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ABSTRACT
The development of a design science rests on the ideal that

design is anchored in a set of fundamental axioms similar to the
more ‘traditional’ sciences of mathematics and physics.
However, the axioms upon which a design science is
constructed must reflect that design is a science of the artificial.
It is our contention that such axioms may exist in Decision-
Based Design as those formulated by von-Neumann and
Morgenstern for developing utilities under conditions of risk.
In this paper we have a very narrow focus: evaluating a
proposed framework for applying these axioms in the context of
a simple design problem through the use of Monte Carlo
simulation and expected utility theory.

GLOSSARY
Decision  "...we define a decision as an irrevocable allocation
of resources” (Hazelrigg, 1996).  "There are two important
characteristics of a decision:

• A decision  is made at an instant in time.
• A decision  must be made based on the

information available at the time it is made."
Decision-Based Design Our fundamental paradigm for
designing and creating design methods, rooted in the notion that
the principal role of engineers, in the design of an artifact, is to
make decisions (Shupe, 1988; Mistree, Smith et al., 1990).

NOMENCLATURE
d Conductor diameter (m)
s(m) The option set (set of alternatives)
mi A particular option (alternative)
x Vector of design variables
a Vector of design attributes
y Vector of exogenous variables

t Time
p(t) Price as a function of time ($)
q Demand function
N Number of years (-)
L      Length of cable (m)
R     Resistivity (Ω·m)
T Equivalent operating time (h/yr)
i Interest rate  (%)
P Cost of energy ($/kWh)
D  Demand charge ($/kWh)
c      Yearly increase in cost (%)
V      Voltage (V)
I0stat     Standard current (A)
LF Load Factor (-)
a Yearly load increase (%)
b Demand charge increase (%)
ρ Density (kg/m3)

1. FRAME OF REFERENCE: AN AXIOMATIC
FRAMEWORK FOR DESIGN
In this paper we explore a model for design in which

decisions are made according to a set of governing axioms.  We
do this to anchor our view of Decision-Based Design (DBD) in
decision theory.  The notion that design is not simply ad hoc,
but a science of the artificial is presented formally by Simon
(1996).  Our view of DBD has evolved to a state in which a fine
balance exists between the principles of Living Systems Theory
(Miller, 1978) and the notion of Decision Support Problems in
design (Mistree, Smith et al., 1990).

Decision-Based Design is a term coined to emphasize a
different perspective from which to develop methods for design.
The principal role of a designer, in Decision-Based Design
(DBD), is to make decisions.  But while our work thus far has
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provided formalism to DBD, we have yet to include the rigor of
decision theory and the von-Neumann and Morgenstern axioms
in our work.  Towards bringing these axioms to the forefront of
DBD, in this paper we explore expected utility theory (see
Section 1.1) and its application in an example problem.  In
doing so, we we venture away from the ideal assumptions that
designs and designers:
• operate under conditions of complete certainty and
• select and refine designs to meet a common measure of

performance defined in terms of functional
requirements.
We replace these assumptions by answering the questions:

1. How can we represent and handle the uncertainty in a
system?

2. How can designs be refined and selected using expected
utility theory?
 In this paper we have a very narrow focus.  We make the

assumption that uncertainty can be modeled as risk by defining
a priori probability distributions over uncertain events.  Thus,
we answer the first question with a brief description of
uncertainty modeled as risk (Section 1.1) and its incorporation
into a proposed framework for engineering design (Section 2.2).
We then explore in depth the proposed framework for
engineering design in the context of an example problem to
answer the second question (Section 3).  Our intent is not to
categorize the merits of utility theory as an encompassing
method in design; we seek only to evaluate the proposed
framework for engineering design.

In this section we give an introduction to the concepts of
risk and the role of utility theory in engineering design.  Section
2 of this paper is an overview on the concepts of decision and
value analysis wherein the framework for the example problem
is introduced.  In Section 3 we give the logistics of the
framework as it is applied to a case study in electrical power
transmission.  The final section is an overview of the future
work necessary for a complete implementation of the
framework outlined in this paper.  We begin with a description
of risk that addresses, in part, our relaxation of both of the ideal
assumptions above.

1.1. The Concept of Risk
Over 200 years ago Daniel Bernoulli proposed a solution to

a problem of decision making under risk that has since become
known as Bernoulli’s paradox.  Simply stated, the problem
(formulated by Daniel’s cousin Nicholas) is to determine the
amount of money that a person would be willing to play to enter
a game where a fair coin is tossed until on the nth flip it lands
on heads.  The prize for playing is $2n.  The expected monetary
value (EMV) of this game is of course infinite (see Equation 1).
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Contrary to this outcome, very few people are willing to
pay large amounts of money to play this game.  A hypothesized

reason is that people perceive the risk associated with the game
and consequently alter their behavior.  Bernoulli formalized this
discrepancy between the EMV and the behavior of individuals
in terms of utility as the expected utility hypothesis: Individuals
make decisions with respect to investments in order to maximize
expected utility (Bernoulli, 1954). The expected utility
hypothesis is a description of human behavior.  We are
interested in a normative theory, thus the expected utility
hypothesis is applicable in design as von Neumann and
Morgenstern’s expected utility theory, i.e., that designers should
choose a design that maximizes their expected utility.  Note that
the expected utility theories by Bernoulli and von Neumann and
Morgenstern are not equivalent.  The former defines preference
from utility while the latter defines valid utilities from
preference.

Designers are typically taught that design is defining a set
of functional requirements and subsequently providing an
artifact that satisfies those functional requirements (Pahl and
Beitz, 1988; Suh, 1990).  While this is true at a very low level
of abstraction, we must ask ourselves if we design to meet
functional requirements or if we design for some other purpose.
In the context of an enterprise products are introduced or
modified almost exclusively to maintain or improve the
financial position of the firm.  In this context design has very
little to do with functional requirements per se, and instead
involves producing or refining artifacts to make money for the
firm (Goldratt and Cox, 1992).

A ‘design’ therefore has a monetary present value (PV) for
the firm.  It is our contention that this PV is computable for
simple designs, and that this PV should be the measure by
which these designs are evaluated.  By making decisions at the
function level of abstraction, if such a thing can be defined, we
are implicitly assuming that static functional requirements are
the basis for a design that has a positive PV for the firm.

With the relaxation of Assumption 1, that designs and
designers operate under conditions of complete certainty, the
measure of PV is probabilistic.  We need a mechanism by which
decisions on PV account for risk.  This is the expected utility
theorem formulated by von Neumann and Morgenstern (1947).

1.2. State of the Art: The Role of Utility Theory in
Design

Utility theory has been addressed in design during the last
five years by several authors, for example (Otto and Antonsson,
1993; Thurston, Carnahan et al., 1994; Antonsson and Otto,
1995).  These authors have focused almost exclusively on
replacing multiobjective optimization functions in design with
multiattribute utility analysis (MUA) (Keeney and Raiffa, 1993)
or by other methods.  Thurston and Carnahan (1994) focus on
specifying a multiattribute utility function and the conditions
needed to meet the condition that the attributes are Mutually
Utility Independent (MUI).  Otto and Antonsson  (1993)
implement the Method of Imprecision (MoI), constructed from
fuzzy set theory, as an entirely separate method.  The
multiattribute utility function is a fundamentally correct
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extension to traditional optimization provided that the attributes
are MUI, not a trivial condition to meet.  But its use is more a
response to multi-objective optimization in design whereby the
objective function is directly translated to a multiattribute utility
function in response to functional requirements.  This neglects
an important aspect of utility theory: that utility functions are
necessary only in the presence of risk (Park and Sharp-Bette,
1990).

In this paper, we use a utility function defined for the PV of
a design alternative.  Our argument for doing so is based on the
idea that making decisions at the function level of abstraction
requires use of MUA.  The implicit assumption at this level of
abstraction, however, is that satisfaction of the functional
requirements is a necessary condition for a positive PV of an
artifact.  We choose to model the relationship between the
attributes of an artifact and a market demand for that artifact;
something not readily accounted for at the function level of
abstraction.  Of course, if the objectives of the firm are to
provide employment, maintain worker happiness, etc., a
multiattribute utility function is still needed at the value level of
abstraction.  In Figure 1, we show this distinction in design
decision making.

Objective functionLevel of Abstraction

MUAFunction

Value E[u{PV}]

Demand Model

Figure 1: Levels of Abstraction and Their Respective
Objective Functions

At the function level of abstraction in Figure 1, the
objective function must be defined over the attributes, usually
as a multiattribute utility function. Modeling market demand in
terms of the artifact’s attributes leads to the value level of
abstraction, and the needed objective function is a utility for PV.
Missing from this argument is the means by which such a
mapping from the function level of abstraction to the value level
of abstraction is possible.  In the next section, we explain the
underlying decision theory necessary for such a mapping,
including a proposed framework for making decisions under
risk.  We view this a precursor to developing a normative theory
of design.  Implicit in the development of this theory is the
central notion that the principal role of designers in Decision-
Based Design (DBD) is to make decisions (Shupe, 1988;
Mistree, Smith et al., 1990).

2. FUNDAMENTALS OF DECISION AND VALUE
ANALYSIS
Decisions in engineering design fall almost exclusively in

the domain of making choices under conditions of uncertainty
and risk.  In this paper, uncertainty is modeled using
probabilities and values.  Thus, decision making under
uncertainty is modeled as decision making under risk. As a
precursor to decision making under risk, we first review values
(see Section 2.1).  We then review a proposed framework for
engineering design in which designers account for risk through
the use of expected utility theory (Section 2.2).  Making
decisions in this framework requires three things:  (1) options,
(2) expectations, and (3) values.  Options are the elements of
the choice.  A designer chooses an option in the form of a
design alternative.  An expectation comprises the range of
possible outcomes of a decision paired with their probabilities
of occurrence.  Determination of expectations on each option is
the realm of modeling (Hazelrigg, 1996).

2.1. Values
Values are used in decision making to rank order

alternatives.  Similar to numerical optimization, we make use of
a numerical function to rank order for two reasons:  (1) it is too
cumbersome to make an ad hoc assessment of the comparative
merits of all design alternatives, and (2) the comparison is
generally too complex to make accurately and consistently
without the use of a mathematical function.  The mathematical
requirements for a value function that rank orders all
alternatives are stringent (Hazelrigg, 1996).

Von-Neumann and Morgenstern (vN-M) have formalized
the mathematical requirements for a value function in their
axiomatic treatment of utility (von Neumann and Morgenstern,
1947).  What they showed is the following (Luce and Raiffa,
1957):

If a person is able to express preferences between every
pair of gambles, where gambles are taken over some basic
set of alternatives, then one can introduce utility
associations to the basic alternatives in such a manner that,
if the person is guided solely by the utility expected value,
he/she is acting in accord with his/her true tastes –
provided only that there is an element of consistency in
his/her tastes1.

In the context of utility theory, a von Neumann-
Morgenstern lottery is shown in Figure 2.  In this sense, the
options are defined as A1, A2, …, Ar where without loss of
generality we can assume that A1 f A2 f…f Ar.  The circle
represents a gamble, where A1 occurs with probability p1 and Ar

occurs with probability 1- p1.

                                                          
1 “element of consistency” - This statement is meant to convey that preference
and indifference rankings must be transitive.
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Outcome:
status quo

More desired
outcome, A1

Less desired
outcome, Ar

Decision to enter
the lottery or
remain at the
status quo

Figure 2: A von Neumann-Morgenstern Lottery

What do the von Neumann-Morgenstern axioms mean in
engineering design?  We refer to the following interpretation of
the axioms (Luce and Raiffa, 1957):

Suppose that one has to make a choice between a pair of
lotteries that are each composed of complicated
alternatives.  Because of their complexity it may be
extremely difficult to decide which one is preferable [and
this is usually the case in engineering design].  A natural
procedure, then, is to analyze each lottery by decomposing
it into simpler alternatives, to make decisions as to
preference among these alternatives, and to agree upon
some consistency rules that relate the simpler decisions to
the more complicated ones.  In this way, a consistent
pattern is imposed upon the choices between complicated
alternatives.

This is fundamentally the notion of utility within
engineering design, and the consistency rules are the vN-M
axioms which are as follows (Luce and Raiffa, 1957; Hazelrigg,
1996):
1. All outcomes of a vN-M lottery (options) can be ordered in

terms of the decision maker’s preferences, and that
ordering is transitive.

2. Any compound lottery, that is, any lottery that has an
outcome another lottery, can be reduced to a simple lottery
that has among its outcomes all the outcomes of the
compound lottery with their associated probabilities of
occurrence.

3. If the outcomes of a lottery, A1, A2, ... , Ar are ordered from
most desired to least desired (respectively), then there

exists a number u, such that one is indifferent between an
outcome Ai, and [uiA1, (1-ui)Ar].

4. For any lottery such as that given in axiom 3, with ui

specified, there exists an outcome [uiA1, (1-ui)Ar] that can
be substituted for Ai, and the preferences of the decision
maker will remain unchanged.

5. The decision maker’s preferences and indifferences among
lotteries are transitive.

6. Given two lotteries, each with only two outcomes, and
which differ only in terms of the probabilities of the
outcomes, the lottery in which the probability of the more
desired outcome is larger is the preferred lottery.

These six axioms are the basis for decisions in utility theory.
The formal expected utility theorem based on these axioms and
the notation L = (p1A1, ... , prAr) and L′ = (p1′A1, ... , pr′Ar) is as
follows (Luce and Raiffa, 1957):

If the preference or indifference relation (f or ~) satisfies
assumptions 1 through 6, there are numbers ui associated
with the basic prizes Ai such that for two lotteries L and L′
the magnitudes of the expected values (p1u1 + p2u2 + … +
prur) and (p1′u1 + p2′u2 + … + pr′ur) reflect the preferences
between the lotteries.

How can expected utility theory be implemented in
engineering design?  In the next section we review a proposed
framework for engineering design in which designers make
decisions based on the expected utility theorem.

2.2. A Proposed Framework for Engineering Design
The six vN-M axioms and their associated concepts for

utility have been expressed in a framework for systems design
(Hazelrigg, 1996).  The most important aspect of this
framework is the use of expected utility theory (derived from the
vN-M axioms) to refine and select designs.  The framework (see
Figure 3) begins with an option set shown as a darkened box,
s(m), consisting of all the configurations.  Each configuration
mi (the box above the s(m) box in Figure 3) is represented by a
parametric design vector x shown to the right of configuration
mi in Figure 3.

The vector of design variables is a designer’s
representation of the system.  It is not useful for describing to a
client the attributes of a product.  For example, in designing a
car, a system variable, xi, may be the compression ratio in the

s(m)

Parametric Design
 Vector x

System
Attributes a

y

Demand
q(ay,p,t)

Exogenous Variables
y

Manufacturing Costs
cm(t, y, x)

Other Costs
Sci(t ,y, x)

Expected Utility
E{u(NPV)}

Choose p(t)
to max E{u(NPV)}

E{u}max | p(t)
Choose x

to max E{u}

p(t)

E{u}max | p(t), x

Revenue (t)

Cost (t)

Configuration mi

-
Start

  

Figure 3: A Framework for Decision-Based Design.  Adapted from (Hazelrigg, 1996)
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engine.  Consumers, however, are usually more concerned with
the attributes of a particular system configuration.  Thus, we
change the design variables into a vector of system attributes, a,
that are recognizable to consumers (shown as the box labeled
System Attributes in Figure 3).  The design variables and the
attributes in general will not have a 1 to 1 correspondence.

To represent the uncertainty in x and the noise variables in
the system we introduce a vector of exogenous variables, y.
Exogenous variables affect a which are thus characterized as ay

(see Figure 3), that is the vector a subject to the vector of
exogenous variables, y.

After the configuration is represented in terms of attributes
a valid input to a demand function exists, which in turn gives
the revenue of a particular configuration.  This demand function
is the market response to a particular configuration and ideally
allows designers to find a revenue based on particular design
variables.  In the demand function, q(ay, p, t), p and t are price
and time respectively (alternatively we could have expressed
demand as q(ay, p(t))).  Here we see a deviation from the way in
which we typically evaluate a design.  Instead of measuring the
design on some compound scale, we are concerned primarily
with the revenue of the system, which is a function of the price,
time (for the time-value of money) and the attributes.  This
addition is the revenue of configuration mi as a function of time
(shown as the box Revenue in Figure 3).

For the purposes of finding the present value (PV) of a
configuration and subsequently an expected utility, both
revenue and cost are needed.  In terms of this design framework
in Figure 3 the PV of a design option with continuous
compounding is given by

∫
∞

− −=
0

))()((Re dttCosttvePV rt (2)

where r is the discount rate (Minimum Attractive Rate of
Return) and t is time.  Note that the costs associated with
configuration mi have not been explicitly accounted for.  These
costs consist of the normal entities we would associate with
design and manufacture of a product including labor, machines,
materials, disposal, etc.  In addition life cycle issues are
associated as a cost with configuration mi.  Costs are subject to
the same uncertainty as the configuration itself.

Calculation of demand in Figure 3 requires knowledge of
the elasticity of demand and therefore price as a function of
time, p(t).  Using the designer’s utility for money, we can
perform an optimization to maximize utility (derived from PV)
with respect to p(t), a variable under our control.

This simple maximization is a subset of the more general
maximization of expected utility.  By changing the design
vector x in Figure 3 the design is optimized with respect to
expected utility.  Note that the chain of computations required
here is extensive; it is unlikely that the average workstation has
the capability to solve these optimizations in a reasonable
amount of time.  However, as computational power continues to
increase the arguments for using this proposed framework

become more compelling.  In the next section this framework is
applied to a simple example problem in designing a conductor
for electrical power transmission.

3. IMPLEMENTING THE PROPOSED FRAMEWORK IN
A DESIGN EXAMPLE:  POWER TRANSMISSION
In this section we implement the proposed framework for

engineering design outlined in Section 2.2 and shown in Figure
3 as an example problem in power transmission conductor
selection.  In Section 3.1 we give an overview of the
mathematical modeling for the example problem.  The
computer instantiation of this modeling is given in Section 3.2,
and in Section 3.3 we present the results of implementing the
proposed framework for engineering design in our power
transmission problem.  The designer’s utility function is
determined from a procedure outlined in Keeney and Raiffa
(1993).

3.1. Introduction and Modeling of Power
Transmission

A variety of factors are important in the design of a
transmission line including reliability, conductor size, material
and configuration, corona effects, radio and television
interference, audible noise, electrostatic and electromagnetic
effects, etc. (Crawford, Huntzinger et al., 1978).  At least some
of these factors have opposing impact on a design.  In this
example, we consider the design of the towers and the line
configuration on those towers as separate from the design of the
conductor.  The setting for the problem is thus stated as:

Find a suitable conductor material and
configuration to tie a main power grid @69kV with
a small town approximately 20km away.

A schematic for the transmission line is shown in Figure 4.

20km

power grid
small town

Figure 4: Power Line to Connect Small Town and Power
Grid

From this basic problem statement the option set, s(m) in
Figure 3 is specified as the set of conductors defined by a single
stranded wire (no bundled conductors) made of either copper or
aluminum (see Figure 5).  In this case, the wire is defined
entirely by a specification of the material type and the
conductor diameter, d.  Material type is a discrete variable
while the conductor diameter is a continuous variable.  Thus a
particular configuration for the wire is specified as {(aluminum,
copper), d} where we specify either aluminum or copper and a
particular value for the diameter.  Relative to Figure 3 this
information, material and diameter, represent a design
configuration mi, shown for a particularly diameter in Figure 5.
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We next model the exogenous variables in the system
defining the vector y in Figure 5.  Because our intent here is to
demonstrate application of this framework, modeling the
exogenous variables is simplified to include only the length of
the cable (L), the density of the cable material (ρ), the minimum
attractive rate of return (i), the cable resistivity at 20C (R), and
the voltage of the circuit (V).

The revenue and demand models are developed
simultaneously, noting that the power company is a monopoly
in specifying demand (this eliminates gaming from our demand
function).  The revenue earned for the power company is simply
the power transmitted multiplied by the demand charge adjusted
for projected yearly increases in load (energy use increase by
the town) and a demand charge escalation factor (increase in
how much the power company charges the consumers).  Over a
period of N years (each year n), this revenue must be discounted
to account for the time value of money yielding the following
simplified expression (we assume that all cash flows are at year
end):

( ) ( )[ ]
( )

( )T
i

baDVINNN

n
n

n

cp ⋅
+

+⋅+⋅⋅⋅⋅⋅⋅
∑

=

−−

1

123
0

1

1110
 (3)

where Np is the number of phase carriers (3), Nc  is the number
of circuits (1), I0 is the maximum load on the cable during the
first year (A), V is the operating line voltage (V), D is the

demand charge per year 






⋅ hkW

$
, a is the increase in load per

year (%),  b is the demand charge escalation factor per year
(%), and T is the number of years the maximum current I0

would need to flow in order to produce the same total yearly
energy as the actual variable load current.  T is calculated using
the approximation (Anders, 1997):

( )27.03.08760 LFLFhT ⋅+⋅⋅=  (4)

where LF is the load factor for the circuit defined to be

annumper  load  theof  valuemaximum

annumper  load  theof  valueaverage the
 (Freeman, 1968).  We

assume that the maximum load and thus I0 is governed by the
conductor cross sectional area in the limiting case and by the
load demand otherwise.  Demand is given as:
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where I0stat is 350A (~70MW) and n and a are as defined.  The
maximum current I0 as a function of d for aluminum is I0(d) =
36500d – 160 and for copper is I0(d) = 40300d – 50 with
allowable current densities of 0.64A/m2.

The cost model comprises all costing elements in Figure 3
by allowing a designer to choose a fixed cost and calculating an
operating cost based on Joule losses only (a maintenance model
is not included here for simplicity).  Total cost is thus expressed
as CT= CI + CL where CT is total cost, CI is cost of the
installed length of cable ($), and CL are the operating losses
over the total cable life expressed in time 0 dollars (see Figure
5).  Note that maximization of designer utility with respect to
demand is not included in this model.  Thus, p(t) is shown as
greyed in Figure 5.  Fixed costs of installation are taken as a
designer input, while CL is calculated from the Joule losses and
foregone revenue (Joule losses that could have been sold to
consumers) as (Anders, 1997):
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where c is the increase in the cost of energy per year, P is the

cost of energy for the power company ( ) 3
hkW

$ 10−
⋅ ⋅ , and all

other variables are as previously defined.  The installation cost
is a sum of the fixed costs of installation and the material costs
of the cable:

ρ⋅+=
kg

costs material
 cost  fixedCI (7)

{(Aluminum, Copper), d}

I0(n) (Equation 5)
Ampacity

(I0), Strength

y = {L, ρ, i, R, V}

Expected Utility
E{u(PV)}

Choose p(t)
to max E{u(NPV)}

E{u}max | p(t)
Choose x

to max E{u}

p(t)

E{u}max | p(t), x

Revenue (n)

Cost (n)

-

Start

{Aluminum, d = 0.05m} x = {Aluminum, di}

CL (Equation 6)CI (Equation 7)

PV (Equation 2)

  

Figure 5: Framework for Power Problem in the Proposed Framework. Adapted from (Hazelrigg, 1996)
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We now have models for calculating, based on a conductor
configuration, the revenues and costs.  What remains to be
addressed is how we deal with uncertainty in these parameters.

3.2. Uncertainty Resolution and Computer
Implementation

In applying the uncertainty and utility theory concepts
presented in this paper to a design problem we quickly move
from a model of mathematical elegance to a model with
mathematical difficulty.  In particular, the lack of supporting
tools for the implementing the framework in Figure 3 makes
such an effort daunting for all but the most simple of design
problems.  To solve the transmission problem (and for
educational purposes) a Java program is written to implement
Monte Carlo sampling for handling uncertainties in the system
variables (modeled using probabilities) and time based
simulation for handling computation of the revenues and costs
of a conductor configuration.

In specifying the variables for the models presented in
Section 3.1, we should be aware of our relaxing the assumption
of certainty in Section 1.  We use a heuristic procedure for
choosing a triangular distribution to model the uncertainty on
the system variables as risk (Park and Sharp-Bette, 1990).
Designers are asked to input variables to the program in the
form of minimum (min), most likely (M0) and maximum values
(max) (see  Figure 6) (Hillier, 1971).  From these values simple

triangular distributions are constructed (see Figure 7)2.  The
density function (Equation 8) and cumulative distribution
(Equation 9) are (Park and Sharp-Bette, 1990)
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Similar input screens to that in  Figure 6 are used for the cost
and revenue models, with all uncertain variables having
triangular distributions such as that in Figure 7.  Online help is
available to guide designers through the program.

The means by which an expected utility in Figure 5 is
calculated from the input values is shown as a flowchart for the
computational portion of the program in Figure 8. The main
loop for the program runs on the diameter of the conductor.  For
each diameter and material xi  in Figure 5 (discrete step sizes
are used for purposes of Monte Carlo sampling), a Monte Carlo
simulation is run and for each single sample from the
constructed triangular distributions of the exogenous variables,
cost model variables, and revenue model variables (e.g., i, a, b,
c, LF, V, P, D, etc.) in the Monte Carlo simulation, a time
simulation is run to calculate the PV of a design option for the
particular exogenous, cost and revenue model parameters
sampled.  The output of the time simulation is a PV for that
particular sample of the cumulative distributions for all
variables.  This PV is converted to a utility by means of a user
specified utility function.  Since each output of a Monte Carlo
simulation has probability 1/maximum number of trials, we can
simply sum up these utilities calculated for each PV of the

                                                          
2 Based on a specified minimum, most likely and maximum values the
maximum entropy distribution, that is the distribution that has the most
uncertainty is a Beta distribution (Kapur and Kesavan, 1992).  We use
triangular distributions for computational simplicity.

Figure 6: Exogenous Variables Input Screen

f(x)

min maxM0

2/(max-min)

Figure 7: Triangular Distribution (Park and Sharp-
Bette, 1990)
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Monte Carlo run and mulitply by 1/maximum number of trials
to get an expected utility.  Relative to Figure 5 this amounts to
finding a cost and revenue for every sample of the distributions
up to maximum number of trials (Monte Carlo), calculating a
PV for each trial (a time based simulation), a utility for each PV
of the time simulation, and then calculating an expected utility
based on the distribution of utilities obtained for a particular
diameter and material.  At this point, the program stores the
data, increments d, and performs the whole scenario again.
When d reaches its limit for the investigation, E[u] vs. d  are
plotted and the user reads off the highest E[u] for a particular
diameter.

This program differs from the proposed framework in
Figure 3 in two ways.  First the numerical maximization of
expected utility is not done by the program but is instead
performed by the designer by visually reading a maximum from
a plot of E[u] vs. d  or from the output data itself.  The
implication here is that we must search the entire design space
and select the design with the highest expected utility.  Because
we have only a single design parameter for each run of the
simulation (material type is specified so we vary the diameter
for that material) we plot the expected utility of a conductor vs.
diameter (for a given material) and select the greatest value.

Second the demand charge, D (p(t) in Figure 5), is not
optimized within the program but is again user specified.  The
implication here is that we could in fact earn more money for
each particular configuration.  This affects only the absolute
values of all expected utilities, not their relative values, and
therefore not the conductor configuration that we select.
Calculation of utilities is done prior to the study by the
procedure outlined in (Keeney and Raiffa, 1993).

3.3.  Results for Comparison of a Copper and
Aluminum Conductor

To exemplify the use of this program and the proposed
framework the values of all required inputs for selecting a
design from among a copper and aluminum conductor are
shown in Table 1.  The utility function used for both the
aluminum and copper conductors is u(PV) = 1 – e-1e-7 PV.  For
each conductor material we run the program with different
material specific values and save the expected utility for that
conductor material.  Thus we optimize diameter for each
material type and then select the best material and conductor
diameter.  In Table 1, the only differences chosen for the copper
and aluminum conductors are the material specific properties of
density, the cost per unit mass, and the resistivity.  The other

Start

d = minimum user
input diameter

j += 1 to Maximum Trials

n += 1 to N

Sample all variables
from their triangular

distributions

Calculate Revenue

Calculate Costs

PV += (revenue - cost)/(1+ i)n

utility += PV

Calculate E[u] = utility*1/Maximum Trials
Store d, E[u]
Increment d

Plot E[u] vs. d

End loop
Exhaustively investigate all
diameters

Monte Carlo model

Simulate cable over N years

Notes:
d is diameter
j is the Monte Carlo index
n is the year index
x+= is the same as x=x+
PV is present value
E[u] is expected utility

Figure 8: Flowchart for Calculating Expected Utility
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values in Table 1 are chosen to reflect that this is a small town,
and the power company behaves as most utilities in the United
States do.  The values chosen in Table 1 are illustrative of those
a designer might give, but there is an important distinction here.
We are relatively unconcerned with the accuracy of this model
where accuracy is defined as the ability of the model to
represent the real world on an absolute scale.  Because of the
modeling simplifications chosen and the uncertainty on the
input variables, the output PV will not accurately reflect the true
system (unless by chance).  We are concerned with the model’s
resolution, where resolution is defined as the model’s capability
to distinguish between different designs on a relative scale
(Hazelrigg, 1996).  Our only objective is to have the model
support us in deciding between various conductor
configurations; we are not trying to produce an accurate
forecast of the system performance.

The results of a particular configuration (copper or
aluminum) input into the program are displayed graphically for
the user.  A plot of the expected utility vs. d for the copper
values in Table 1 is shown in Figure 9.  The expected utility in
this case has a maximum value for a conductor diameter at
around 0.12m although any value up to and including 0.2m is
an acceptable diameter based on this model.  What happens in
the modeling is this: for the smaller cable diameters, the power
transmitted is limited by the allowable temperature rise in the
cable (in this case approximated with the simple linear
relationship on current given in Section 3.3).  After the cable
diameter has the ampacity to carry the desired load and its

anticipated growth, the expected PV of the cable is relatively
constant.  Because we have not included any installation or
maintenance model this makes sense.  With the inclusion of
these models we expect the cable to be more reliable at higher
diameters but more difficult to install and maintain.  In Figure 9
the slight decrease in expected utility of cable diameters greater
than 0.12m is due to the increased material cost of the cable
itself.
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Figure 9: Expected Utility for Copper Conductor

In Figure 10, the expected utility of cables vs. d is shown
for aluminum conductors.  The aluminum conductor, due to its
decreased conductivity, has the highest expected utility for a
diameter of 0.0205m.

To exemplify the calculation of expected utility, the

Table 1: Illustrative Values for Copper and Aluminum

Name Distribution (copper) Distribution (aluminum)
Reference Symbol Min Most Likely Max Min Most

Likely
Max

Number of years N 40.0 40.0
Length of Cable L (m) 19500.0 20000.0 20500.0 19500.0 20000.0 20500.0

Resistivity R (Ω.m) 1.69e-8 1.7e-8 1.71e-8 2.98e-8 3.0e-8 3.02e-8
T [by way of LF] T (h/yr) 8550.0 8600.0 8750.0 8550.0 8600.0 8750.0

Interest Rate i (%) 5.0 10.0 15.0 5.0 10.0 15.0
Cost of Energy P ($/kWh) 0.045 0.05 0.055 0.045 0.05 0.055
Demand Charge D ($/kWh) 0.075 0.08 0.085 0.075 0.08 0.085

Yearly increase in Cost c (%) 1.0 1.5 2 1.0 1.5 2
Yearly load increase a (%) 5.0 10.0 15.0 5.0 10.0 15.0

Demand charge increase b (%) 1.0 3.0 5.0 1.0 3.0 5.0
Fixed cost - ($) 500000.0 1000000.0 2000000.0 500000.0 1000000.0 2000000.0

material cost ($/kg) 2.92 3.0 3.15 2.40 2.60 2.80
Density ρ (kg/m3) 8850.0 8900.0 8950.0 2650.0 2700.0 2750.0
Voltage V (V) 66000.0 69000.0 73000.0 66000.0 69000.0 73000.0
I0stat (A) 350.0 350.0

Diameter Steps (-) 50 50
Monte Carlo Trials (-) 5000 5000
Minimum Diameter (m) 0.005 0.005
Maximum Diameter (m) 0.020 0.030
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distribution of PV for the aluminum conductor at it highest
expected utility (d = 0.0205m) is shown in Figure 11. A utility
is calculated for each PV in this distribution, giving a
distribution on utility. Expected utility is then calculated from
the utility distribution.  Note the large range of PV, from just
over $7,000,000 to $2,500,000.  These values are absolute
numbers with very little meaning except when compared to the
PV distribution at d = 0.0205 ± ε where ε is the step size for
diameter used in running the simulation.
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Figure 10: Expected Utility for Aluminum Conductor

2e63e64e65e66e67e6

PV ($)

Relative Frequency

Figure 11: Distribution of PV for Aluminum Conductor d =
0.0205m

Comparing Figure 9 and Figure 10, we note that at their
respective maximum expected utility’s, it is difficult to
distinguish between the copper and aluminum conductors based
on this model.  For the aluminum conductor the maximum
expected utility is 0.338 while it is 0.334 for the copper
conductor.  These values are based on a distribution of PV such
as that in Figure 11 composed of 5,000 values.  We can
construct a 95% paired t-test for the utilities based on their PV
distributions with equal variances.  This calculation (see Box 1)
indicates that the means are indeed different and we should
select the aluminum conductor with a diameter of
approximately 0.0205m.

With the addition of a maintenance and cost of installation
model that accounts for the material type and d, we expect the
difference in the maximum expected utilities for the two

materials to increase.  The present model, considering only
Joule losses, revenues, and conductor material cost, performs as
expected producing present values that are nearly equivalent
when the conductor can handle the load and the anticipated load
growth.

0.9998,025.0
0004.0064.0

t
xx

t ca ≥
−

=   

96.1125.3
)2.0(064.0

334.0338.0 >=−
 where cx is the mean of

the copper utility distribution, ax is the mean of the aluminum

distribution, the sample size is 5,000 (each) and the standard
deviation of the utility distribution is 0.064

Box 1: Significance Test for PVs

4. CLOSURE
In this paper we show that the proposed framework in

Figure 3 can be used in engineering design.  This is an
important first step in establishing a ‘science’ of design because
expected utility theory, implemented in the framework, is
anchored firmly in the von Neumann and Morgenstern axioms
that define valid utility functions such as that determined for
gambles among PV of conductors (Luce and Raiffa, 1957).

In this paper we have a very narrow focus.  We answer our
first research question (How can we represent and handle the
uncertainty in a system?) with a brief description of risk
(Section 1.1) and its incorporation into a framework for
engineering design (Section 2.2).  We then explore in depth that
framework in the context of an example problem to answer our
second question (How can designs be refined and selected
using expected utility theory?).  Our intent in this paper is not to
categorize the merits of utility theory as an encompassing
method in design; we seek only to evaluate the proposed
framework for engineering design.

Having shown that the framework can indeed be used for
an actual design problem we turn to some of the more daunting
problems facing the designer who ventures into the arena of
expected utility theory.  In the context of the framework we note
almost immediately that all design problems cannot be reduced
to a single decision, and that most design decisions are non-
simultaneous (Krishnan, Eppinger et al., 1997; Smith and
Eppinger, 1997; Smith and Eppinger, 1997). This implies time
dependence for most design decisions, and the only logical
model for non-simultaneous decisions with such dependence is
satisficing3 (Olander, 1975; Simon, 1996).  The implications for
this notion have not been thoroughly investigated as they apply
to expected utility theory in design.

Additional problems with the framework are issues of size
and complexity.  Analysis of revenues and costs can require

                                                          
3 Satisficing - not the “best” but “good enough” (use of this term, in the
context of design, is attributed to Simon.)
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large, computationally intensive codes.  These codes may
require hours or even days to run.  The present framework
represents an idealized view of implementing utility theory
when computations take only a small amount of time (<1s).
Areas of research involving meta-modeling are directly
applicable to the solution of this computational difficulty (Chen,
Allen et al., 1996; Simpson, Peplinski et al., 1997).

The measuring of a demand function within the framework
is simple for the case study investigated (monopoly).  With
increasing numbers of competitors, however, the measure of a
demand function places us firmly in the realm of game theory.
The demand for a product is developed only in response to
anticipated plays by competitors in our market of competition.
Neglecting this notion will inevitably lead to serious errors
since the demand function serves as a surrogate to a multi-
objective optimization function.  This represents perhaps the
most burdensome of the problems in the framework, for
introducing gaming is a monumental task.  With its introduction
and the inclusion of the issues on non-simultaneity, size, and
complexity the framework will form the basis of a normative
design theory based on a fundamental axiomatic foundation.
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