
An implemen-
tation of

deterministic
tree automata
minimization

RC Carrasco
J Daciuk

ML Forcada

Introduction

DTAs

Minimal
automata

Signatures

Accessibility

Algorithms

Description

Analysis

Results

Experiments

Conclusions

An implementation of deterministic tree
automata minimization

Rafael C. Carrasco1 Jan Daciuk2 Mikel L . Forcada1

1Universidad de Alicante

2Gdańsk University of Technology

Prague, July 16, 2007

An implemen-
tation of

deterministic
tree automata
minimization

RC Carrasco
J Daciuk

ML Forcada

Introduction

DTAs

Minimal
automata

Signatures

Accessibility

Algorithms

Description

Analysis

Results

Experiments

Conclusions

Abstract

DTAs are highly sparse (most transitions are undefined),
equivalence of states depends on multiple inputs, and care
must be taken in order to minimize them efficiently.
We fully describe a simple implementation of the standard
minimization algorithm that needs a time in O(|A|2).

An implemen-
tation of

deterministic
tree automata
minimization

RC Carrasco
J Daciuk

ML Forcada

Introduction

DTAs

Minimal
automata

Signatures

Accessibility

Algorithms

Description

Analysis

Results

Experiments

Conclusions

DTA as compact data structure/1

Minimal DTA can store (unranked ordered) tree data
efficiently:

1 Each subtree which is common to several trees is assigned
a single state.

2 A single state is assigned to groups of subtrees that may
appear interchangeably in the collection.

An implemen-
tation of

deterministic
tree automata
minimization

RC Carrasco
J Daciuk

ML Forcada

Introduction

DTAs

Minimal
automata

Signatures

Accessibility

Algorithms

Description

Analysis

Results

Experiments

Conclusions

DTA as compact data structure/2

Sample:
a

a a

a

a b

a

b a

a

b b

States: {1, 2,⊥}
Alphabet of labels: {a, b}
Accepting states: {2}
Transitions {(a, 1), (b, 1), (a, 1, 1, 2)}.

Bottom-up computations:
a

a a
=⇒

2

1 1

δ0(a) = 1
δ2(a, 1, 1) = 2

a

a
=⇒

⊥

1

δ0(a) = 1
δ1(a, 1) =⊥

An implemen-
tation of

deterministic
tree automata
minimization

RC Carrasco
J Daciuk

ML Forcada

Introduction

DTAs

Minimal
automata

Signatures

Accessibility

Algorithms

Description

Analysis

Results

Experiments

Conclusions

DTA as compact data structure/2

Sample:
a

a a

a

a b

a

b a

a

b b

States: {1, 2,⊥}
Alphabet of labels: {a, b}
Accepting states: {2}
Transitions {(a, 1), (b, 1), (a, 1, 1, 2)}.

Bottom-up computations:
a

a a
=⇒

2

1 1

δ0(a) = 1
δ2(a, 1, 1) = 2

a

a
=⇒

⊥

1

δ0(a) = 1
δ1(a, 1) =⊥

An implemen-
tation of

deterministic
tree automata
minimization

RC Carrasco
J Daciuk

ML Forcada

Introduction

DTAs

Minimal
automata

Signatures

Accessibility

Algorithms

Description

Analysis

Results

Experiments

Conclusions

DTA as compact data structure/2

Sample:
a

a a

a

a b

a

b a

a

b b

States: {1, 2,⊥}
Alphabet of labels: {a, b}
Accepting states: {2}
Transitions {(a, 1), (b, 1), (a, 1, 1, 2)}.

Bottom-up computations:
a

a a
=⇒

2

1 1

δ0(a) = 1
δ2(a, 1, 1) = 2

a

a
=⇒

⊥

1

δ0(a) = 1
δ1(a, 1) =⊥

An implemen-
tation of

deterministic
tree automata
minimization

RC Carrasco
J Daciuk

ML Forcada

Introduction

DTAs

Minimal
automata

Signatures

Accessibility

Algorithms

Description

Analysis

Results

Experiments

Conclusions

DTA as compact data structure/2

Sample:
a

a a

a

a b

a

b a

a

b b

States: {1, 2,⊥}
Alphabet of labels: {a, b}
Accepting states: {2}
Transitions {(a, 1), (b, 1), (a, 1, 1, 2)}.

Bottom-up computations:
a

a a
=⇒

2

1 1

δ0(a) = 1
δ2(a, 1, 1) = 2

a

a
=⇒

⊥

1

δ0(a) = 1
δ1(a, 1) =⊥

An implemen-
tation of

deterministic
tree automata
minimization

RC Carrasco
J Daciuk

ML Forcada

Introduction

DTAs

Minimal
automata

Signatures

Accessibility

Algorithms

Description

Analysis

Results

Experiments

Conclusions

DTA as compact data structure/2

Sample:
a

a a

a

a b

a

b a

a

b b

States: {1, 2,⊥}
Alphabet of labels: {a, b}
Accepting states: {2}
Transitions {(a, 1), (b, 1), (a, 1, 1, 2)}.

Bottom-up computations:
a

a a
=⇒

2

1 1

δ0(a) = 1
δ2(a, 1, 1) = 2

a

a
=⇒

⊥

1

δ0(a) = 1
δ1(a, 1) =⊥

An implemen-
tation of

deterministic
tree automata
minimization

RC Carrasco
J Daciuk

ML Forcada

Introduction

DTAs

Minimal
automata

Signatures

Accessibility

Algorithms

Description

Analysis

Results

Experiments

Conclusions

Congruences in DTA

In a minimal DTA p ≡ q implies

p ∈ F ↔ q ∈ F

and for all m > 0, all k ≤ m and all (σ, r1, ..., rm) ∈ Σ× Qm

δm(σ, r1, . . . , rk−1, p, rk+1 . . . , rm) ≡ δm(σ, r1, . . . , rk−1, q, rk+1 . . . , rm)

An implemen-
tation of

deterministic
tree automata
minimization

RC Carrasco
J Daciuk

ML Forcada

Introduction

DTAs

Minimal
automata

Signatures

Accessibility

Algorithms

Description

Analysis

Results

Experiments

Conclusions

DTAs vs DFAs

Compared to DFAs, DTAs

Lack initial states (transitions with m = 0 as (a, 1) and
(b, 1) are used as seeds).

Transitions depend on m states (all siblings).

Are highly sparse (there are nm possible inputs of size m,
n is num. states).

An implemen-
tation of

deterministic
tree automata
minimization

RC Carrasco
J Daciuk

ML Forcada

Introduction

DTAs

Minimal
automata

Signatures

Accessibility

Algorithms

Description

Analysis

Results

Experiments

Conclusions

DFA minimization/1

DFAs can be minimized in time O(kn log n) (k is alphabet
size).

Customary initialization is O(|A|2 log |A|) for sparse DFA.

A suitable finer initialization leads to O(|A| log |A|) cost.

An implemen-
tation of

deterministic
tree automata
minimization

RC Carrasco
J Daciuk

ML Forcada

Introduction

DTAs

Minimal
automata

Signatures

Accessibility

Algorithms

Description

Analysis

Results

Experiments

Conclusions

DFA minimization/2

Standard DFA minimization builds the partition
P0 = {F ,Q − F} and a coarse transition function for all
I , J ∈ P:

∆IaJ = {(i , a, j) ∈ ∆ : i ∈ I ∧ j ∈ J}

Whenever s = |∆Ia| > 1, I is split into s classes.

Finding such (I , a) and updating ∆IaJ is O(n).

Number of iterations is O(n).

Complexity O(kn log n) requires that the largest I subset
(that with largest ∆IaJ) remains as I .

An implemen-
tation of

deterministic
tree automata
minimization

RC Carrasco
J Daciuk

ML Forcada

Introduction

DTAs

Minimal
automata

Signatures

Accessibility

Algorithms

Description

Analysis

Results

Experiments

Conclusions

Signatures/1

Sparse DFA require:

Identify useless states and collapse them to ⊥.

Initialize the partition P with subsets of states with
identical signature and class (accepting or not).

The signature of q is

sig(q) = {a ∈ Σ : ∃(q, a, p) ∈ ∆}

Then, only defined transitions are checked.

An implemen-
tation of

deterministic
tree automata
minimization

RC Carrasco
J Daciuk

ML Forcada

Introduction

DTAs

Minimal
automata

Signatures

Accessibility

Algorithms

Description

Analysis

Results

Experiments

Conclusions

Signatures/2

In a DTA different definitions of signature are possible

sig(q) = {σ ∈ Σ : ∃(σ, i1, ..., im, j) ∈ ∆ : ∃k ≤ m : ik = q}
sig(q) = {(σ,m) : ∃(σ, i1, ..., im, j) ∈ ∆ : ∃k ≤ m : ik = q}
sig(q) = {(σ,m, k) : ∃(σ, i1, ..., im, j) ∈ ∆ : ∃k ≤ m : ik = q}
sig(q) = f ({(σ, i1, ...im, j)) ∈ ∆ : ∃k ≤ m : ik = q})

Homomorphism f is:

f (ik) =

∗ if ik = q

0 if ik 6= q ∧ ik 6∈ F

1 otherwise

Our implementation works will all definitions.

An implemen-
tation of

deterministic
tree automata
minimization

RC Carrasco
J Daciuk

ML Forcada

Introduction

DTAs

Minimal
automata

Signatures

Accessibility

Algorithms

Description

Analysis

Results

Experiments

Conclusions

DTA minimization/1

DTA coarse transition function

∆σI1...ImJ = {(σ, i1, ...im, j) ∈ ∆ : i1 ∈ I1, ..., im ∈ Im, j ∈ J}

If s = |∆σI1...Im | > 1 at least one Ik needs split. However:

It is possible that more than one Ik needs split.

Different Ik ′ = Ik may lead (partially) to same subclasses.

Which is the largest subset in Ik has nothing to do with
the number of transitions in ∆σI1...ImJ (the other I’s play).

An implemen-
tation of

deterministic
tree automata
minimization

RC Carrasco
J Daciuk

ML Forcada

Introduction

DTAs

Minimal
automata

Signatures

Accessibility

Algorithms

Description

Analysis

Results

Experiments

Conclusions

DTA minimization/2

Useful properties:

Equivalence is transitive: we define nextn(q) to return
next (or first) element in the equivalence class.
If two states are not equivalent there exists a pair of
distinguishing transitions and at least one leads to q 6=⊥.

Graphical interpretation: at least one red-to-blue transition.

An implemen-
tation of

deterministic
tree automata
minimization

RC Carrasco
J Daciuk

ML Forcada

Introduction

DTAs

Minimal
automata

Signatures

Accessibility

Algorithms

Description

Analysis

Results

Experiments

Conclusions

DTA minimization/2

Useful properties:

Equivalence is transitive: we define nextn(q) to return
next (or first) element in the equivalence class.
If two states are not equivalent there exists a pair of
distinguishing transitions and at least one leads to q 6=⊥.

Graphical interpretation: at least one red-to-blue transition.

An implemen-
tation of

deterministic
tree automata
minimization

RC Carrasco
J Daciuk

ML Forcada

Introduction

DTAs

Minimal
automata

Signatures

Accessibility

Algorithms

Description

Analysis

Results

Experiments

Conclusions

Accessible and coaccessible states/1

Some definitions:

State q is inaccessible iff LA(q) = ∅.
Accessible state q is coaccessible iff there exists t ∈ L(A)
with a subtree s such that q = A(s).

States which are not coaccessible (and accessible) are
useless.

For instance, the absorption state ⊥ is accessible and useless.

An implemen-
tation of

deterministic
tree automata
minimization

RC Carrasco
J Daciuk

ML Forcada

Introduction

DTAs

Minimal
automata

Signatures

Accessibility

Algorithms

Description

Analysis

Results

Experiments

Conclusions

Accessible and coaccessible states/2

Accessible states can be found with bottom-up procedure and
useless states with a top-down one.
For instance, if F = {2} with the computation

2

1 1

1 makes 2 accessible,

2 makes 1 coaccessible.

An implemen-
tation of

deterministic
tree automata
minimization

RC Carrasco
J Daciuk

ML Forcada

Introduction

DTAs

Minimal
automata

Signatures

Accessibility

Algorithms

Description

Analysis

Results

Experiments

Conclusions

Description: algorithm findInaccessible

Input: A DTA A = (Q,Σ,∆,F)
Output: The subset of inaccessible states in A.

1 For all q in Q create an empty list Rq.
2 For all τn = (σ, i1, ..., im, j) in ∆ do

Bn ← m [Num. of inaccessible pos. in arg(τn)].
For k = 1, ...,m append n to Rik [Occurs in i1, ...im].

3 K ← {δ0(σ) : σ ∈ Σ}; I ← Q − K
4 While K 6= ∅ and I 6= ∅ remove a state q from K and

for all n in Rq do

Bn ← Bn − 1
If Bn = 0 and output(τn) ∈ I then move output(τn)
from I to K . [Whole argument accessible]

5 Return I − {⊥}.

An implemen-
tation of

deterministic
tree automata
minimization

RC Carrasco
J Daciuk

ML Forcada

Introduction

DTAs

Minimal
automata

Signatures

Accessibility

Algorithms

Description

Analysis

Results

Experiments

Conclusions

Description: algorithm findUseless

Input: A reduced DTA A = (Q,Σ,∆,F) with F 6= ∅.
Output: The subset of useless states in A.

1 For all q in Q create an empty list Lq.

2 For all τn = (σ, i1, ..., im, j) in ∆ add n to Lj

[Store n such that j is the output of τn (kind of ∆−1)].

3 K ← F ; U ← Q − F
4 While K 6= ∅ and U 6= ∅ remove a state q from K and

for all n in Lq and for all ik in {i1, ..., im} do

If ik ∈ U then then move ik from U to K .

5 Return U.

An implemen-
tation of

deterministic
tree automata
minimization

RC Carrasco
J Daciuk

ML Forcada

Introduction

DTAs

Minimal
automata

Signatures

Accessibility

Algorithms

Description

Analysis

Results

Experiments

Conclusions

Description: algorithm minimizeDTA

Input: a DTA A = (Q,Σ,∆,F) without inaccessible states.
Output: a minimal DTA Amin = (Qmin,Σ,∆min,Fmin).

1 Initialize partition P and queue K .

2 Main loop (refine P).

3 Output Amin.

Notation:

Pn is the partition at iteration n.

[q]n is the equivalence class of q in Pn.

p ∼n q ↔ [p]n = [q]n.

An implemen-
tation of

deterministic
tree automata
minimization

RC Carrasco
J Daciuk

ML Forcada

Introduction

DTAs

Minimal
automata

Signatures

Accessibility

Algorithms

Description

Analysis

Results

Experiments

Conclusions

Description: Initialization

Remove useless states from Q and transitions using them
from ∆ and set Q ← Q ∪ {⊥} and n← 1.

For all (σ, i1, ..., im) ∈ ∆ add (σ,m, k) to sig(ik) for
k = 1, ...,m.

For all q ∈ F add (#, 1, 1) to sig(q). [include acceptance in

signature]

Create an empty set Bsig for every different signature sig
and for all q ∈ Q add q to set Bsig(q).

Set P0 ← (Q) and P1 ← {Bs : Bs 6= ∅}.
Enqueue in K the first element from every class in P1.

An implemen-
tation of

deterministic
tree automata
minimization

RC Carrasco
J Daciuk

ML Forcada

Introduction

DTAs

Minimal
automata

Signatures

Accessibility

Algorithms

Description

Analysis

Results

Experiments

Conclusions

Description: Main loop

While K is not empty

1 Remove the first state q in K .
2 For all (σ, i1, ..., im, j) ∈ ∆ such that j ∼n q and for all

k ≤ m such that δm(σ, i1, ...,nextn(ik), ..., im) 6∼n j
1 Create Pn+1 from Pn by splitting [ik]n into so many

subsets as different classes [δm(σ, i1, ., i
′
k , .., im)]n are

found for all i ′k ∈ [ik]n.
2 Add to K the first element from every new subset.New

splits induced]
3 Set n← n + 1.

An implemen-
tation of

deterministic
tree automata
minimization

RC Carrasco
J Daciuk

ML Forcada

Introduction

DTAs

Minimal
automata

Signatures

Accessibility

Algorithms

Description

Analysis

Results

Experiments

Conclusions

Description: Output

Output (Qmin,Σ,∆min,Fmin) with

Qmin = {[q]n : q ∈ Q};
Fmin = {[q]n : q ∈ F};
∆min = {(σ, [i1]n, ..., [im]n, [j]n) : (σ, i1, ..., im, j) ∈
∆ ∧ [j]n 6= [⊥]n}.

An implemen-
tation of

deterministic
tree automata
minimization

RC Carrasco
J Daciuk

ML Forcada

Introduction

DTAs

Minimal
automata

Signatures

Accessibility

Algorithms

Description

Analysis

Results

Experiments

Conclusions

Analysis/1

If p 6∼n+1 q there exist m > 0, k ≤ m and
(σ, r1, ..., rm, j) ∈ Σ× Qm+1 with rk = p such that

δm(σ, r1, . . . , rk−1, q, rk+1 . . . , rm) 6∼n j .

One can assume j 6=⊥ (otherwise, one can exchange p and q)

An implemen-
tation of

deterministic
tree automata
minimization

RC Carrasco
J Daciuk

ML Forcada

Introduction

DTAs

Minimal
automata

Signatures

Accessibility

Algorithms

Description

Analysis

Results

Experiments

Conclusions

Analysis/2

Define p[1] = p and, for s > 0, p[s+1] = next(p[s]). Then, there
is s > 0 such that

δm(σ, r1, . . . , rk−1, p
[s], rk+1 . . . , rm) ∼n j

and
δm(σ, r1, . . . , rk−1, p

[s+1], rk+1 . . . , rm) 6∼n j .

An implemen-
tation of

deterministic
tree automata
minimization

RC Carrasco
J Daciuk

ML Forcada

Introduction

DTAs

Minimal
automata

Signatures

Accessibility

Algorithms

Description

Analysis

Results

Experiments

Conclusions

Analysis/3

The check over all m > 0, all k ≤ m and all transitions in
Σ× Qm can be limited to those transitions in ∆ and every
(σ, i1, ..., im, j) ∈ ∆ needs only to be compared with m
transitions of the type (σ, i1, ...,next(ik), ...im, j ′)

An implemen-
tation of

deterministic
tree automata
minimization

RC Carrasco
J Daciuk

ML Forcada

Introduction

DTAs

Minimal
automata

Signatures

Accessibility

Algorithms

Description

Analysis

Results

Experiments

Conclusions

Complexity/1

While K is not empty

1 Remove the first state q in K .
2 For all (σ, i1, ..., im, j) ∈ ∆ such that j ∼n q and for all

k ≤ m such that δm(σ, i1, ...,nextn(ik), ..., im) 6∼n j

1 Create Pn+1 from Pn by splitting [ik]n into so many
subsets as different classes [δm(σ, i1, ., i

′
k , .., im)]n are found

for all i ′k ∈ [ik]n.
2 Add to K the first element from every new subset.
3 Set n← n + 1.

A state enters K for every finer class created.

The refinement process cannot create more than 2|Q| − 1
different classes (size of a binary tree with |Q| leaves)
The main loop always removes a state from K ; then it
performs at most 2|Q| − 1 iterations.

An implemen-
tation of

deterministic
tree automata
minimization

RC Carrasco
J Daciuk

ML Forcada

Introduction

DTAs

Minimal
automata

Signatures

Accessibility

Algorithms

Description

Analysis

Results

Experiments

Conclusions

Complexity/2

While K is not empty

1 Remove the first state q in K .
2 For all (σ, i1, ..., im, j) ∈ ∆ such that j ∼n q and for all

k ≤ m such that δm(σ, i1, ...,nextn(ik), ..., im) 6∼n j

1 Create Pn+1 from Pn by splitting [ik]n into so many
subsets as different classes [δm(σ, i1, ., i

′
k , .., im)]n are found

for all i ′k ∈ [ik]n.
2 Add to K the first element from every new subset.
3 Set n← n + 1.

At every iteration, the internal loop over arguments involves at
most |A| iterations.

An implemen-
tation of

deterministic
tree automata
minimization

RC Carrasco
J Daciuk

ML Forcada

Introduction

DTAs

Minimal
automata

Signatures

Accessibility

Algorithms

Description

Analysis

Results

Experiments

Conclusions

Complexity/3

While K is not empty

1 Remove the first state q in K .
2 For all (σ, i1, ..., im, j) ∈ ∆ such that j ∼n q and for all

k ≤ m such that δm(σ, i1, ...,nextn(ik), ..., im) 6∼n j

1 Create Pn+1 from Pn by splitting [ik]n into so many
subsets as different classes [δm(σ, i1, ., i

′
k , .., im)]n are found

for all i ′k ∈ [ik]n.
2 Add to K the first element from every new subset.
3 Set n← n + 1.

If class [ik]n is split, its states are classified according to
the transition output in less than |Q| steps;

Updating K adds at most |Q| states.
Number of splits < |Q|; then the conditional block
involves at most |Q|2 steps.

An implemen-
tation of

deterministic
tree automata
minimization

RC Carrasco
J Daciuk

ML Forcada

Introduction

DTAs

Minimal
automata

Signatures

Accessibility

Algorithms

Description

Analysis

Results

Experiments

Conclusions

Results

Time to minimize acyclic DTA accepting parse trees (up to
2000 trees and 60 labels) from a tree bank.

An implemen-
tation of

deterministic
tree automata
minimization

RC Carrasco
J Daciuk

ML Forcada

Introduction

DTAs

Minimal
automata

Signatures

Accessibility

Algorithms

Description

Analysis

Results

Experiments

Conclusions

Results

The time needed to minimize the DTA grows less than
quadratically with the size of the automaton (the best fit for
this example is |A|1.7).

An implemen-
tation of

deterministic
tree automata
minimization

RC Carrasco
J Daciuk

ML Forcada

Introduction

DTAs

Minimal
automata

Signatures

Accessibility

Algorithms

Description

Analysis

Results

Experiments

Conclusions

Conclusions and future work

Simple and efficient minimization of DTA is possible: the
search for inconsistent classes can be efficiently performed
and undefined transitions and the absorption state can be
properly handled.

A better asymptotic behavior may be still possible.

We are studyng incremental minimization of DTAs
(minimization of a partially minimized automaton).

Incremental construction (construction of a minimal DTA
by adding new trees to the language accepted by an
existing one) has also been addressed.

	Introduction
	DTAs
	Minimal automata
	Signatures
	Accessibility

	Algorithms
	Description
	Analysis

	Results
	Experiments
	Conclusions

