions of signature are possible

sig(q) = {σ ∈ Σ : ∃(σ, i1, ..., im, j) ∈ ∆ : ∃k ≤ m : ik = q}
sig(q) = {(σ,m) : ∃(σ, i1, ..., im, j) ∈ ∆ : ∃k ≤ m : ik = q}
sig(q) = {(σ,m, k) : ∃(σ, i1, ..., im, j) ∈ ∆ : ∃k ≤ m : ik = q}
sig(q) = f ({(σ, i1, ...im, j)) ∈ ∆ : ∃k ≤ m : ik = q})

Homomorphism f is:

f (ik) =


∗ if ik = q

0 if ik 6= q ∧ ik 6∈ F

1 otherwise

Our implementation works will all definitions.
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DTA minimization/1

DTA coarse transition function

∆σI1...ImJ = {(σ, i1, ...im, j) ∈ ∆ : i1 ∈ I1, ..., im ∈ Im, j ∈ J}

If s = |∆σI1...Im | > 1 at least one Ik needs split. However:

It is possible that more than one Ik needs split.

Different Ik ′ = Ik may lead (partially) to same subclasses.

Which is the largest subset in Ik has nothing to do with
the number of transitions in ∆σI1...ImJ (the other I’s play).
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DTA minimization/2

Useful properties:

Equivalence is transitive: we define nextn(q) to return
next (or first) element in the equivalence class.
If two states are not equivalent there exists a pair of
distinguishing transitions and at least one leads to q 6=⊥.

Graphical interpretation: at least one red-to-blue transition.
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Accessible and coaccessible states/1

Some definitions:

State q is inaccessible iff LA(q) = ∅.
Accessible state q is coaccessible iff there exists t ∈ L(A)
with a subtree s such that q = A(s).

States which are not coaccessible (and accessible) are
useless.

For instance, the absorption state ⊥ is accessible and useless.
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Accessible and coaccessible states/2

Accessible states can be found with bottom-up procedure and
useless states with a top-down one.
For instance, if F = {2} with the computation

2

1 1

1 makes 2 accessible,

2 makes 1 coaccessible.
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Description: algorithm findInaccessible

Input: A DTA A = (Q,Σ,∆,F )
Output: The subset of inaccessible states in A.

1 For all q in Q create an empty list Rq.
2 For all τn = (σ, i1, ..., im, j) in ∆ do

Bn ← m [Num. of inaccessible pos. in arg(τn)].
For k = 1, ...,m append n to Rik [Occurs in i1, ...im].

3 K ← {δ0(σ) : σ ∈ Σ}; I ← Q − K
4 While K 6= ∅ and I 6= ∅ remove a state q from K and

for all n in Rq do

Bn ← Bn − 1
If Bn = 0 and output(τn) ∈ I then move output(τn)
from I to K . [Whole argument accessible]

5 Return I − {⊥}.
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Description: algorithm findUseless

Input: A reduced DTA A = (Q,Σ,∆,F ) with F 6= ∅.
Output: The subset of useless states in A.

1 For all q in Q create an empty list Lq.

2 For all τn = (σ, i1, ..., im, j) in ∆ add n to Lj

[Store n such that j is the output of τn (kind of ∆−1)].

3 K ← F ; U ← Q − F
4 While K 6= ∅ and U 6= ∅ remove a state q from K and

for all n in Lq and for all ik in {i1, ..., im} do

If ik ∈ U then then move ik from U to K .

5 Return U.
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Description: algorithm minimizeDTA

Input: a DTA A = (Q,Σ,∆,F ) without inaccessible states.
Output: a minimal DTA Amin = (Qmin,Σ,∆min,Fmin).

1 Initialize partition P and queue K .

2 Main loop (refine P).

3 Output Amin.

Notation:

Pn is the partition at iteration n.

[q]n is the equivalence class of q in Pn.

p ∼n q ↔ [p]n = [q]n.
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Description: Initialization

Remove useless states from Q and transitions using them
from ∆ and set Q ← Q ∪ {⊥} and n← 1.

For all (σ, i1, ..., im) ∈ ∆ add (σ,m, k) to sig(ik) for
k = 1, ...,m.

For all q ∈ F add (#, 1, 1) to sig(q). [include acceptance in

signature]

Create an empty set Bsig for every different signature sig
and for all q ∈ Q add q to set Bsig(q).

Set P0 ← (Q) and P1 ← {Bs : Bs 6= ∅}.
Enqueue in K the first element from every class in P1.
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Description: Main loop

While K is not empty

1 Remove the first state q in K .
2 For all (σ, i1, ..., im, j) ∈ ∆ such that j ∼n q and for all

k ≤ m such that δm(σ, i1, ...,nextn(ik), ..., im) 6∼n j
1 Create Pn+1 from Pn by splitting [ik ]n into so many

subsets as different classes [δm(σ, i1, ., i
′
k , .., im)]n are

found for all i ′k ∈ [ik ]n.
2 Add to K the first element from every new subset.New

splits induced]
3 Set n← n + 1.
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Description: Output

Output (Qmin,Σ,∆min,Fmin) with

Qmin = {[q]n : q ∈ Q};
Fmin = {[q]n : q ∈ F};
∆min = {(σ, [i1]n, ..., [im]n, [j ]n) : (σ, i1, ..., im, j) ∈
∆ ∧ [j ]n 6= [⊥]n}.
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Analysis/1

If p 6∼n+1 q there exist m > 0, k ≤ m and
(σ, r1, ..., rm, j) ∈ Σ× Qm+1 with rk = p such that

δm(σ, r1, . . . , rk−1, q, rk+1 . . . , rm) 6∼n j .

One can assume j 6=⊥ (otherwise, one can exchange p and q)
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Analysis/2

Define p[1] = p and, for s > 0, p[s+1] = next(p[s]). Then, there
is s > 0 such that

δm(σ, r1, . . . , rk−1, p
[s], rk+1 . . . , rm) ∼n j

and
δm(σ, r1, . . . , rk−1, p

[s+1], rk+1 . . . , rm) 6∼n j .
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Analysis/3

The check over all m > 0, all k ≤ m and all transitions in
Σ× Qm can be limited to those transitions in ∆ and every
(σ, i1, ..., im, j) ∈ ∆ needs only to be compared with m
transitions of the type (σ, i1, ...,next(ik), ...im, j ′)
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Complexity/1

While K is not empty

1 Remove the first state q in K .
2 For all (σ, i1, ..., im, j) ∈ ∆ such that j ∼n q and for all

k ≤ m such that δm(σ, i1, ...,nextn(ik), ..., im) 6∼n j

1 Create Pn+1 from Pn by splitting [ik ]n into so many
subsets as different classes [δm(σ, i1, ., i

′
k , .., im)]n are found

for all i ′k ∈ [ik ]n.
2 Add to K the first element from every new subset.
3 Set n← n + 1.

A state enters K for every finer class created.

The refinement process cannot create more than 2|Q| − 1
different classes (size of a binary tree with |Q| leaves)
The main loop always removes a state from K ; then it
performs at most 2|Q| − 1 iterations.
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Complexity/2

While K is not empty

1 Remove the first state q in K .
2 For all (σ, i1, ..., im, j) ∈ ∆ such that j ∼n q and for all

k ≤ m such that δm(σ, i1, ...,nextn(ik), ..., im) 6∼n j

1 Create Pn+1 from Pn by splitting [ik ]n into so many
subsets as different classes [δm(σ, i1, ., i

′
k , .., im)]n are found

for all i ′k ∈ [ik ]n.
2 Add to K the first element from every new subset.
3 Set n← n + 1.

At every iteration, the internal loop over arguments involves at
most |A| iterations.
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Complexity/3

While K is not empty

1 Remove the first state q in K .
2 For all (σ, i1, ..., im, j) ∈ ∆ such that j ∼n q and for all

k ≤ m such that δm(σ, i1, ...,nextn(ik), ..., im) 6∼n j

1 Create Pn+1 from Pn by splitting [ik ]n into so many
subsets as different classes [δm(σ, i1, ., i

′
k , .., im)]n are found

for all i ′k ∈ [ik ]n.
2 Add to K the first element from every new subset.
3 Set n← n + 1.

If class [ik ]n is split, its states are classified according to
the transition output in less than |Q| steps;

Updating K adds at most |Q| states.
Number of splits < |Q|; then the conditional block
involves at most |Q|2 steps.
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Results

Time to minimize acyclic DTA accepting parse trees (up to
2000 trees and 60 labels) from a tree bank.
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Results

The time needed to minimize the DTA grows less than
quadratically with the size of the automaton (the best fit for
this example is |A|1.7).
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Conclusions and future work

Simple and efficient minimization of DTA is possible: the
search for inconsistent classes can be efficiently performed
and undefined transitions and the absorption state can be
properly handled.

A better asymptotic behavior may be still possible.

We are studyng incremental minimization of DTAs
(minimization of a partially minimized automaton).

Incremental construction (construction of a minimal DTA
by adding new trees to the language accepted by an
existing one) has also been addressed.


	Introduction
	DTAs
	Minimal automata
	Signatures
	Accessibility

	Algorithms
	Description
	Analysis

	Results
	Experiments
	Conclusions


