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ABSTRACT Street light are among the most common infrastructure in cities. Street lights and sensors can
be combined to generate an interface of data collection. The analysis of massive data serves as an integral
element of a smart city. This paper proposes a highly efficient system for the configuration, deployment, and
management of smart street lights. The features of fast deployment and high scalability of the container-based
system management result in virtual deployment. Additionally, for database design, NoSQL and in-memory
databases are integrated to realize flexible data management. In terms of data transmission, this paper designs
an asymmetric key and an SSH encrypted tunnel. Moreover, when all the services are connected, it conducts
legitimacy validation via a token. Therefore, this system can help meet the demands for data throughput, low-
latency, configuration, and realization of a smart city. It boasts high efficiency and security. Besides, it offers
a flexible data storage and management service to facilitate the massive data processing of a smart city.
With respect to experiments, this paper designs a street lighting simulation system with edge computing
devices (consisting of a micro-controller, a sensor, and an IP camera) and a street lighting function. The
system collects real-time sensed environmental data, enables live streaming of images, and offers an API for
historical data query. This paper utilizes container-based virtualization to deploy all edge computing devices
on the server and validates the feasibility of simultaneous operation of multiple container-based services on
edge computing devices. This system has high commercial value.

INDEX TERMS Street light management system, containerization, live streaming, SSH tunnel.

I. INTRODUCTION
Currently, over 50% of the world’s population resides in
cities [1]–[3]. On average, one person connects over six smart
devices to the Internet [4]. In other words, billions of devices
and systems are deployed in the urban infrastructure, from
end-user equipment to urban infrastructure systems, such as
smart street lighting, road management, pedestrian manage-
ment, noise/air quality monitoring, waste management, and
smart medical systems, forming a huge network ecosystem
where all things are connected. Consequently, tremendous
amounts of management data are generated for the security of
urban residents, management of efficiency, productivity, and
quality of life, and infotainment applications and services.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mu-Yen Chen .

A smart city employs new computing technologies and
communication resources to integrate, manage, and analyze
tremendous amounts of data and achieve mutual benefits
among urban applications, including: smart economy, smart
governance, smart citizens, smart mobile, smart environment,
and smart life [5]. In line with the definition of a smart city
[6], elements of a smart city will become increasingly diversi-
fied along with the advances of science and technology. From
the perspective of data management, a smart city integrates
data analysis and processing with data security and privacy
measures, and encourages application innovation to raise the
overall quality of life of its citizens. A unified data manage-
ment framework is vital for a smart city and its applications
[7]. For example, street lighting and air qualitymonitoring are
integrated. Air quality sensors are deployed on street lights to
continuously and intensively monitor the air quality of urban
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areas. Data on atmospheric composition and air quality are
collected everywhere at any time. Such data are analyzed and
reported to local environmental protection departments for
effective inspection and tracking. Thus, the overall quality
of urban life can be improved. Characteristics of application
development and examples of smart cities in the world are
summarized in [8]. Souri et al. [74] proposed a system-
atic analysis of communication strategies for the Internet of
Things. The purpose is to enable the device to connect and
respond more quickly and flexibly. In analysis, there are four
main directions: device-to-device, device-to-cloud, device-
to-gateway and device-to-application. And analyze the exist-
ing papers of the Internet of Things and divide the technology
into five categories including monitoring-based communica-
tions, routing-based communications, health-based commu-
nication, intrusion-based communication and resource-based
communication. For resource management, Arani et al. [77]
put forward a complete discussion of resource management
on fog computing. Due to the limitations, heterogeneity
and dynamics of resources on IoT devices, and the unpre-
dictability of the fog environment, resource management is
one of the challenging topics. Reference [77] divides the
resource management methods into six categories including
application placement, resource scheduling, task offloading,
load balancing, resource allocation, and resource provision-
ing. This provides us with a good evaluation index and test
method. In addition, Petritoli et al. [75] proposed a case
comparison of the energy performance of smart lighting in
smart cities. According to the Smart Street pilot system in
Rome and the adaptive configuration of traffic flow to achieve
the best energy efficiency. Mohandas et al. [76] further put
forward the use of artificial neural network algorithms to
effectively adjust the lighting system. Reference [76] used the
lighting sensor, motion sensor, PIR sensor, artificial neural
network and fuzzy logic controller into a five-level config-
uration scheme, ultimately reducing unnecessary utilization
by 34% and reducing power consumption 13.5%. Therefore,
the intelligent adjustment of power consumption is one of
the important issues on the street light system. Our work
focuses on container-based virtualization technology Docker
to provide a powerful and highly scalable solution to deploy
cloud and edge services. Our design scheme protects the
communication between the edge and the cloud, including
token verification and SSH-based encryption (with public key
authentication). The system proposed in this paper is modu-
lar, scalable, easy to deploy, and security-oriented. In addi-
tion, themarket forecast report of the Northeast Group reveals
that more and more street lighting projects are connected [8].
Communication component suppliers and three of the four
major street light suppliers in the world are no longer just
communication module and light manufacturers. Therefore,
smart street lights are regarded as a part of the concept of a
smart city.

Generally, a street lighting management system is com-
posed of three main parts: smart street lights, network
infrastructure and management, and the control system [9].

This paper focuses on the following three parts: real-time
lighting control is realized by manual setting or scheduling;
real-time information, including the status of the lighting
system, sensed environmental information, streaming of real-
time images of the IP camera, is provided; and an API for his-
torical data query is provided (including video storage). The
system architecture proposed by this paper is mainly made up
of a management platform, edge service orchestrators, and
a web-based user interface. It is highly scalable, security-
and privacy-oriented, and user-friendly. Along with the rapid
development of smart street lights, the management sys-
tem requires ever more computing, networking, and storage
resources to simultaneously handle the many requests issued
by street lights. Therefore, it is necessary to build a highly
scalable system featuring easy migration, rapid deployment,
and high resource utilization. This paper took advantage
of container-based virtual deployment technology to realize
rapid deployment and high scalability. Besides, with respect
to database design, it utilized NoSQL and an in-memory
database to achieve flexible data management. In accordance
with the latest OWASP IoT Top 10 [10], more attention
has been paid to insecure ecosystem interface and insecure
data transmission (i.e., without encryption or access control).
A security lapse not only results in wrong applications and
services, but also unexpectedly becomes an intermediary for
cyberattacks. For instance, in the 2016 Dyn cyberattack [11],
a series of distributed denial-of-service (DDoS) attacks took
advantage of substantial IoT devices infected with the Mirai
malware. [12]. In line with the General Data Protection Reg-
ulation (GDPR), privacy management must be integrated into
the solution for achieving the development of smart cities
in Europe [13]. Therefore, when establishing a management
system, one needs to consider how to protect and validate
data transmission. This paper designed an asymmetric key
and an SSH encrypted tunnel for data transmission. More-
over, it conducted legitimacy validation via a token when
all services were connected. The edge processing function
may be deployed on edge nodes with heterogeneous functions
[14]. Therefore, this paper designed a program that facilitates
the user’s deployment of edge nodes, which was a great
challenge. Furthermore, many aspects need to be considered
in designing a practical remote observation and control sys-
tem, such as a user-friendly interface, real-time feedback on
status, and multi-user accessibility [15]. Another challenge
lies in the diversity and number of streaming video devices.
Hence, an effective edge node deployment mechanism and a
user-friendly interface are essential for achieving an effective
management system.

The rest of this paper is organized as follows. Section 2 dis-
cusses related works and introduces background concepts and
technologies. Section 3 describes the entire system architec-
ture and provides the implementation details of the cloud
management platform, the edge node services, and the web-
based user interface. Section 4 presents the results of the
experiment and its verification. Finally, we conclude this
paper.
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FIGURE 1. Architecture comparison of virtual machines and containers.

II. RELATED WORKS
A. SMART STREET LIGHT
Smart street light is one of the most significant applications
in a smart city. Automatic switch of street lights for this
pervasive infrastructure, but also take into account the con-
nected urban digital platform. Álvarez et al. [16] proposed
a taxonomy of use cases based on sensing technologies,
databases, and actuation purposes. However, the identifica-
tion of new creative cases requires the combination of mul-
tiple data streams. The first challenge was to enable street
lights to collect data via different types of sensors and provide
such data to a public digital platform. Most efforts spent on
the building of a smart street lighting management system
in recent years centered on the smart switch of LED street
lights. Reference [17] integrated street lighting control with
the current SmartGrid products of Portugal. In the technical
abstraction layer, the lighting communication table was used
to reduce the changes in circuit via a Web-based central man-
agement system. Daely et al. [18] put forward an architecture
consisting of ZigBee-based wireless communication, a turn-
able correlated color temperature (CCT)-based LED array,
and a central web server. This server can receive weather
information and real-time sensed data from each lamp pole.
In addition, this system switches the CCT to 5,000K or
3,000K based on the weather conditions from the weather
API. In case of a traffic accident caused by low visibility due
to fog, the system will recommend the use of a weak CCT
light to reduce the possibility of such situation. Jia et al. [19]
proposed a management platform based on a fog computing
server with improved real-time response. Street lights peri-
odically send their status to the server through NB-IoT net-
work technology. However, the system could not guarantee
100% reliability. Its simulation results demonstrated that the
average periodic maintenance time and the abnormal state of
the server was approximately 20 minutes. Escrivá et al. [20]

put forward a prototype architecture based on IoT devices and
cloud computing. Themodules included: a dedicated wireless
lighting controller, one IoT sensor gateway set installed on
LED lights, a smart collector, and a central management sys-
tem. Through Apache Kafka, Apache Flink, and MongoDB,
the smart collector analyzed and stored the data collected
from the sensors. The smart central management system pro-
vides a Web interface that uses the real-time REST Web ser-
vice and the IoT gateway to control and monitor street lights,
including the status and location of lights. The difference
between this paper and the existing researches lies in the fact
that the former attaches more importance to scalable cloud
and edge deployment, security against cyberattacks, and user-
friendly Web-based interface.

B. VIRTUALIZATION TECHNOLOGY-CONTAINERS
AND VIRTUAL MACHINES
Virtualization simplifies the replication and scaling of appli-
cations [21]. There are two main virtualization technologies:
hardware-level virtualization and operating system-level
virtualization. The container, using operating system-level
virtualization, executes processes in the operating system.
It uses namespace [21] to handle the resource isolation of
each process (e.g. process ID, network interface, and mount
point) and manage CGroups [23]. A virtual machine (VM) is
independent of the operating system; it simulates VM man-
agement processes (e.g. VMware ESXi [24] and KVM
[25]) on virtual hardware (e.g. CPU, memory, and network
devices). Containers and virtual machines are compared in
terms of architecture in Figure 1.

Docker [26] introduced an advanced API. It used a lib
container-based [27] solution to create a container with Linux
kernel virtualization. Its first version was released as an
open source in March 2013. Since then, many applications
have been shifted from VMs to containers. According to
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TABLE 1. Comparison of docker and virtual machines. [73].

Docker’s blog [28] in March 2018, 3.5 million Dockerized
applications and 37 billion containers have been downloaded.
The main differences between Docker and VM are shown
in Table 1. Previous studies [21], [29], [30] explored the
relationship between containers and VMs. Sharma et al. [21]
compared the performance of intensive workload between
KVM and LXC [31] (another OS-level virtualization relying
on the Linux kernel). Their results displayed that the per-
formance overhead of KVM is negligible in CPU, memory,
and network-intensive workload, but high in I/O-intensive
applications because I/O is based on the hypervisor. Addi-
tionally, an interesting architecture different from a VM was
considered; it enables the nesting of a container on a VM for
the isolation of applications. Similar to a VM, it restricts
soft container resources to slightly improve performance.
Zhang et al. [29] compared the convenience of deployment,
initiation efficiency, and the performance of Spark jobs (e.g.
execution of Kmeans, logistic regression, page ranking, and
SQL Join) between Docker container clusters and VM clus-
ters. Their measurements showed that containers are more
convenient in deployment and initiation. Containers have
better scalability among different andmultiple workflows and
higher resource utilization in one workflow in the big data
environment. Maheshwari et al. [30] deemed that the time,
CPU, network, and disk I/O resource utilization of the Docker
container required for start and stop are lower than those of
Oracle VirtualBox [32]. However, they held that compared
with containers, VMs enable greater isolation and provide
better support for real-time migration.

Recent studies [14], [33]–[38] reveal the growing trend of
Docker services in the IoT environment; they probed into
the balance between flexibility and performance overhead.
Bellavista and Zanni [33] containerized the IoT framework
of open source codes and deployed the containers as fog
gateways on the resource-constrained node (i.e., Raspberry
Pi (RPi)). The application runtime and execution of mul-
tiple containers on a resource-constrained device indicated
good scalability. The overhead derived from container-based
virtualization in the experiments of [34] and [37] could
be ignored, reflecting advantages in resource consumption,
service activation time, and energy efficiency. Meanwhile,
container-based virtualization features prominent manage-
ability and scalability. Reference [36] applied the concept
of container migration to the edge cloud architecture in the

checkpoints stored andmanaged byDocker, and handled real-
time internal and external container migration. The energy
consumption at the edge of network was minimized via the
cooperative game theory and Docker. Badiger et al. [38]
proposed VIoLET, a virtual environment for defining and
launching large-scale IoT deployment in cloud VMs. Con-
tainers were deployed in cloud VMs to simulate the comput-
ing resources matching the performance of native edge, fog,
and cloud devices. Cao et al. [14] realized collaborative video
processing. Various video processing functions were run on
different edge nodes on a container-based edge computing
platform. Their study implied that when the network link
capacity is sufficient, collaborative processing is superior
to baseline in terms of the total time for video processing.
References [33] and [14], [37], [38] utilized Docker Swarm
[39] which is a lightweight solution compared to Kuber-
netes [40] natively integrated with Docker; it can simplify
the deployment and management of multiple containers and
run across multiple physical or virtual hosts. In regard to
security, [41] and [42] indicated that Docker provides an
extremely secure container-based application development
platform. They suggested running it for non-privileged users
(i.e., non-root users) and initiating other enhanced solutions
in the Linux kernel, such as AppArmor and SELinux. There-
fore, this paper takes advantage of container-based virtual
deployment technology to realize fast deployment and high
scalability.

III. THE PROPOSED SYSTEM ARCHITECTURE
A. SYSTEM ARCHITECTURE
The proposed system architecture contains three main parts:
the cloud server, edge orchestrators, and user applications.
The whole system architecture is shown in Figure 2. Six
modules were designed for the cloud management platform
running on the cloud server: account management mod-
ule, device management module, secure transmission mod-
ule, edge service handling module, historical data query
module, and video streaming module. For the edge, mul-
tiple devices are installed on the light pole, including one
single-board computer, one IP camera, and one Arduino
where multiple sensors are embedded. Three modules run
on the single-board computer at the edge: secure transmis-
sion module, edge service handling module (communicating
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FIGURE 2. System architecture.

TABLE 2. Docker images in the cloud server.

with Arduino), and video streaming module (pulling/pushing
video streams from the IP camera). The necessity of the
edgemanager depends on the swarmmanagement of multiple
street lights.

B. CLOUD MANAGEMENT PLATFORM
1) CLOUD SERVER ARCHITECTURE
The Docker CE engine is installed on the cloud server [43].
This engine creates and controls containerized Docker appli-
cations. The cloud management platform consists of seven
Docker containers, as shown in Figure 3. Each container is
connected to a software bridge network for communication
among containers. Containers not connected to a bridge net-
work are isolated from the rest of the containers.

2) DETAILS OF CLOUD CONTAINERS
Table 2 lists the information of each image, including base
image, Docker file content, image tag, and image size. Docker
Compose [44] is a wonderful tool for the fast deployment of

FIGURE 3. Cloud server architecture.

containers via simple commands. It is used to create images
and containers, mount all volumes, wire up the network, and
expose ports to docker-compose.yml to define the format of
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FIGURE 4. Web-based requests workflow.

FIGURE 5. Cloud server network topology.

FIGURE 6. User registration workflow.

FIGURE 7. User Interface of user registration.

YAML [45]. In this paper, we adopted Version 3 of the file
format of Compose to write the bridge network for each con-
tainer. We specified to ‘‘always’’ restart each container and
restart Docker daemon unlimited times to ensure that these
containers always ran regardless of the reason of exit. All
seven containers were created based on minimal image and
Alpine Linux [46], a security-oriented lightweight version of
Linux, as shown in Table 2. The total size of the seven images

FIGURE 8. User Interface of user login and user modification.

TABLE 3. User information collection.

TABLE 4. User permission.

TABLE 5. User information in redis.

TABLE 6. Device configuration collection.

is less than 1 GB. As shown in Figure 4, for all Web-based
requests, we used Django [47] to realize the web server. The
requests fall into two categories: HTTP/2 [48] andWebSocket
[49]. Two standard interfaces were used for the collocation
of Django applications and to allocate two types of incom-
ing requests: WSGI [50] and [51], respectively. In the web
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FIGURE 9. Device management workflow.

TABLE 7. Device information in redis.

container, we used Supervisor [52] as a process con-
trol tool to monitor and automatically start the following
processes:
• Gunicorn [53]: WSGI server. We used the asynchronous
work procedure based on gevent [54]. Asynchronous IO
was used to handle I/O binding requests with higher
synchronization.

• Daphne [55]: A WebSocket protocol server for ASGI.
In addition, among the following containers: Nginx,

Nginx-RTMP, Web, and SSHD, we adopted crond built in
Alpine Linux for time synchronization and logrotating [56]
jobs. It is used to manage log files (e.g. Nginx access log or
Supervisord log).

3) CLOUD SERVER NETWORK TOPOLOGY
The network topology of the cloud server is shown
in Figure 5. Each container has its own namespace.
A namespace is regarded as an isolated network stack in
the kernel with its own network interface and routing and
firewall rules. There is also a Linux bridge (realized by the
virtual switch inside the Linux kernel). It has multiple virtual
Ethernet interfaces linked to the interfaces in each container;
therefore, containers communicate with each other through
the ARP protocol of the Layer 2 bridge. Moreover, containers
on the network bridges defined by the same user can resolve
the name of the other container into an IP address through the
embeddedDNS server of theDocker engine andDNS lookup.
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FIGURE 10. Device setting for device owner.

FIGURE 11. User Interface of device management with with wrong input
or wrong permission.

FIGURE 12. SSH tunnel between Edge and Cloud.

FIGURE 13. Browser authentication workflow of HTTP/2 request.

Docker daemon attaches rules to the iptables [57] of the host
in order to filter a data package in Layer 3 and enable specific
connection of containers, such as traffic forwarding and host
port mapping.

4) ACCOUNT MANAGEMENT MODULE
This module takes charge of user registration, modification
of user information, and user login. Table 3 shows that this
module is stored in MongoDB [58] (a JSON-like docu-
ment oriented NoSQL database). This container records both
user information and the permission of each user account.

FIGURE 14. Browser authentication workflow of webSocket requests.

FIGURE 15. Certificate renewal workflow.

FIGURE 16. Browser workflow of video file requests.

FIGURE 17. HLS playlist and authentication of HLS encryption key.

The permission of each type of user in the management
platform is listed in Table 4. The simple user registration
process and the user interface for user registration are intro-
duced in Figures 6 and 7. As shown in Figure 8, the user
login process includes login failure (the maximum failed
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FIGURE 18. User interface of live streaming in cross platform cliens.

FIGURE 19. WebSocket connection workflow.

FIGURE 20. WebSocket requests handling workflow.

login attempts every five minutes is set to five times), pass-
word resetting, and account information. We stored two key-
value pairs in the database container in Redis (an open
source, in-memory data structure store used as a database or
cache) in the management platform, as shown in Table 5, to

FIGURE 21. WebSocket Disconnection workflow.

FIGURE 22. Street light ON/OFF scheduling workflow.

FIGURE 23. Uerser interface of edge service timetable.

accelerate each request that needs to be transmitted after the
permission check.

5) DEVICE MANAGEMENT MODULE
This module manages the configuration, public keys, and
device tokens. Table 6 describes the configuration and loca-
tion of each device, secure transmission parameters, and
lighting control schedules. Table 7 lists the device config-
uration for real-time data transmission and authentication
stored in the Redis database container. The CRUD (i.e.,
Create, Read, Update, and Delete) of device configuration
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FIGURE 24. User interface of historical data query.

TABLE 8. Historical information collection.

FIGURE 25. User interface of detailed historical data query.

management is described in Figure 9. Figure 10 shows that
only the device owner can modify the device configuration.
Figure 11 shows incorrect input, incorrect permissions, and
incorrect pages requesting resetting.

FIGURE 26. User Interface of open data API.

6) SECURE TRANSMISSION MODULE
This paper applied two communication protocols to the
edge node: RTMP and WebSocket. For the communication
between Edge and Cloud, we set up an encrypted SSH tun-
nel to forward local ports to remote ports and monitor the
Docker bridge network inside the cloud server. As shown
in Figure 12, the edge node binds ports 65000 and 65001 on
localhost to the remote addresses of nginxrtmp: 1935 and
web: 8001, respectively.

For Web browser to Cloud, this paper applied two com-
munication protocols to the browser: HTTP/2 [48] and
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TABLE 9. Docker images in the edge node.

FIGURE 27. Edge nodes architecture.

FIGURE 28. Environment variables in the edge node.

FIGURE 29. Cluster nodes architecture.

WebSocket. We adopted HTTPS [69] with a 4096-bit RSA
certificate to encrypt the communication between the browser
and the cloud. Figure 13 demonstrates the authentication
workflow requested by HTTP/2. The user login workflow
before the management platform is entered is as follows:

FIGURE 30. User interface of deployment profile.

TABLE 10. Cloud server environment.

• 1. The browser connects with the Nginx container via
TLS encryption and HTTP/2.

• 2. The Nginx container uses the HTTP/2 proxy and
forwards the request to the Web container.

• 3. The Web container checks whether the account and
the password stored in MongoDB are correct.

• 4. The Web container adds session information to
the Redis cache and returns the session key to the
browser.

The authentication workflow requested for WebSocket of
the browser is shown in Figure 14:
• 1. The browser sends the WebSocket request with a
session key to the Nginx container via TLS encryption.

• 2. The Nginx container uses the HTTP/2 proxy and
forwards the request to the Web container.

• 3. The Web container uses the session key stored in the
Redis cache to check the session information.

After successful authentication, the session key stored in the
Redis cache will be used for session check.

7) HTTP CERTIFICATE RENEWAL
HTTPS is the key to communication security between the
browser and the cloud. HTTPS requires a digital certifi-
cate that allows the browser to verify the identity of the
web server. Let’s Encrypt [60] is a free, automatic, and
open certificate authority, sponsored by the Electronic Fron-
tier Foundation (EFF), Mozilla, and other organizations.
We used Certbot [61] to obtain the HTTPS certificate and
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FIGURE 31. Swarm visualizer.

FIGURE 32. Our simulation devices.

FIGURE 33. Back up and restore the Cloud server.

ensure the validity of the certificate. Certbot is the full-
featured and scalable client side of CA. Let’s Encrypt CA
was used. The domain name of the cloud server was con-
figured and provided by NOC of NCKUEE [62]. Figure 15
shows the workflow of the script that checks whether the
HTTPS certificate expires, when the Certbot container is
started.

FIGURE 34. SSL Report by SSL Labs [72].

FIGURE 35. Experiment architecture of cloud nodes.

8) VIDEO STREAMING MODULE
In order to provide real-time video streams, this module uses
the nginx rtmp module [63] to receive the RTMP [64] stream
issued by the edge node and utilizes FFmpeg [65] to transcode
it into HLS [66]. We regard Nginx and Nginx-RTMP as two
separate containers to make it easy to add more computing
resources in the future to raise the scalability of the system.
The Nginx-RTMP container has the following functions:
• It monitors Port 1935 (internal) to receive the RTMP
stream with token inspection.

• It generates the HLS file.
– HLS playlist (.m3u8)
– Encrypted media segment (.ts)
– AES encryption key (.key)

• It records the RTMP stream and converts it to MP4 via
FFmpeg. information. Themaximum length of historical
videos is 15 minutes.

• It monitors Port 80 (internal) to receive the control
messages requested by the Web container in order to
disconnect the RTMP client side later.
– The token of the device has been reset.
– The device has been removed.

The Nginx container safely provides all video files to
the browser through HTTPS encryption. This container and
the Nginx-RTMP container share volumes with each other.
As the HLS media segment is encrypted, only a request by
HLS encryption key for historical videos requires session
check for authentication by Nginx. The workflow of request-
ing a video file is shown in Figure 16. The HLS playlist
and request of an unauthenticated HLS encryption key are
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FIGURE 36. Performance of Cloud Server.

shown in Figure 17. Figure 18 demonstrates that the real-
time video streams on our management platform are running
across platforms, including Android, iOS, and Windows.

9) EDGE SERVICE HANDLING MODULE
This module provides edge services, including:

• It receives information from the edge and broadcasts it
to the browser (real-time).

FIGURE 37. Experiment architecture of edge nodes.

• It receives commands sent from the browser to the spe-
cific edge (real-time).

• It controls LED lights based on two schedules: (1) Man-
ual control, (2) Automatic control in accordance with the
value displayed on the Passive Infrared Sensor (PIR).

Figure 19 shows the workflow of this module when
WebSocket is connected. Figure 20 displays the workflow
when multiple commands are used to process the WebSocket
request, including updating Edge information, turning on/off
LED lights or the PIR, and configuring the PIR timeout
value. All data frames in WebSocket are encoded as JSON
(a data structure standard in Web applications). Figure 21
shows the workflow of this module during the disconnection
of WebSocket.

The built-in crond service is used in the cloud
server. According to the two schedules stored in MongoDB,
each device will have its own cron job. In this way, the user
can control street lights more easily. Figure 22 describes the
process of a cron job. Figure 23 shows the user interface of
schedules based on jQuery Schedule [67] and Ajax [68].

10) HISTORICAL DATA QUERY MODULE
This module enables the query of historical data in different
methods, including:

• Query via a Web-based user interface (session check).
• Query via the Open Data API (token check).

Table 8 describes each historical file stored in the Mon-
goDB container and records the values of all sensors and
the Led status of the edge nodes. Besides the above keys
in the historical information set, the two keys of devices in
the current information are stored in the Redis database. For
the query request via a logged-in session in the Web user
interface, the server will simultaneously return the historical
information and video of the device, as shown in Figures 24
and 25. In contrast, For the query request via a user token and
the Open Data API, the server will only return the historical
information of the device, as shown in Figure 26.

C. EDGE SERVICE ORCHESTRATORS
We deployed each edge service on the edge node as a Docker
container, as shown in Figure 27. The image information
of each edge container is shown in Table 9, including base
image, Docker file content, image tag, and size of images on
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FIGURE 38. Performance of Node Server(TX2).

different platforms. We adopted Docker Compose to deploy
three edge services in a single node, according to the compose
file. The file defines the configuration for building images,
creating containers, mounting volumes, wiring up network,
as well as the configuration of environment variables. It is
defined in .env and star-single.env, as shown in Figure 28.

D. DEPLOYMENT OF CLUSTER NODES
We provided a tool to deploy edge services on many edge
nodes, according to Docker Swarm, Docker Compose, Buildx
[70], and DockerHub. Figure 29 demonstrates a swarm clus-
ter system structure consisting of one manager node and

FIGURE 39. Performance of Node Server(RPi).

four worker (edge) nodes. Figure 30 shows the deployment
profile of each edge node designed by this paper. Further-
more, the user can utilize the Docker swarm visualizer [71]
to monitor and visualize the container status in the swarm.
Figure 31 displays an example of a visualization service. This
service is deployed on the swarm manager node.

IV. EXPERIMENT AND SIMULATION
A. ENVIRONMENT
Tables 10 and 11 display the specifications of the cloud server
and devices on edge nodes used in this paper. Figure 32
shows the relevant devices that we used to simulate light
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TABLE 11. Edge nodes environment.

TABLE 12. Secure transmission verification.

TABLE 13. CPU (%) and RAM (MB) usage of Cloud Server (average with 30 records).

street scenarios, including: the IP camera, the Arduino
micro-controller, and sensors for PM2.5, ambient sound,
temperature and humidity, intensity of illumination, ultravio-
let, and motion sensing.

B. FUNCTION VERIFICATION
This paper proposes the following system design objectives:

• High scalability.
• Security and privacy orientation.
• User-friendly interface.

Indeed, this platform has high scalability. The cloud server
consists of seven Docker containers that are able to be
deployed on multiple physical machines at the swarm cluster
with the built-in multi-host networking. In light of the results
shown in Figure 33, the scalability of deployment is met.
The backup and restoration of cloud Docker containers on a
single host are explained. As expected, it took approximately
20 seconds and 34 seconds to start and stop the system,
respectively. It only took nearly 500MB to back up cloud
projects, including source codes, static files, database vol-
umes, and seven Docker images. From the perspective of
the edge, this paper proposed and described two (container-
based) deployment methods in Section 3. The security and
privacy of the platform are satisfactory. Three TCP ports were

exposed in the cloud server and forwarded from the Internet
to the internal Docker bridge network via iptables. The three
TCP ports are 80 (for HTTPS certificate renewal), 443 (for
HTTPS requests), and 62422 (for SSH tunnels). Table 12
describes the security method for each connection type. The
configuration of the HTTPS certificate was verified by SSL
Labs [72]. The test results are shown in Figure 34.

C. PERFORMANCE EVALUATION
1) PERFORMANCE OF THE CLOUD SERVER
The following experiments were carried out in this paper,
as shown in Figure 35. Many edge services were deployed
on two VMs (i.e., VM0 and VM1). Ten real clients were
browsing the page of real-time device status. Many edge
services were deployed on embedded devices. The input to
FFmpeg and Edge containers running on edge nodes are
described below:

• FFmpeg: The RTSP stream from the IP camera proxy
(maximum connections = 10).

• Edge: Random value (simulation of the information col-
lected by Arduino).

According to the experimental results shown in Figure 36,
80 edge nodes were deployed at 21:05. From 21:19 to 21:24,
10 client pages were browsed. Table 13 shows the average
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TABLE 14. Service deployment Timetable (TX2).

TABLE 15. Service deployment Timetable (RPi).

use of CPU and RAM of each cloud container in the client
side serving different numbers of edge nodes and browsers
(measured based on docker statistics).

2) PERFORMANCE OF EDGE NODES
Experimental scenarios are shown in Figure 37. Figure 38
shows the edge services deployed on TX2 based on the
time in Table 14. Figure 39 displays the deployment of edge
services on RPi according to the time in Table 15.
The reason why we did not deploy more containers on

RPi was that, after 20 FFmpeg and 20 Edge containers were
deployed, RPi would crash randomly. As expected, in terms
of CPU usage and time for container deployment, Nvidia
Jetson TX2 is better than RPi.

V. CONCLUSIONS AND FUTURE STUDIES
This paper proposes a street lighting management system
consisting of one Web-based cloud management platform,
one set of edge devices (a single-board computer, a microcon-
troller, sensors, and an IP camera), and the real-time lighting
control function. The system can provide street pole informa-
tion to the user in real-time and three major functions, includ-
ing the historical data query API, which has been verified
and discussed in detail. We put forward a novel architecture
differing from that of the existing street lighting manage-
ment systems. The architecture integrates the container-based
virtualization technology, Docker, to provide a strong and
highly scalable solution to the deployment of the cloud and
edge services. Furthermore, our design protects the commu-
nication between the edge and the cloud, including token
authentication and SSH-based encryption (with public key
authentication). In general, the proposed system is modular,
scalable, easy to deploy, and security-oriented. Therefore, this
system has a high commercial value.

It is suggested that future studies explore the development
of some smart applications and integrate them into our sys-
tem. For instance, the machine learning algorithm can be
applied to the development of a smart lighting control mecha-
nism based on the environment data provided by the sensors.
Besides, the neural network can be integrated into edge
devices through the IoT edge devices installed on light poles
to execute low-latency AI applications, such as real-time

target detection (e.g. pedestrian or vehicle detection). As a
result, the application value of this system architecture will
be raised.
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