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An implementation of estimation techniques to a hydrological model
for prediction of runoff to a hydroelectric power station
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Parameter and state estimation algorithms have been applied to a hydrological
model of a catchment area in southern Norway to yield improved control of the
household of water resources and better economy and efficiency in the running
of the power station, as experience proves since the system was installed on-line
in the summer of 1978.

A non-linear conceptual state-space model of a Nordic hydrological system
is presented in this paper. The model is transformed analytically to a piecewise
linear time-discrete form in order to obtain straightforward updating of the gain
matrix in the estimator through solution of the Riccati equation. Estimator
gains can then be expressed approximately as a function of the state. Discharge
coefficients (time constants) are estimated by the maximum likelihood method.
Results are presented which show estimated and observed run-offs, and estimates
of the state variables.

1. Introduction

Electric power production in Norway is entirely hydroelectric. Lately, there has
been public pressure to reduce the need for further utilization of the remaining
water resources. This fact has motivated an increased interest for improved economy
in and better utilization of the existing hydroelectric power production systems.
Some 8-9 years ago, the authors suggested that the benefits derived by taking into
account the hydrological dynamics which are environmental to the power station
basins could be significant (Fjeld and Sande 1972, Fjeld, Meyer and Aam 1973). Intro-
ductory studies at University level were done, which demonstrated that the hydro-
logical dynamics of the environment, i.e. the complete catchment area, could be very
significant indeed for short and medium planning terms for optimal dispatch of the
available water energy. A pilot study on the mathematical modelling of a Nordic
hydrological system was done, along with a computational example on how a simpli-
fied run-off model could be used in the optimal control of the most economical
dispatch of the power (Fjeld, Meyer and Aam 1973). Eventually, this contributed to an
increased national interest in the hydrological modelling aspects in the framework of
either the state-space approach using conceptual models, coupled with the stochastic
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nature of the inputs, or inputfoutput models which merely tried to reproduce the
observed outputs caused by observed inputs in a stochastic environment.

The use of AR and ARMA models in prediction of river flows, run-off and so
forth has been reported for some years (see, for example, Kashyap and Rao 1972,
Vansteenkiste 1976). Of conceptual models, i.e. models developed on mass balance
and physical arguments and descriptions related to the process, the Stanford water-
shed models are probably the most well known (Crawford and Linsley). Models of
the Stanford type give a rather detailed and satisfactory explanation of hydrological
phenomena, but due to the large number of unidentifiable parameters such models
introduce, they are not suitable, or overparametrized for estimation and prediction
purposes for an actual hydrologic basin.

Linear ARMA models are partly inadequate under Nordic conditions, if the model
is to cover all seasons. The inclusion of freezing and snow melting during the winter
season implies either a change of structure or large parametric changes in a model
(depending on the viewpoint). The early work done (Meyer 1972) and later published
(Fjeld, Meyer and Aam 1973) suggested a simpler structure which is reasonably well
observable with respect to unknown parameters, and which took account of freezing
and melting. A still simpler model, and it seems a model sufficiently adequate for our
purposes, was presented by Bergerstrom and co-workers (Bergstrom and Forsman
1973, Bergstrom 1975), in the form of schematic block diagrams and FORTRAN
routines, the so-called HBV-model.

In 1976, two Norwegian hydroelectric power companies together with the State
Power Company (NVE/Statskraftverkene) agreed to finance a project on application
and implementation of a hydrological model, to yield run-off predictions to the
short term reservoirs of a power station.

The catchment basin of the Tonstad power station at the Sira-Kvina river in
southern Norway was chosen for this project. This power station produces, on an
average, electric power worth $75 million per year. The important characteristics
of the power station reservoir in this system is that it has a small degree of auto-
nomous regulation, ie. small volumes compared to inflow, and further that the
pressure head at the turbine intakes is large and significantly dependent on the
reservoir level. Hence, there is a trade-off between keeping as much water as possible
in the reservoirs in order to gain production efficiency, and risk of spilling water due
to flooding. This problem is dealt with by appropriate optimization and interactive
simulation programs. However, such programs require reliable prediction of the
run-off from 1 to’S days ahead. At the Tonstad power station, the predictions for the
natural, unregulated run-off are used in a complete simulation model of thetotal
hydropower system, encompassing the unregulated and regulated flows, in order to
reach short-term rational decisions on how to run the power stations.

Among hydrologists, the problem of how to update dynamical run-off models
against field measurements has been recognized as a difficult problem, and some
have designed intuitive methods to combat the problem. However, the Kalman
state estimator approach proves to be an elegant and simple recursive method for
accomplishing the required updating, in order to obtain a best possible prediction
of the state variables and run-off for the next few days. “The best possible’ certainly
does not imply ‘optimal’ in conjunction with the Nordic hydrological model of a
complex system like the one we deal with here. It does mean, however, that the
recursive method applied is a simple and practical one, and based on a more theo-
retically sound basis than intuitive approaches.
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2. State space model description

The HBV-3 model (Bergstrom and Forsman 1973, Bergstrom 1975) is relatively
simple, in that it describes coarsely the behaviour of the snow magazine, the soil
moisture zone, an intermediate zone and the groundwater zone. The model is com-
posed of these in cascade with each other. The lower zones are divided in two parts,
an upper zone and a groundwater zone. The latter is lumped together with possible
lake volumes (see the schematic diagram of Fig. 1). In the original publications of
Bergstrom and Forsman (1973) and Bergstrom (1975) the basic model description
was developed and given as diagrams and FORTRAN subroutines. For estimation
and prediction purposes, it is necessary to translate such a description into the state
variable form, which is not common in hydrology. We will, in the following, look at
each particular section of the model, but we are not going to discuss here the rele-
vance of the model structure and the various non-linearities aiming at simulating
nature’s behaviour.
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Figure 1. Per unit area model of a Nordic Hydrological System (HBV-model).

2.1. The snow magazine

This magazine is characterized by two state variables, namely, the water equi-
valent x, of dry (frozen) accumulated snow, and the content x, of free water stored
in the snow. See Fig. 2.

If the temperature is less than 6y, the precipitation P(¢) will fall as snow, other-
wise it will be rain. Although the rate of melting snow of is dependent on many factors,
it is here considered to be controlled directly by the ambient temperature and with-
out any inherent dynamics beyond the rate controlling behaviour. Therefore, it is
assumed that the melting rate is equal to Co(6(¢)—0,), where 6(r) is taken to be the
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Figure 2. Snow magazine model.

mean daily temperature. The water accrued from melting can increase the water
content x, up to a certain level, then the snow is saturated with water. Only when
such a condition is satisfied, the water can run-off to the soil moisture zone. We
simplify the description in this paper by putting 6, =0y, and obtain

[P(t)— Co(B(t)—00) for (a): 0<8p, X,20, x>0

—Co(0(2)—06,) for (b): 0>0,, x,>0, x,>0

X4 (1)=+ 1)
P(1) for (¢): 0<0, x,20, x,=0
0 for (d): 0>0, x,=0
([ Co(0(1)—8,) for (e): 6<6, x,>0
P()+Cy(0(t)—0,) for (f):0>0, x,<oawx,
4"2(’)=J 2)
0 for (g): 6<6,, x,=0

h—ﬂwco(e(r)—eo) f{)r (h): 6)80, x2=awx1)0
The flow rate g, to the soil moisture zone will be

0 for x,<awx;, x>0, x,>0
g1(t)=1{ (1 +aw)Co(6(1)—0,)+P(t) for 6>8,, Xz =owX1 >0 3)

P(1) for 0>6,, xy=x,=0

In the catchment area we consider here, there are large altitude variations. It is a
characteristic that, on average, the temperature decreases with altitude, and the
precipitation increases. Descriptions of these phenomena are available, and we
include this knowledge in the model by making a distributed model of the snow
accumulation and melting, by dividing the catchment area according to contiguous
altitude segments [k, —Ah,, h,+Ah,}, . . ., [hy—Ahy, hy+Ahy]. The corresponding
temperature at altitude #, is denoted by 0.

It is easily demonstrated that none of the states x, and x, are locally observable
through a measurement of g, (if measurement of ¢, was possible), and even less so in
the distributed model.
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Hence, no measurement of run-off in the hydrological model we are considering
can locally recover the magnitudes of stored dry snow and water. However, this
does not mean that these states are impossible to estimate in an open-loop manner if
we know initial conditions, and are able to measure the inputs 8 and P. After the
summer season, we simply know that x; =x,=0. Hence, the functions x,(+) and
x2(*) can be computed without updating. The multi-altitude snow magagine model
is included in the estimator described later, but for readability, we do not make
reference to it any more in the paper.

2.2. The soil moisture zone

This zone represents the upper porous soil layer. Some water will disappear from
this layer due to evapo-transpiration (evaporation and transpiration of water from
vegetation).

If the water content x; in the soil moisture zone is equal to its saturation value
X3max» the water flows on to the upper zone. If, however, the water content is less than
X3max> the run-off to the upper zone is given by the product (x3/Xamas)?q,, the balance
being stored in the zone.

The evapo-transpiration is computed from a potential (maximal) value gp0,
which is dependent on many factors. The actual value is assumed linearly dependent
On X3 UP O §3pot At X3=X"3max. AS a simplification, we put X"z .y = X3max from now on.

Summing up, the state differential equation for the soil moisture zone is

%3(1)=q1(t)—m(x3)q,(£) — (1 — «(1))g (x5(2), 1) “)
where
- xs \2
( ) for O<x3<Ximax
m(x3)= 4 \*3max

.l for X3 2 X3max
-QZpol(‘) for x3>x3m

400,01 1 . (s)
( ) qz::ol(r) f()l' X3 < X3max

o(t)=average fraction of surface covered by snow.

G200:(f) is given by hydrological estimates or measurements, and its magnitude
for a given field can be assumed to be approximately governed by the temperature.
However, in a Nordic climate, the evapo-transpiration is not as important as it
would be in a tropical area.

2.3. The upper and groundwater zones

The two compartments representing these zones constitute almost the simplest
way to model the dominant non-linear behaviour of the run-off from a catchment
area. They also constitute a coarse representation of the infiltration of water through
the various layers of soil. As an approximation, lakes are assumed to be in direct
non-dynamic connection with the lower zone. Also, during the winter season, the
loading effect of snow and ice, causing a transfer of lake water to the groundwater
zone, is being modelled.
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The equations for the upper and lower groundwater zones are

— @1 (Xa(0)— Xamax) — @2%a(1) +43(1) —7 E"aL for X4> Xamax
*a(t)= (6)

— %) +45(0)
2L

for x4 <34mex

Xamax 18 @ threshold value of x,, for which the discharge time constant is 1/(a, +a,),
whereas it is 1/a, for x; < X nax-

As a simplification, g, is taken as a constant flow rate, as long as x,(t)>0. For
the lower zone

Xs(t)= —asxs(t)+qa+or(P(t)—G2p01) 0

1/a, and 1/a, are the time constants associated with the upper zone, whereas 1/a;
is the time constant associated with the lower zone. « is the fractional area covered
by lakes.

2.4. The run-off from the catchment area
The total run-off from the basin follows from Fig. 1.

[a:(xa(f) = Xamax) + @2X, J(1 —a )F+ Fazxs(f) for xa>Xamax
o)= ®)
\Qz_x:-,(t}(l — OEL)_F"!‘FQ_:,_J?s(I) fOl' Xa é_x_.._.._.‘“

where F is the total area of the catchment.

Units of all state variables are in volume per unit area, in hydrology usually
given in units of 103 m. Rates and flow rates are hence given as 10~2 m/unit time,
in hydrology usually as 10~3 m/day.

3. The modelling of the measurements
3.1. Run-off

This variable is in the field measured as accumulated run-off over 24 hours, i.e.
the measurement is a time-discrete value given by

kAT

yEAT)= | Q@)dt; k=1,2,3,... ©)

(k—1AT

whereas the model output is a run-off intensity Q(¢). An approximate discrete-
time model version of the measurement process is therefore

AT
Hk)=[0k)+ Qe — )] — (10)
where we have for convenience used k as argument instead of kAT.

3.2. Precipitation

This input variable is, of course, never measured in the field as an intensity
either, but as an accumulated value r(k) over 24 hours, such that

P(k)gﬂ—zrr(k)-—P(k— 1) (11)

P(k) is usually given in units of 1 m~3/unit area and 24 hours.
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Temperature data are given as average daily values, and evapo-transpiration data
are given on a monthly basis.

4. Discrete-time system equation

In order to formulate the discrete-time Kalman estimator for the locally linearized
system, it is convenient to find analytically a locally valid expression for the process
state transition matrix @, since @ is needed in the computation of the » x | estimator
gain matrix K. Owing to the special structure of the process model, this is quite
straightforward. The result is derived in the Appendix, and has the form

x(k+1)=D(B(x(k), 6(k)), P(k), k), G2pa(k), AT)x(k)
+a(B(x(k), 0(k)), P(k), 6(k), g200(k), AT)  (12)
where the function B is defined in the Appendix.
The entries of @ and the components of # are given in the Appendix. Similarly,

the ideal observation process is given by a piecewise constant observation matrix D
and the following expression;

Y(k)=Dx(k)+yo (13)
where
- AT AT AT
['_0, 09 0! Hl —0‘.1_)((11 +al) a2 FaS T T-l for X4 Z X4max
L e ) ) J

D= (14)

AT AT AT
[0, 0, 0, Hl —C[L)ﬂz ] fDr x4 &x‘;m,

2 Fas o

Yo is a piecewise constant such that

AT
—alxm,-_(l —CKL)FT for X4 > Xamax
Vo= (15)

0 for x4<Ximax

Again the formulations (13), (14) and (15) make a computation of the locally valid
values of the covariance and gain matrices of the Kalman estimator possible.

5. Local state observability: structure of the estimator

From the structure of the process state equations, it is easy to prove, using the
well-known observability matrix condition, that x, and x, are not locally observable
from the output measurement y. With the assumed model, the run-off from the
snow magarzine is independent on inputs only and not on the magnitudes of the state
variables as long as x, and x,>0. Hence, even with data on melting, it is impossible
to infer conclusion locally on the magnitudes of x, and x,. This statement cannot,
of course, be globally true in general for the non-linear process where x, >0, x, >0.
Indeed, if we can add to the model the information that all of the snow disappears
every summer, one can certainly state that the accumulated total water content of
the snow magazine finally must match the accumulated run-off and water contents
X3, X4 and x5, as seen between two summer seasons.

For short-term prediction, the practical scheme must be based on the best ‘ballistic’
estimate (i.e. without updating) of x, and x, based on temperature and precipitation

M.LC. D
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measurements and the model egns. (1) and (2). As a consequence, for the Kalman
estimator design the complete hydrological model must be divided in a locally
observable part (the soil and groundwater zones) and a locally non-observable part
(the snow magazine). The structure of the system with estimator updating is as shown
in Fig. 3. We applied the form of the Kalman filter that minimizes the expectation of
the one-step-ahead predicted error criterion.
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Figure 3. Structure of the estimation and updating scheme.

Practical experience has shown that an updating based on no information on the
snow magazine whatsoever is unnecessarily restrictive, as explained above (see also
§ 8). The continuous non-linear model equations in the on-line Kalman estimator
were solved by an accurate method between two sampling instants kAT and (k+ 1)AT
in order to satisfy exactly conservation of the mass flow. With the computational
power of a minicomputer, there is no need in this system to work with simplified
schemes. Such a point is sometimes bypassed and unnoticed in texts and papers on
implementations of filtering techniques.

6. Model calibration: simulations with the estimator
6.1. Parameter identification

Although the approximate range of parameter values of many of the HBV model
parameters is transferable from other catchment areas that have been researched, it is
certainly necessary to tune the parameters for the Sira-Kvina catchment model.




Implementation of estimation technigues 45

The parameters can be divided in three categories: those which can be found by
studying the catchment area (total area, altitudes of partial areas for the snow maga-
zine model, lakes, «), those physical parameters for which good @ priori estimates
exist (average variations in temperature and precipitation as a function of altitude,
Co, oy, 09, 0y), and finally, such parameters which values are almost not known at all
although useful estimate ranges exist from studies of other catchment areas. Such
parameters are Xzmax, ﬁa Xamaxs G4, @15 G2 and as.

For linear systems with zero mean gaussian additive process and measurement
noise it is well known that the maximum likelihood (ML) estimate of the system
parameters p is obtained by applying for the model with known inputs and an
observed output time series ¥y over the time interval [1, N], (Schweppe 1973, Eykhoff
1974):

(1) a Kalman filter to yield the innovation sequence {¢,} and its covariance R,,
for a fixed p, over the time interval [1, N];

(2) a stepwise procedure whereby p is changed towards a value p, that maximizes
the likelihood functional J=In p(Yy/p);

(3) run step (1) again with the improved value for p.

For non-linear models like the one we have, which is in fact piecewise linear
except for the less important non-linear soil moisture zone, the method of course
gives an approximation to the solution of the problem. The computations (1)-(3)
were done using the program package MLPROG (Hallingstad 1976) contained in
the interactive program system PROSID for time series analysis state and para-
meter estimation, which is a part of a cybernetic program library CYPROS (Tysse
1977).

Considering equidistant plots of the error criterion in dependence of any two of
the aforementioned parameters, applying either the maximum likelihood functional
or the least-squares functional of the open-loop output prediction error, demon-
strated that sensitivities in the criterion to changes in many parameters were low.
This means that the degree of identifiability of those same parameters is low.
For this reason, we considered it sufficient to calibrate the model in a two-step
procedure.

(1) Apply a least-squares estimation of all of the ten unknown and approxi-
mately known parameters. This gave a course calibration of the model, although
theoretically with biased estimates of parameters. Considering a weak identifiability
(overparameterized model), this is considered good enough as final values for all
parameters except @y, a, and as (the run-off discharge constants).

(2) Apply the ML method to yield final values for the run-off parameters a,, a,
and as.
We then arrived at the following parameter values:

Co=52[m~3 (°C)~! (day)~!, o,=008, 0,=0-0[C]
6,=0-8 [°C], X3max=50[m~3], B=2
9,=2'0 [m~3 (day)~']
Xamax =20 [m~2], @;=0-547 [day—']
a,=0-489 [day~'], a@s=0-0462 [day~']
D2
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In order to calculate the Kalman estimator gain, which was updated against the
current values of @ and D, we considered the model in the form (see Appendix)

x(k + 1)= 0, (K)x(k) + ity (k) +id(k) }
(16)
Wk)=Dx(k)+yox+mw(k)

where {@i(k)} and {w(k)} are assumed to be gaussian, white noise sequences with
zero mean. Indices x and u are used to remind about the dependence on the working
point. Updating of K is done through solution of the Riccatti equation one step at
a time.

6.2. Identifiability of parameters

Following Tse (1974), an identifiability analysis of a,, a, and a, was done. The
eigenvalues and eigenvectors of Fisher’s information matrix M, give us some idea
about the degree of identifiability of the unknown parameters p. If the likelihood
functional J is sufficiently smooth as a function of p, then cov {pg}x M, =" (lower
bound), where pg is an efficient estimate (Schweppe 1973), and

eJ eJ
S E{? —T}
¥n (P P )p=po

inn ig the Hescian matrix H In the MI PROWG
AR 2.7 LELSS B A%TLTARANL BINRARE ASN ‘lmo AEL REIN LTREE AW A ety & m

89 _J(p+5p)—J(p)
3p; Ap,

at the optimum p found by MLPROG.

From matrix theory, we know that 1/4/A; is the length of a principal half axis of
the ellipsoid 4 p"Hp =constant, where A, is an eigenvalue of H. The associated eigen-
vectors m, give us the direction of the principal axes. If now A; is small, the para-
meter combination corresponding to the direction of the eigenvector of A; is poorly
identifiable, By calling the subroutine CURVE in MLPROG, the directions and
length of the principal axes are computed. The result for the hydrological model is
given in the Table.

Principal

half axis  Eigenvalue Direction
1st 480 —0-967 0-254 0
2nd 828 —0-280 —0-960 0
3rd 40780 0 0 |

By computing the length of principal axes relative to parameter estimates, it is
observed that a; is only slightly less observable than a, and a,. The results indicate
about equal observability of these parameters, since the principal axes, being pro-
portional to 1/(4/Ad;), are about orthogonal and the ellipsoid almost a sphere.
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Figure 4. (a) Precipitation, (b) temperature, and (¢) potential evapo-transpiration.
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According to the above, lower bound (Cramer-Rao) estimates of the parameter
uncertainties are given by

84,2 100/(v/M1d1) 7%= 8:3%
82,2 100/(v/228,) o= 717
843> 100/(4/A3d3) %=107% .

6.3. Simplifications, simulations and comparisons

In a practical implementation on a small multiprogrammed computer, there is a
need for avoiding the necessity for solving the Riccatti equation in order to update
the filter nx 1 gain matrix K. By inspection of the behaviour of each of the elements
k, of K, applying for its design cov {v}=diag {1, 1.1, 10, 0} and cov {w}=1 in the
observable part of the model, we have observed that the following good approxi-
mation can be made:

K~ [09 kuz(xlt)’ kﬂ‘-’(x4)s 0]
for the gain elements associated with the states x; to xg respectively. We found

ky for Xx4>Ximax
k.=
k, for Xs<Ximax

0 for x,>0
ko=

k3 for X4=0

A least-squares optimization of k,, k, and k; to fit the Kalman filter run-off be-
haviour resulted in k, =05, k,=1-6 and k;=34.

These constants are used in the following, and we shall for simplicity refer to the
filter as a ‘Kalman filter’, although it is a simplified one.

With the resulting model, and the observed temperature, measured precipitation
and evapo-transpiration data as given in Figs. 4 (a)(c), the following experiments
were done. Figure 5 shows the observed run-off and the ballistic (i.e. without up-
dating) run-off from the model for a period of one year, starting on 1 September 1974.

In Fig. 6, the same type of curves are shown, except that the model run-off there
is generated by the Kalman filter. The error has been somewhat reduced, although
the open-loop model is astonishingly good as judged from Fig. 5. Figure 7 (a) shows
the innovation sequence. Some of the rapid, white-noise-like fluctuations are highly
probable caused by random errors in the run-off observations. In fact, the total
run-off from the catchment is calculated on the basis of the differences of measure-
ments at different locations (in rivers), and this will give avoidable errors, in particular
when the total flow on transit between two such locations is high compared to the
net run-off.

A characteristic of such measurements is also that the measurement uncertainty
increases somewhat with the magnitude of the measurement variable. In this imple-
mentation, this fact is, however, not taken into account in the estimator.

Another source of error is that melting of snow will be dependent not only on
ambient temperature, but also the intensity of sun radiation hitting the snow, and
wind has a significant effect too.
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Figure 6. Observed Kalman filter run-off.

It should also be remarked that the measurement sampling interval is much too
long. The updating frequency in this application causes poor updating of the fast
modes, and this is one of the valuable results of the modelling and estimation work
done. As a result, the power company will aim at increasing the updating frequency.

Figure 7 (b) shows the square of the innovation integrated as a function of time,
with and without filter updating.

However, as an overall judgement, it is remarkable how well the run-off from a
highly distributed parameter process like this can be satisfactorily modelled for the
purpose here, by a relatively simple lumped parameter model. Discussing this in
brief, it is tempting to relate this fact to the following. A hydrological basin with a
major outgoing river could be divided in a number of smaller compartments that in
many cases could be chosen such that there would be a minimum of interaction
between them, and a maximum of direct flow to the observed run-off.

Rivers, streams and lakes could b: natural borders of such compartments, which
could with good accuracy (compared to the total catchment) be given a lumped
mathematical description. As seen from the output, the main river from the catch-
ment, the system then mainly encompasses parallel compartments each of which
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Figure 7. (a) The innovations, with ballistic model and with Kalman filter, () integral of the
squared innovations, with ballistic model and with Kalman filter.

has a dynamic behaviour depending on hydrological parameters for that compart-
ment. However, the dynamics of each will not differ very much, and in fact very little
if the catchment is homogeneous. As a result, the response of the output will be the
sum of almost equal and parallel responses governed by systems which will be practi-
cally state unobservable from the output. Hence, a simplified lumped description
will suffice.

In Figs. 8 (a)(d), the estimated values of x,+x,, and the states x3 to xs are
plotted, for the same input data as previously.

As an example, the behaviour of both the ballistic (open-loop) estimated value
and the Kalman filter value of x5 are shown in Fig. 8 (d).

7. Implementation at Sira-Kvina

In June 1978, the model and various utility programs were installed on a PDP
11/34 computer at the main Sira-Kvina power station in southern Norway. Much
emphasis has been laid on a good man-machine communication. The implemented
prediction system has the following advantages and characteristics:
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Figure 8. (a) Estimated x, =x,, the total equivalent water level of the snow magazine, (b)
estimated soil moisture zone level x, (c) estimated upper zone level Xa, (d) estimated
groundwater zone level x5, with ballistic model and Kalman filter.

(1) Data for observed precipitation, .emperature and run-off are stored sequentially
in a data base. In this data base, the a priori and a posteriori estimates of the Kalman
estimated run-off are stored, too. Before the operator runs a prediction, he can
observe from a graphic display how the model has performed the last few weeks,
both with and without updating. The company may after a year or so request a
renewed calibration of the model. All these data will be a basis for evaluating more
closely the profit gained by using the model.

(2) When a prediction for the coming week is to be made, the operator will type
on the keyboard the best estimates of temperature and precipitation from a weather
forecast for the area. The model is then run, in steps of 1 day ahead at a time, with
the initial conditions as obtained from the previous Kalman filter update (a posteriori
estimate) obtained from the most recent measurement data.

Further, the operator may study the behaviour of the snow magazine, the soil
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moisture zone and the upper and groundwater zones. In this way, the model is a
teaching aid in the instruction about the hydrological process.

(3) The predicted run-off updates the contents of a run-off data base, and can be
directly read by another program performing a simulation of a model encompassing
the complete river system of the area, the magazines and the power stations.

8. Conclusions

According to the responsible authorities at the Sira-Kvina Power Company, the
prediction model has contributed to an already observable improvement in the per-
formance of the power station and in avoiding loss of spilling water. Although some
obvious shortcomings exist in the modelling today, the system is simple and highly
useful in its current form.

For instance, just for one 1979 spring month the Power Company reports a very
substantial increase in profit by an estimated $110 000, obtained as a difference
between what they would have expected to achieve observing the historical run-off
data, and what was actually achieved. This stems from an increased storage of water
in the intake reservoir of Tonstad during the floods when the prices were extremely
low. When the flood had ended, the saved water was sold at a much higher price.

The open-loop estimation without updating is surprisingly good compared with
the Kalman filter. This is due partly to the structure of such systems in general (ex-
plained below), and partly due to the hydrology of this particular area together with a
too low updating frequency.

Most hydrological models of the Nordic kind are ‘excited from zero’, i.e. the
run-off decays close to zero for long periods of the year, being forced by impulse-
like precipitation now and then. Further, a general characteristic is that strong non-
linearities are experienced for high intensity rainfalls, causing fast discharge from the
catchment. Thus, long-term drifts in the state variables do not exist except possibly
for the groundwater zone.

The Sira-Kvina catchment is characterized by shallow soil areas and mountains.
Hence, the time constants are smaller than they would be for many other interesting
areas in Norway, and it should be expected that the behaviour of states in the Kalman
filter will show greater differences than here compared to the ballistic estimates.

Inaccuracies introduced in the predicted run-off stem from various factors, such
as a simplified model structure, a too low order of the model, errors in parameters,
and too low sampling frequency in the measurements. Lack of representability in the
measurement of precipitation may be a serious and systematic error source. Extra-
polated temperature values for use in the multi-altitude snow model may be erroneous,
and cause problems in run-off prediction during the snow season.

The latter types of errors could be classified as errors in the estimation of the total
area input functions based on local point measurements of these functions.

When experience over some years is gained. area correction factors applied to
point measurements can be estimated, since all types of precipitation somehow must
finally show up in the integrated run-off.

It is important to obtain good, long-term (5 days) meteorological forecasts, since
these are inputs to the model for running a predicted run-off. A cooperation with the
State Meteorological Institute in Noway has been established in order to improve
the forecasts for this particular area.

Regarding measurements, it is easy to suggest improvements that will improve the
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estimation and prediction, not considering the cost of such measurements. A more
frequent updating should have high priority, a sampling interval of approximately 4
hours should be more satisfactory. During the cold seasons, it is better to measure
directly the type of precipitation (rain or snow), rather than modelling it. In particular,
during the spring, important information would be obtained by measuring the water
originating from melted snow, and by measuring average depth of snow. Area snow
coverage and its distribution could be estimated through remote sensing, and all this
would make the snow magazine practically observable.

As far as modelling improvements are concerned, the mathematical description
of the snow magazine has been improved. A model which takes account of different
percentage area coverages of snow within each model for the various altitudes, has
proved to improve prediction during the melting period.
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Appendix
Approximate discrete-time state equations for a non-linear system approximated by a
piecewise linear one

Consider the non-linear system

x=f(x, u) (A1)

and an arbitrary, sufficiently short, time-interval [kAz, (k+1)AT].
Consider a fixed value x, of x, and consider the evolution of x(¢) from this point,
i.e. x(t)=1x¢+ Ax(r). Linearizing with respect to x,

Ax(t)= ADx(t) +f(xo, u) (A2)
where
A=A(x,, u)=;—£ . (A3)

Now take x, as x(kAT), and the approximate solution for Ax at time (k+1)AT is
hence

Ax(k+1)=exp (AAT)Ax(k)— A~ [I—exp (AAT] f(x(k), u(k)) (A4)

considering f as a constant vector over [KAT, (k+1)AT], and for convenience we
have used the common argument & in lieu of kAT.
However, by definition Ax(k)=0, and x(k + 1) £ x(k)+ Ax(k+ 1), such that

x(k+1)=x(k)— A~ *[I—exp (AAD]f(x(k), u(k)) (A5)

Special case
Consider a first order system, and

JCe, uy=g(x)h(u)x + k(u) (A6)
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Equation (A 5) will become

x(h + 1)=[I— A~ [T—exp (AAT) Jg(e(k))(u(k)) (k)
— A~ [I—exp (AAT)K(u(K)) (A7)

or
x(k+ 1) =, (k)x(k)+ il (k) (AB)
with the notation
i K) = — A~ [[—exp (AAT)r(u(k)) (A9)
and
Q. (K)=I—A"*[I—exp (AAT)Jg(x(k))h(u(k)) (A 10)

The subscripts x, u are a reminder of the fact that @ is updated in dependence of

x and w.
The state equations for x; and x, in the hydrological model are of the integrator

type. In that case, ®(k)=1I and ii(k)=ATu(k).
Also note, if AT—>0, (A 5) gives the Euler method of integration.

Remark
The state equations for x3, xs and x5 in one hydrological system may be trans-
formed to arrive at the form (A 6), by defining certain ‘switching functions’.

Define
1 for Xy P 0
S(x,)= (A 11)

0 for x;=0
1 for 60>0,and x,=0x,>0;

B(x,, x5, 6)= or for 6> 6, and x, =0 (A 12)
0 otherwise

In its time-discrete form, and applying (A 5), egn. (3) in the paper may then be
expressed for x3 < X3max as

—exp [— a(k)AT
2 T 1t i)

x B(x4(k), X2(k), 6(k))[S(x1(1))Cofb(k) — 66 J(1 +er ) +P(K)]
— (1 +e)x3(k)/X3maxGzporlk )} (A13)

x3(k+ D) =x3(k)+ :

where
(k) =X3max P B3 (k)P B(x1(k), x5(k), 0(k))
x [SG(k))Colbk) — 6011 — o) + P(R)]+ (1 + @) 22 (A 14)

X3max
For X3 Z Xamax»

x3(k+1)=x3(k)—G2puAT (A 15)
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Equation (6) may be expressed as

‘f4 S “x4) +c
or in time-discrete form

—exp [—b(K)A
xa(k+ 1)=exp [~ bOAT (k) + P o )

(k) is a function of x,(k), 6(k) and P(k). b(k) is independent of 8 and P.
For (A 17) the following four situations are possible.

(1) X422 Xamaxs X3 < X3max: then b=a, +a,, and

Ga

+ xBrnan_'a xB(k)ﬂB(xl(k), xz(k ]9 e(k))
* [S(e1 (k) Col k) — 00 ](1 +av,) + P(K)]

c(k)=alx4mal_l
—oy

(2) X4 <Xamaxs X3 < X3max: then b=a,, and

q‘;l- + x;mn_ﬂ x,(k)ﬂB(xl(k), xz(k), 6(k))

X [S(x1(K))Colb(k) =0 )(1 + o) + P(K)]

b=—3

(3) X4> X4maxs X3 > Xamax: then b=a, +a,, and

k) = = 7 2=+ @Ko+ B (), 30K, 006))
X [SCA (N Colk) = 001(1 + o)+ P(R)]

(4) X4 < X4maxs X3 ZX3may: then b=a,, and

qa
l_"le

ck)y=—

+ B(x,(k), x,(k), 6(k))
X [S(x1(k))Colb(k)—0,)(1 + o) + P(K)]

The time-discrete solution of (6) is
Xs(k +1)=exp (—asAT)x5(k) + -—P i;'“aM)

[94 + L (P(K)—q2pu(K))]

The equations for x; and x, can now be cast in the form of (A 6).
®,, , turns out to be of the form

10 0 0 0

01 o0 0 0
D, =] 0 0 gas(k) 0 0

0 O @u3(k) exp(—b(k)AT) 0

00 O 0 exp (—a;AT) |
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(A 16)

(A 17)

(A 18)

(A 19)

(A 20)

(A21)

(A 22)

(A 23)

where @33, ;3 and b are certain functions of the operating point and system para-

meters.
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The remaining part of each state eqn. (16) constitutes the forcing term #,. These
terms, however, will not be given here.

With the obtained expressions.for @, , and u, , in (16), the set of equations was
solved with field data for precipitation, temperature and evapo-transpiration based
on hydrological estimates.

The resulting functions x(k) were compared with a fourth-order Runge-Kutta
method with a fixed step length, applied to the set (1), (2), (4), (6) and (7). The
discrete-time version (A 8) turned out to compare favourably in solution performance
even with AT as long as 1 day.

However, we use the discrete-time version of the set of equations only as a basis
for the computation of the estimator gain matrix.
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