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Abstract

Background: Melanoma is the deadliest type of skin cancer with highest mortality rate. However, the annihilation in
its early stage implies a high survival rate therefore, it demands early diagnosis. The accustomed diagnosis methods
are costly and cumbersome due to the involvement of experienced experts as well as the requirements for the highly
equipped environment. The recent advancements in computerized solutions for this diagnosis are highly promising
with improved accuracy and efficiency.

Methods: In this article, a method for the identification and classification of the lesion based on probabilistic
distribution and best features selection is proposed. The probabilistic distribution such as normal distribution and
uniform distribution are implemented for segmentation of lesion in the dermoscopic images. Then multi-level
features are extracted and parallel strategy is performed for fusion. A novel entropy-based method with the
combination of Bhattacharyya distance and variance are calculated for the selection of best features. Only selected
features are classified using multi-class support vector machine, which is selected as a base classifier.

Results: The proposed method is validated on three publicly available datasets such as PH2, ISIC (i.e. ISIC MSK-2 and
ISIC UDA), and Combined (ISBI 2016 and ISBI 2017), including multi-resolution RGB images and achieved accuracy of
97.5%, 97.75%, and 93.2%, respectively.

Conclusion: The base classifier performs significantly better on proposed features fusion and selection method as
compared to other methods in terms of sensitivity, specificity, and accuracy. Furthermore, the presented method
achieved satisfactory segmentation results on selected datasets.

Keywords: Image enhancement, Uniform distribution, Image fusion, Multi-level features extraction, Features fusion,
Features selection

Background
Skin cancer is reported to be one of the most rapidly

spreading cancer amongst other types. It is broadly clas-

sified into two primary classes; Melanoma and Benign.

The Melanoma is the deadliest type of cancer with high-

est mortality rate worldwide [1]. In the US alone, an
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astonishing mortality rate of 75% is reported due to

melanoma compared to other types of skin cancers [2].

The occurrence of melanoma reported to be doubled

(increases 2 to 3% per year) in the last two decades, faster

than any other types of cancer. American Cancer Society

(ACS) has estimated, 87,110 new cases of melanoma will

be diagnosed and 9,730 people will die in the US only in

2017 [3]. Malignant melanoma can be cured if detected at
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its early stages, e.g., if diagnosed at stage I, the possible

survival rate is 96%, compared to 5% at its stage IV [4, 5].

However, early detection is strenuous due to its high

resemblance with benign cancer, even an expert derma-

tologist can diagnose it wrongly. A specialized technique

of dermatoscopy is mostly followed by dermatologist to

diagnose melanoma. In a clinical examination, most com-

monly adopted methods of visual features inspection are;

Menzies method [6], ABCD rule [7], and 7-point check-

list [8]. The most commonly used methods are the ABCD

(atypical, border, color, diameter) rules and pattern analy-

sis. It is reported that this traditional dermoscopy method

can increase the detection rate 10 to 27% [9]. These meth-

ods distinctly increases the detection rate compared to

conventional methods but still dependent on dermatolo-

gist’s skills and training [10]. To facilitate experts numer-

ous computerized analysis systems have been proposed

recently [11, 12] which are referred to as pattern analysis/

computerized dermoscopic analysis systems. These meth-

ods are non-invasive and image analysis based technique

to diagnose the melanoma.

In the last decade, several non-invasive methods

were introduced for the diagnosis of melanoma includ-

ing optical imaging system (OIS) [13], optical coher-

ence tomography (OCT) [14], light scattering (LS)

[15], spectropolarimetric imaging system (SIM) [16, 17],

fourier polarimetry (FP) [18], polarimetric imaging [19],

reectance confocal microscopy (RCM) [20, 21], photo-

acoustic microscopy [22], optical transfer diagnosis

(OTD) [23], etc. All these above mentioned methods have

enough potential to diagnose the skin lesions and also

accurate enough to distinguish the melanoma and benign.

The optical methods are mostly utilized during a clinal

tests to evaluate the presurgical boundaries of the basal

cell carcinoma. It can help in drawing boundaries around

the region of interest (ROI) in the dermoscopic images.

LS skin methods give the information about the micro-

architecture, which is represented with small pieces of

pigskin and mineral element and helps to determine the

extent of various types of skin cancers. The SIM method

correctly evaluates the polarimetric contrast of the region

of interest or infectious region such as melanoma, com-

pared to the background or healthy region. However,

in FP method human skins is observed with laser scat-

tering and difference is identified using optical method

for the diagnostic test for differentiating melanoma and

benign.

Problem statement

It is proved that malignant melanoma is a lethal skin

cancer that is extra dominant between the 15 and above

aged people [24]. The recent research shows high rate

of failure to detect and diagnose this type of cancer at

the early stages [25]. Generally, it consists of four major

steps: preprocessing, which consists of hair removal, con-

trast enhancement, segmentation, feature extraction, and

finally classification. The most challenging task in der-

moscopy is an accurate detection of lesion’s boundary

because of different artifacts such as hairs, illumination

effects, low lesion contrast, asymmetrical and irregular

border, nicked edges, etc. Therefore, for an early detec-

tion of melanoma, shape analysis is more important.

In features extraction step, several types of features are

extracted such as shape, color, texture, local etc. But,

we have no clear knowledge about salient features for

classification.

Contribution

In this article, we propose a new method of lesion detec-

tion and classification by implementing probabilistic dis-

tribution based segmentation method and conditional

entropy controlled features selection. The proposed tech-

nique is an amalgamation of five major steps: a) contrast

stretching; b) lesion extraction; c) multi-level features

extraction; d) features selection and e) classification of

malignant and benign. The results are tested on three pub-

licly available datasets which are PH2, ISIC (i.e. ISICMSK-

2 and ISIC UDA), and Combined (ISBI 2016 and ISBI

2017), containing RGB images of different resolutions,

which are later normalized in our proposed technique.

Our main contributions are enumerated below:

1 Enhanced the contrast of a lesion area by

implementing a novel contrast stretching technique,

in which we first calculated the global minima and

maxima from the input image and then utilized low

and high threshold values to enhance the lesion.

2 Implemented a novel segmentation method based on

normal and uniform distribution. Mean of the

uniform distribution is calculated from the enhanced

image and the value is added in an activation

function, which is introduced for segmentation.

Similarly, mean deviation of the normal distribution

is calculated using enhanced image and also inserted

their values in an activation function for

segmentation.

3 A fusion of segmented images is implemented by

utilizing additive law of probability.

4 Implemented a novel feature selection method,

which initially calculate the Euclidean distance

between fused feature vector by implementing an

Entropy-variance method. Only most discriminant

features are later utilized by multi-class support

vector machine for classification.

Paper organization

The chronological order of this article is as follows: The

related work of skin cancer detection and classification is
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described in “Related work” section. “Methods” section

explains the proposed method, which consists of several

sub steps including contrast stretching, segmentation, fea-

tures extraction, features fusion, classification etc. The

experimental results and conclusion of this article are

described in “Results” and “Discussion” sections.

Related work
In the last few decades, advance techniques in different

domains of medical image processing, machine learn-

ing, etc., have introduced tremendous improvements in

computer aided diagnostic systems. Similarly, improve-

ments in dermatological examination tools have led the

revolutions in the prognostic and diagnostic practices.

The computerized features extractions of cutaneous

lesion images and features analysis by machine learning

techniques have potential to enroute the conventional

surgical excision diagnostic methods towards CAD

systems.

In literature several methods are implemented for auto-

mated detection and classification of skin cancer from

the dermoscopic images. Omer et al. [26] introduced

an automated system for an early detection of skin

lesion. They utilized color features prior to global thresh-

olding for lesion’s segmentation. The enhanced image

was later subjected to 2D Discrete Fourier Transform

(DCT) and 2D Fast Fourier Transform (FFT) for fea-

tures extraction prior to the classification step. The results

were tested on a publicly available dataset PH2. Barata

et al. [27] described the importance of color features for

detection of skin lesion. The color sampling method is

utilized with Harris detector and compared their per-

formance with grayscale sampling. Also, compared the

color-SIFT (scale invariant feature transform) and SIFT

features and conclude that color-SIFT features performs

good as compare to SIFT. Yanyang et al. [28] intro-

duced an novel method for melanoma detection based

on Mahalanobis distance learning and graph regular-

ized non-negative matrix factorization. The introduced

method treated as a supervised learning method and

reduced the dimensionality of extracted set of features

and improves the classification rate. The method is eval-

uated on PH2 dataset and achieved improved perfor-

mance. Catarina et al. [29] described the strategy of

combination of global and local features. The local fea-

tures (BagOf Features) and global features (shape and

geometric) are extracted from original image and fused

these features based of early fusion and late fusion. The

author claim the late fusion is never been utilized in this

context and it gives better results as compared to early

fusion.

Ebtihal et al. [30] introduced an hybrid method for

lesion classification using color and texture features.

Four moments such as mean standard deviation, degree

of asymmetry and variance is calculated against each

channel, which are treated as a features. The local binary

pattern (LBP) and gray level co-occurrences matrices

(GLCM) were extracted as a texture features. Finally,

the combined features were classified using support

vector machine (SVM). Agn et al. [31] introduced a

Fig. 1 Proposed architecture of skin lesion detection and classification
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Fig. 2 Information of original image and their respective channels: a original image; b red channel; c green channel; d blue channel

saliency detection technique for accurate lesion detec-

tion. The introduced method resolve the problems when

the lesion borders are vague and the contrast between

the lesion and inundating skin is low. The saliency

method is reproduced with the sparse representaion

method. Further, a Bayesian network is introduced that

better explains the shape and boundary of the lesion.

Euijoon et al. [38] introduced a saliency based segmen-

tation technique where the background of original image

was detected by spatial layout which includes boundaries

and color information. They implemented Bayesian

framework to minimize the detection errors. Similarly,

Lei et al. [32] introduced a new method of lesion detec-

tion and classification based on multi-scale lesion biased

representation (MLR). This proposed method has the

advantage of detecting the lesion using different rotations

and scales, compared to conventional methods of single

rotation.

Fig. 3 Proposed contrast stretching results
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Fig. 4 Proposed uniform distribution based mean segmentation results. a original image; b enhanced image; c proposed uniform based mean
segmentation; d 2D contour image; e Contour plot; f 3D contour plot; g lesion area

From above recent studies, we noticed that the colour

information and contrast stretching is an important

factor for accurately detection of lesion from der-

moscopic images. Since the contrast stretching meth-

ods improves the visual quality of lesion area and

improves the segmentation accuracy. Additionally, for

improved classification, several features are utilized

in literature but according to best our knowledge,

serial based features fusion is not yet utilized. How-

ever, in our case only salient features are utilized

which are later subjected to fusion for improved

classification.

Fig. 5 Proposed normal distribution based M.D segmentation results. a original image; b enhanced image; c proposed M.D based segmentation;
d 2D contour image; e Contour plot; f 3D contour plot; g lesion area



Khan et al. BMC Cancer  (2018) 18:638 Page 6 of 20

Table 1 Ground truth table for z1

X1 ∈ i X2 ∈ j S

0 0 0

0 1 1

1 0 1

1 1 1

Methods
A new method is proposed for lesion detection and clas-

sification using probabilistic distribution based segmenta-

tion method and conditional entropy controlled features

selection. The proposed method is consists of two major

steps: a) lesion identification; b) lesion classification. For

lesion identification, we first enhance the contrast of input

image and then segment the lesion by implementation

of novel probabilistic distribution (uniform distribution,

normal distribution). The lesion classification is done

based of multiple features extraction and entropy con-

trolled most prominent features selection. The detailed

flow diagram of proposed method is shown in Fig. 1.

Contrast stretching

There are numerous contrast stretching or normaliza-

tion techniques [34], which attempt to improve the image

contrast by stretching pixels’ specific intensity range to

a different level. Most of the available options take gray

image as an input and generate an improved output gray

image. In our research work, the primary objective is to

acquire a three channel RGB image having dimensions

m × n × 3. Although, the proposed technique can only

work on a single channel of size m × n, therefore, in pro-

posed algorithm we separately processed red, green and

blue channel.

In RGB dermoscopic images, mostly the available con-

tents are visually distinguishable into foreground which is

infected region and the background. This distinctness is

also evident in each and every gray channel, as shown in

Fig. 2.

Considering the fact [35], details are always high with

higher gradient regions which is foreground and details

are low with the background due to low gradient values.

We firstly divide the image into equal sized blocks and the

compute weights for all regions and for each channel. For

a single channel information, details are given below.

1 Gray channel is preprocessed using Sobel edge filter

to compute gradients where kernel size is selected to

be 3 × 3.

2 Gradient calculation for each equal sized block and

rearranging in an ascending order. For each block the

weights are assigned according to the gradient

magnitude.

Ŵζ(x, y) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ςb1
w if υc(x, y) ≤ T1;

ςb2
w T1 < υc(x, y) ≤ T2;

ςb3
w T1 < υc(x, y) ≤ T3;

ςb4
w otherwise

(1)

where ςbi
w (i ≤ 4) are statistical weight coefficient

and Ti is gradient intervals threshold.

3 Cumulative weighted gray value is calculated for each

block using:

Ng(z) =
4

∑

i=1

ςbi
w ni(z) (2)

where ni(z) represents cumulative number of gray

level pixels for each block i.

Fig. 6 Proposed fusion results. a original image; b fused segmented image; cmapped on fused image; d ground truth image
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4 Concatenate red, green and blue channel to produce

enhanced RGB image.

For each channel, three basic conditions are considered

for optimized solution: I) extraction of regions with max-

imum information; II) selection of a block size; III) an

improved weighting criteria. In most of the dermoscopic

images, maximum informative regions are with in the

range of 25 − 75%. Therefore, considering the minimum

value of 25%, the number of blocks are selected to be 12

as an optimal number, with an aspect ratio of 8.3%. These

blocks are later selected according to the criteria of maxi-

mal information retained (cumulative number of pixels for

each block). Laplacian of Gaussian method (LOG) [36] is

used with sigma value of two for edge detection. Weights

are assigned according to the number of edge points, Epi
for each block:

Bwi = Epi

Ebmax

(3)

where Ebmax is the block with maximum edges. Finally,

adjust the intensity levels of enhance image and perform

log operation to improved lesion region as compare to

original.

ϕ(AI) = ζ(Bwi) (4)

ϕ(t) = C × log(β + ϕ(AI)) (5)

Where β is a constant value, (β ≤ 10), which is selected

to be 3 for producing most optimal results. ζ denotes the

adjust intensity operation, ϕ(AI) is enhance image after

ζ operation and ϕ(t) is final enhance image. The final

contrast stretching results are shown in Fig. 3.

Lesion segmentation

Segmentation of skin lesion is an important task in the

analysis of skin lesions due to several problems such as

color variation, presence of hairs, irregularity of lesion

in the image and necked edges. Accurate segmentation

provides important cues for accurate border detection.

Fig. 7 Proposed fusion results. a original image; b proposed segmented image; cmapped on proposed image; d ground truth image; e border
on proposed segmented image
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In this article, a novel method is implemented based of

probabilistic distribution. The probabilistic distribution

is consists of two major steps: a) uniform distribution

based mean segmentation; b) normal distribution based

segmentation.

Mean segmentation

The uniform distribution of mean segmentation is

calculated from enhanced image ϕ(t) and then perform

threshold function for lesion extraction. The detailed

description of mean segmentation is defined below: Let

t denotes the enhanced dermoscopic image and f (t)

denotes the function of uniform distribution, which is

determined as f (t) = 1
y−x . Where y and x denotes the

maximum and minimum pixels values of ϕ(t). Then the

mean value is calculated as follows:

μ =
∫ y

x
t f (t) dt (6)

=
∫ y

x
t

1

y − x
dt (7)

= 1

y − x

[

t2

2

]y

x

(8)

= 1

2(y − x)

[

(y + x)(y − x)
]

(9)

μ = 1

2

[

(y + x)
]

(10)

Then perform an activation function, which is define as

follows:

A(μ) = 1
(

1 +
(

μ
ϕ(t)

))α + 1

2μ
+ C (11)

F(μ) =
{

1 if A(μ) ≥ δthresh
0 if A(μ) < δthresh

(12)

where δthresh is Otus’s threshold, α is a scaling factor which

controls the lesion area and its value is selected on the

basis of simulations performed, α ≤ 10, and finally got

α = 7 to be most optimal number. C is a constant value

which is randomly initialized within the range of 0 to 1.

The segmentation results are shown in Fig. 4.

Mean deviation based segmentation

The mean deviation (M.D) of normal distribution is

is calculated from ϕ(t) having parameter μ and σ .

The value of M.D is utilized by activation function for

extraction of lesion from the dermoscopic images. Let

t denotes the enhanced dermoscopic image and f (t)

denotes the normalized function, which determined as

f (t) = 1√
2πσ

e−
1
2 (

t−μ
σ

)2 . Then initialize the M.D as:

M.D =
∫ +∞

−∞
|t − μ| f (t) (13)

=
∫ +∞

−∞
|t − μ| 1√

2πσ
e
− 1

2

(

t−μ
σ

)2

dt (14)

Then put g = t−μ
σ

in Eq. 14.

M.D = 1√
2πσ

∫ +∞

−∞

∣

∣σ g
∣

∣ e
−g2

2 dg (15)

= σ√
2π

[∫ ∞

0
g e

−g2

2 dg +
∫ ∞

0
g e

−g2

2 dg

]

(16)

M.D = 2σ√
2π

∫ ∞

0
g e

−g2

2 dg (17)

Put
g2

2 = l in Eq. 17 and it becomes:

M.D = 2σ√
2π

∫ ∞

0

√
2l e−l dl√

2l
(18)

= 2σ√
2π

∫ ∞

0
e−l dl (19)

=
√

2

π
σ

[

e−l

−1

]∞

0

(20)

= −
√

2

π
σ

[

1

el

]∞

0

(21)

= −
√

2

π
σ(−1) (22)

Table 2 Lesion detection accuracy as compared to ground truth
values

Image description Similarity rate Image description Similarity rate

IMD038 95.69 IMD199 94.70

IMD020 92.52 IMD380 97.94

IMD039 91.35 IMD385 94.37

IMD144 88.33 IMD392 94.47

IMD203 86.44 IMD394 96.96

IMD379 88.41 IMD047 90.07

IMD429 94.87 IMD075 95.85

IMD211 92.81 IMD078 94.70

IMD285 95.59 IMD140 96.94

IMD022 96.02 IMD256 95.82

IMD025 96.35 IMD312 96.04

IMD042 91.26 IMD369 96.08

IMD173 96.04 IMD376 93.07

IMD182 97.97 IMD427 93.14

IMD430 98.10 IMD168 92.88

Data in bold are significant



Khan et al. BMC Cancer  (2018) 18:638 Page 9 of 20

Fig. 8 A system architecture of multiple features fusion and selection

Fig. 9 Selected channels for color features extraction
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Table 3 Proposed features fusion and selection results on PH2 dataset

Method Execution time /sec Sensitivity (%) Precision (%) Specificity (%) FNR (%) FPR Accuracy (%)

DT 7 88.33 88.73 92.50 10.0 0.04 90.0

QDA 2 90.83 89.40 91.20 9.0 0.04 91.0

Q-SVM 2 95.83 96.60 98.70 3.0 0.01 97.0

LR 6 92.10 92.76 96.96 6.0 0.02 94.0

N-B 3 89.60 91.73 96.90 7.5 0.03 92.5

W-KNN 2 91.67 92.33 96.20 6.5 0.02 93.5

EBT 5 95.43 96.67 98.12 3.5 0.02 96.5

ESD 10 94.20 94.53 97.50 4.5 0.02 95.5

C-KNN 2 91.26 91.56 95.61 7.0 0.03 93.0

Multi-class SVM 1 96.67 97.06 98.74 2.5 0.01 97.5

Data in bold are significant

Table 4 Results of individual extracted set of features using PH2 dataset

Name Features Performance measures

Classification Method Harlick HOG Color Sensitivity (%) Precision (%) Specificity (%) FNR (%) FPR Accuracy (%)

Decision tree � 67.53 67.50 70.05 31.50 0.16 68.5

� 71.67 72.1 85.0 23.0 0.11 77.0

� 87.93 86.93 86.9 12.5 0.06 87.5

Quadratic discriminant analysis � 70.0 68.43 70.0 30.0 0.14 70.0

� 74.60 75.83 88.15 20.0 0.09 80.0

� 84.6 81.9 80.65 17.0 0.08 83.0

Quadratic SVM � 68.33 70.27 76.25 28.5 0.14 71.5

� 82.5 83.37 92.7 13.5 0.06 86.5

� 93.77 93.33 94.44 6.0 0.03 94.0

Logistic regression � 63.36 64.06 70.05 34.0 0.17 66.0

� 86.27 85.83 91.9 11.5 0.09 88.5

� 89.2 90.43 92.55 9.5 0.04 90.5

Naive bayes � 62.9 62.9 66.85 35.5 0.18 64.5

� 81.25 81.93 90.65 15.0 0.07 85.0

� 87.93 87.63 90.65 11.0 0.06 89.0

Weighted KNN � 66.67 67.5 72.5 31.0 0.16 69.0

� 81.67 83.27 92.5 14.0 0.06 86.0

� 90.87 90.83 92.55 8.5 0.03 91.5

Ensemble boosted tree � 68.33 67.77 68.75 31.5 0.16 68.5

� 80.67 82.57 91.3 15.0 0.07 85.0

� 88.37 89.47 91.3 10.5 0.04 89.5

Ensemble subspace discriminant � 68.76 68.4 71.9 30.0 0.15 70.0

� 87.1 87.03 91.9 11.0 0.05 89.0

� 92.9 94.7 96.9 5.5 0.03 94.1

Cubic KNN � 65.43 66.4 71.9 32.0 0.16 68.0

� 80.4 80.8 89.4 16.0 0.07 84.0

� 90.3 89.83 91.7 9.5 0.04 90.5

Proposed � 69.6 72.23 75.65 28.0 0.14 72.0

� 86.27 87.37 94.4 10.5 0.02 89.5

� 94.6 93.97 94.4 5.5 0.02 94.5
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Hence

M.D = 0.7979σ (23)

Then perform an activation function to utilize M.D as:

AC(M.D) = 1
(

1 +
(

M.D
ϕ(t)

))α + 1

2M.D
+ C (24)

F(M.D) =
{

1 if AC(M.D) ≥ δthresh
0 if AC(M.D) < δthresh

(25)

The segmentation results of M.D is shown in Fig. 5.

Image fusion

The term image fusion mean to combine the information

of two or more than two images in one resultant image,

which contains better information as compare to any indi-

vidual image or source. The image fusion reduces the

redundancy between two or more images and increase the

clinical applicability for diagnosis. In this work, we imple-

mented a union based fusion of two segmented images

into one image. The resultant image is more accurate

and having much information as compare to individual.

Suppose N denotes the sample space, which contains

200 dermoscopic images. Let X1 ∈ F(μ) which is mean

segmented image. Let X2 ∈ F(M.D) which M.D based

segmented image. Let i denotes the X1 pixels values and j

denotes the X2 pixels values and S denotes the both i and

j pixels which pixels values are 1. It mean all 1 value pixels

fall in S. Then X1 ∪ X2 written as:

X1 ∪ X2 = (X1 ∪ X2) ∩ φ (26)

P(X1 ∪ X2) = P((X1 ∪ X2)) ∩ P(φ) (27)

=
{

ξ((X1,X2) == 1) if (i, j) ∈ z1
ξ((X1,X2) == 0) if (i, j) ∈ z2

(28)

Where z1 represented as ground truth Table 1.

Hence

̺(t) =
{

1 if
∑

[

i, j
]

> 1

0 Otherwise
(29)

P(X1 ∪ X2) = P(X1) + P(X2) − P(φ) (30)

Where P(φ) denotes the 0 values which presented

as background and 1 denotes the lesion. The graphical

results after fusion are shown in Fig. 6.

Analysis

In this section, we analyze our segmentation results in

terms of accuracy or similarity index as compared to

given ground truth values. We select randomly images

from PH2 dataset and shows their results in tabular and

graphical. The proposed segmentation results are directly

Table 5 Confusion matrix for PH2 dataset

Confusion Matrix: Proposed features fusion and selection

Class Tested images Melanoma Benign Caricinoma

Melanoma 20 92.5% 7.5%

Benign 40 2.5% 97.5%

Caricinoma 40 100%

Confusion matrix: Harlick features

Class Total Images Melanoma Benign Caricinoma

Melanoma 20 57.5% 35% 7.5%

Benign 40 8.8% 68.8% 22.5%

Caricinoma 40 3.8% 13.8% 82.5%

Confusion matrix: HOG features

Class Total Images Melanoma Benign Caricinoma

Melanoma 20 70% 30% -

Benign 40 10% 88.8% 1.3%

Caricinoma 40 - - 100%

Confusion matrix: Color features

Class Total Images Melanoma Benign Caricinoma

Melanoma 20 95% 5.0% -

Benign 40 3.8% 95% 1.3%

Caricinoma 40 1.3% 5.0% 93.8%
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Table 6 PH2 dataset: Comparison of proposed algorithm with
existing methods

Method Year Sensitivity % Specificity % Accuracy %

Abuzaghleh et al.
[26]

2014 - - 91

Barata et al. [27] 2013 85 87 87

Abuza et al. [43] 2015 - - 96.5

Kruck et al. [44] 2015 95 88.1 -

Rula et al. [45] 2017 96 83 -

Waheed et al. [46] 2017 97 84 96

Sath et al. [47] 2017 96 97 -

GUU et al. [48] 2017 94.43 81.01 -

Lei et al. [49] 2016 87.50 93.13 92.0

MRastagoo et al.
[50]

2015 94 92 -

Proposed 2017 96.67 98.7 97.5

Data in bold are significant

compare to ground truth images as shown in Fig. 7. The

testing accuracy against each selected dermoscopic image

are depicted in Table 2. From Table 2 the accuracy of

each image is above 90% and the maximum similarity

rate is 98.10. From our analysis, the proposed segmenta-

tion results perform well as compare to existing methods

[31, 37–39] in terms of border detection rate.

Image representation

In this three types of features are extracted for the repre-

sentation of an input image. The basic purpose of feature

extraction is to find out a combination of most efficient

features for classification. The performance of dermo-

scopic images mostly depends on the quality and the

consistency of the selected features. In this work, three

types of features are extracted such as color, texture and

HOG for classification of skin lesion.

HOG features

The Histogram Oriented Gradients (HOG) features are

originally introduced by Dalal [40] in 2005 for human

detection. The HOG features are also called shape based

features because they work on the shape of the object.

In our case, the HOG features are extracted from seg-

mented skin lesion and work efficiently because every

segmented lesion have their own shape. As shown in

Fig. 8, the HOG features are extracted from segmented

lesion and obtain a feature vector of size 1× 3780 because

we have the size of segmented image is 96 × 128 and

size of bins is 8 × 8. The size of extracted features are

too high and they effect on the classification accuracy.

For this reason, we implement a weighted conditional

entropy with PCA (principle component analysis) on

extracted feature vector. The PCA return the score

against each feature and then weighted entropy is utilized

to reduced the feature space and select the maximum

200 score features. The weighted conditional entropy is

define as:

EW =
K

∑

i=1

K
∑

j=1

Wi,j. P(i, j)log
P(i)

P(i, j)
(31)

Where i, j denotes the current and next feature respec-

tively.Wi,j denotes the weights of selected features, which

is selected between 0 and 1
(

0 ≤ Wij ≤ 1
)

and P(i, j) =
Wij . nij

∑K
ij=1 Wij . nij

. Hence the new reduce vector size is 1 × 200.

Harlick features

Texture information of an input image is an important

component, which is utilized to identify the region of

interest such as a lesion. For texture information of lesion,

we extract the harlick features [41]. The harlick features

are extracted from the segmented image as shown in

Table 7 Proposed features fusion and selection results on ISIC-MSK dataset

Method
Performance measures

Sensitivity (%) Precision (%) Specificity (%) FNR (%) FPR Accuracy (%)

Decision tree 92.95 93.1 94.30 6.9 0.07 93.1

Quadratic discriminant analysis 95.95 95.45 91.90 4.5 0.04 95.5

Quadratic SVM 96.25 96.10 95.60 3.8 0.03 96.2

Logistic regression 95.10 95.10 95.60 4.8 0.04 95.2

Naive bayes 92.80 93.30 95.60 6.9 0.07 93.1

Weighted KNN 95.10 95.10 95.60 4.8 0.04 95.2

Ensemble boosted tree 95.10 95.10 95.60 4.80 0.04 95.2

Ensemble subspace discriminant 95.10 95.10 95.60 4.8 0.04 95.2

Cubic KNN 89.35 90.65 95.60 10.0 0.10 90.0

Proposed 96.60 97.0 98.30 2.8 0.01 97.2

Data in bold are significant
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Fig. 8. There are total 14 texture features implemented

(i.e. autocorrelation, contrast, cluster prominence, cluster

shade, dissimilarity, energy, entropy, homogeneity 1,

homogeneity 2, maximum probability, average, variances,

inverse difference normalized and inverse difference

moment normalized) and a feature vector of size 1 × 14

is created. After calculating the mean, range and vari-

ance of each feature, the final vector is calculated having

size 1 × 42.

Color features

The color information of the region of interest has

attained strong prevalence for classification of lesions in

malignant or benign. The color features provide a quick

processing and are deeply robust to geometric variations

of lesion patterns. Three types of color spaces are utilized

for color features extraction such as RGB, HSI, and LAB.

As shown in Fig. 9, the mean, variance, skewness and kur-

tosis are calculated for each selected channel. From Fig. 8,

its shown clearly that the 1×12 features are extracted from

each color space and total features of three color spaces

having dimension of 1 × 36.

Features fusion

The goal of feature fusion is to create a new feature

vector, which contains much information as compare to

individual feature vector. Different types of features are

extracted from same image always indicates the distinct

Table 8 Results for individual extracted set of features using ISIC-MSK dataset

Classifier Selected features Performance measures

Color HOG Harlick Sensitivity % Precision % Specificity FNR % FPR Accuracy %

DT � 89.4 89.65 0.919 10.3 0.105 89.7

� 92.25 93.10 0.944 6.9 0.06 93.1

� 80.95 82.15 0.888 18.3 0.18 81.7

QDA � 86.05 86.05 0.875 13.8 0.13 86.2

� 94.30 93.85 0.894 6.2 0.05 93.8

� 70.73 73.25 0.769 26.6 0.26 73.4

Q-SVM � 95.6 95.75 0.956 4.1 0.03 95.9

� 95.5 95.46 0.956 4.5 0.04 95.5

� 82.05 82.3 0.856 17.6 0.17 82.4

LR � 92.05 92.7 0.956 7.6 0.07 92.4

� 95.1 95.1 0.956 4.8 0.04 95.2

� 81.45 82.25 0.875 17.9 0.18 82.1

N-B � 90.9 91.8 0.956 8.6 0.08 91.4

� 93.95 94.2 0.956 5.9 0.05 94.1

� 82.2 83.95 0.913 16.9 0.03 83.1

W-KNN � 90.9 91.9 0.956 8.6 0.08 91.4

� 93.95 94.2 0.956 5.9 0.05 94.1

� 81.15 84.2 0.938 17.6 0.08 82.4

EBT � 91.45 91.85 0.994 8.3 0.08 91.7

� 93.35 93.4 0.944 6.6 0.06 93.4

� 81.45 82.25 0.875 17.9 0.18 82.1

ESD � 86.95 88.05 0.931 12.4 0.125 87.6

� 95.5 95.45 0.956 4.5 0.04 95.5

� 78.0 79.5 0.875 21.0 0.21 79.0

Cubic KNN � 93.25 93.5 0.95 6.6 0.06 93.4

� 93.15 92.7 0.973 7.2 0.07 92.8

� 76.6 76.6 0.788 23.1 0.23 76.9

Proposed � 95.85 95.85 0.963 4.1 0.03 95.9

� 97.1 96.75 0.963 3.8 0.02 96.2

� 82.55 84.7 0.913 16.6 0.13 83.4
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Table 9 Confusion matrix for all set of extracted features using
ISIC-MSK dataset

Class Total images Melanoma Benign

Confusion matrix: Proposed features fusion and selection

Melanoma 130 99.2% 1%

Benign 160 4.4% 95.6%

Confusion matrix: Harlick features

Melanoma 130 73.8% 26.2%

Benign 160 8.8% 91.3%

Confusion matrix: HOG features

Melanoma 130 99.2% 0.8%

Benign 160 5.0% 95.0%

Confusion matrix: Color features

Melanoma 130 96.2% 3.8%

Benign 160 3.8% 96.3%

characteristics of an image. The combination of these fea-

tures effectively discriminate the information of extracted

features and also eliminates the redundant information

between them. The elimination of redundant informa-

tion between extracted set of features provides improved

classification performance. In this work, we implemented

a parallel features fusion technique. The implemented

technique efficiently fuse the all extracted features and

also remove the redundant information between them.

The fusion process is detailed as: Suppose C1,C2, and

C3 are known lesion classes (i.e. melanoma, atypical nevi

and benign). Let � =
{

ψ | ψ ∈ R
K
}

denotes the test-

ing images. As given three extracted feature sets D =
{

α | α ∈ R
h
}

,E =
{

j | j ∈ R
t
}

, {o | o ∈ R
c}, where α, j and

o are three feature vector (i.e. HOG, texture and color).

Then the parallel fusion is define as:

F
(

P//
)

= (α1,α2, . . . αd)(j1, j2, . . . jd)(o1, o2, . . . od)

(32)

Where d denotes the dimension of extracted set of fea-

tures. As we know the dimension of each extracted feature

vector (i.e. HOG (1 × 200), Texture (1 × 42) and Color

(1 × 36). Then the fused vector is define as:

ϒ
(

F//
s

)

=
(

α + ι j,α + ι o | α ∈ D, j ∈ E, o ∈ F
)

(33)

It in an n dimensional complex vector, where n =
max(d(D), d(E), d(F)). From previous expression, the

HOG has maximum dimension 1 × 200. Hence, make the

size of E and F feature vector equally to D vector. For

this purpose adding zeros. For example below is a given

matrix, which consists of three feature vectors.

⎧

⎨

⎩

D = (0.2 0.7 0.9 0.11 0.10 0.56 . . . 0.90)

E = (0.1 0.3 0.5 0.17 0.15)

F = (0.3 0.17 0.93 0.15)

(34)

Then make the same size of feature vector, by adding

zeros.

⎧

⎨

⎩

D = (0.2 0.7 0.9 0.11 0.10 0.56 ... 0.90)

E = (0.1 0.3 0.5 0.17 0.15 0.0 ... 0.0)

F = (0.3 0.17 0.93 0.15 0.0 0.0 ... 0.0)

(35)

Finally, a novel feature selection technique is imple-

mented on fused features vector and select the most

prominent features for classification.

Features selection

The motivation behind the implementation of feature

selection technique is to select the most prominent fea-

tures for improving the accuracy and also make the sys-

tem fast in terms of execution time. The major reasons

Table 10 Proposed features fusion and feature selection results on ISIC-UDA dataset

Method
Measures

Sensitivity Precision Specificity FNR FPR Accuracy

DT 87.25 90.65 97.1 10.7 0.12 89.3

QDA 79.75 88.60 99.3 16.3 0.19 83.7

QSVM 98.05 98.40 99.3 1.7 0.02 98.3

LR 94.8 96.35 99.3 4.3 0.04 95.7

N-B 88.5 91.00 96.4 9.9 0.10 90.1

W-KNN 83.85 91.20 100 12.9 0.16 87.1

EBT 95.2 95.85 97.9 4.3 0.4 95.7

E-S-D 89.6 89.75 92.1 9.9 0.09 90.1

L-KNN 81.7 90.25 100 14.6 0.18 85.4

Proposed 97.85 98.60 100 1.7 0.02 98.3

Data in bold are significant



Khan et al. BMC Cancer  (2018) 18:638 Page 15 of 20

behind feature selection technique are a) utilize only a

selected group prominent features leads to increased the

classification accuracy by the elimination of irrelevant

features; b) the miniature group of features is discov-

ered that maximally increases the performance of pro-

posed method; c) select a group of features from the

high dimensional features set for a dense and detailed

data representation. In this work, a novel Entropy-

Variances based feature selection method is imple-

mented. The proposed method performs in two steps.

First, it calculates the Bhattacharyya distance of fused fea-

ture vector. The Bhattacharyya distance find out the close-

ness between two features. It is utilized for classification

of lesion classes and also consider more reliable as com-

pare to Euclidean distance. Second, it implements an

entropy-variance method on closeness features and select

themost prominent features based on their maximum val-

ues. Entropy in a nutshell is the uncertainty measurement

associated with initialization of the closeness features.

Since base classifier is highly dependent on their initial

conditions for their fast convergence and accurate approx-

imation. Also, the selected closeness features should have

maximum entropy value. To the best of our knowledge,

entropy, especially in conjunction with Bhattacharyya dis-

tance and Variances, has never been adopted for selection

of most prominent features. Let fi and fi+1 are two features

Table 11 Results for individual extracted set of features using ISIC-UDA dataset

Method
Features Performance measures

Color HOG Harlick Sensitivity (%) Precision (%) Specificity (%) FNR (%) FPR Accuracy (%)

Decision tree � 72.75 77.4 90.7 23.6 0.62 76.4

� 70.15 69.4 69.3 30.0 0.30 70.0

� 86.55 87.35 91.4 12.4 0.13 87.6

QDA � 74.04 74.04 79.3 24.9 0.21 75.1

� 77.4 88.45 100 18.0 0.22 82.0

� 82.65 83.15 87.9 16.3 0.17 83.7

QSVM � 73.7 77.25 89.3 23.2 0.73 76.8

� 81.35 89.3 99.3 15.0 0.18 85.0

� 94.45 95.8 98.6 4.7 0.05 95.3

LR � 68.5 68.35 73.6 30.5 0.31 69.5

� 78.5 88.9 100 17.2 0.21 82.8

� 93.4 94.65 97.1 5.6 0.05 94.4

N-B � 69.4 69.95 78.6 28.8 0.30 71.2

� 76.7 76.7 81.4 22.3 0.22 77.7

� 86.0 89.05 95.7 12.0 0.13 88.0

W-KNN � 74.04 77.9 90.0 22.7 0.21 77.3

� 80.8 87.15 97.1 15.9 0.17 84.1

� 88.55 92.3 98.6 9.4 0.11 90.6

EBT � 71.35 71.8 79.3 27.0 0.23 73.0

� 80.8 83.8 92.9 17.2 0.17 82.8

� 90.5 91.55 95.0 8.6 0.09 91.4

ESD � 69.95 71.6 82.9 27.5 0.30 72.5

� 60.2 74.5 85.0 24.9 0.27 75.1

� 83.9 86.5 93.6 14.2 0.15 85.8

Cubic KNN � 71.7 74.4 86.4 25.3 0.23 74.7

� 80.15 87.4 97.9 16.3 0.19 83.7

� 85.5 90.2 97.9 12.0 0.14 88.0

Proposed � 73.65 78.5 91.4 22.7 0.22 77.3

� 82.6 87.55 96.4 14.6 0.15 85.4

� 95.2 95.85 97.9 4.3 0.04 95.7
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of fused vector ϒ
(

F
//
s

)

. The Bhattacharyya distance is

calculated as:

	Bd = −ln

⎛

⎜

⎝

∑

u∈ϒ
(

F
//
s

)

√

(

fi(u).fi+1(u)
)

⎞

⎟

⎠
(36)

Then Entropy-variance is performed on crossness vec-

tor to find out the best features based of their maximum

entropy value.

EV
( 	Bd

)

= − ln
(

f(i+1) + σ 2
)

ln
(

fi + σ 2
)

+ ln
(

fi − σ 2
)

ϒ
∑

f=1

(

H0
fi
/δH

)

log2

(

H0
fi
/δH

)

(37)

δH =
ϒ−1
∑

f=0

H i
0 (38)

where H
j
i denotes the closeness set of features. Hence the

size of selected feature vector is 1×172. The selected vec-

tor is feed to multi-class SVM for classification of lesion

(i.e. melanoma, benign). The one-against all multi-class

SVM [42] is utilized for classification.

Results

Evaluation protocol

The proposed method is evaluated on four publicly

available datasets including PH2, ISIC, and collective ISBI

(ISBI 2016 and ISBI 2017). The proposed method is a con-

junction of two primary steps: a) lesion identification; b)

lesion classification (i.e. melanoma, benign, atypical nevi).

The lesion identification results are discussed in their

own section. In this section, we discussed proposed lesion

classification results. Four classifications three types of

features are extracted (i.e. texture, HOG, and color). The

experimental results are obtained on each feature set

individually and then compare their results with pro-

posed feature vector (fused vector). The multi-class SVM

is selected as a base classifier and compare their results

with nine classifications method (decision tree (DT),

quadratic discriminant analysis (QDA), quadratic SVM

(Q-SVM), logistic regression (LR), Naive Bayes, weighted

K-Nearest Neighbor (w-KNN), ensemble boosted tree

(EBT), ensemble subspace discriminant (ESDA), and

cubic KNN (C-KNN)). Seven measures are calculated

for testing the performance of proposed method such as

sensitivity, specificity, precision, false negative rate (FNR),

false positive rate (FPR), and accuracy. Also, calculate

the execution time of one image. The proposed method

is implemented on MATLAB 2017a having personal

computer Core i7 with 16GB of RAM.

Datasets & results

PH2Dataset

The PH2 dataset [51] consists of 200 RGB dermoscopic

images and of resolution (768 × 560). This dataset has

three main divisions; a) melanoma; b) benign; c) common

nevi. There are 40 melanoma, 80 benign and 80 common

nev image are in this dataset. For validation 50:50 strategy

is performed for training and testing of proposed method.

Four experiments are done on different feature sets (i.e.

harlick features, color features, HOG features, proposed

features fusion and selection method) for given a compar-

ison between individual set of features and proposed fea-

ture set. The proposed features fusion and selection with

entropy-variances method results are depicted in Table 3.

The proposed method obtain maximum accuracy 97.06%,

sensitivity 96.67%, specificity 98.74%, precision 97.06%

and FPR is 0.01. The individual feature set by without

utilizing feature selection algorithm results are depicted

in Table 4. The results of Tables 3 and 4 are confirmed

by their confusion matrix in Table 5, which shows that

proposed features fusion and selection method efficiently

perform on base classifier as compare to other classi-

fication methods. The comparison of proposed method

on PH2 dataset also given in Table 6, which shows the

authenticity of proposed method.

ISIC dataset

The ISIC dataset [52] is an institutional database and

often used in skin cancer research. It is an open source

database having high-quality RGB dermoscopic images

of resolution (1022 × 1022). ISIC incorporates many sub-

datasets but we selected: a) ISICMSK-2 and b) ISIC-UDA.

From ISIC MSK-2 dataset, we collected 290 images

Table 12 Confusion matrix for all set of extracted features using
ISIC-UDA dataset

Class Total images Melanoma Benign

Confusion matrix: Proposed features fusion and selection

Melanoma 93 95.7% 4.3%

Benign 140 - 100%

Confusion matrix: Harlick features

Melanoma 93 55.9% 44.1%

Benign 140 8.6% 91.4%

Confusion matrix: HOG features

Melanoma 93 68.8% 31.2%

Benign 140 3.6% 96.4%

Confusion matrix: Color features

Melanoma 93 92.5% 7.5%

Benign 140 2.1% 97.9%
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Table 13 Classification results on ISBI 2016 dataset

Method Sensitivity (%) Precision (%) Specificity (%) FNR (%) FPR Accuracy (%) AUC

DT 63.0 62.0 79.0 28.5 0.370 71.5 0.63

QDA 68.0 65.5 79.0 26.4 0.320 73.6 0.74

Q-SVM 68.5 78.5 95.0 17.7 0.315 82.3 0.81

LR 67.0 65.0 79.0 26.1 0.330 72.9 0.69

NB 74.5 77.0 91.5 17.1 0.255 82.9 0.84

W-KNN 70.5 75.0 91.0 18.7 0.295 81.3 0.83

EBT 66.0 80.0 97.0 18.3 0.034 81.7 0.79

ESDA 72.5 55.0 90.0 18.5 0.275 81.5 0.83

Proposed 75.5 78.0 93.0 16.8 0.270 83.2 0.85

Data in bold are significant

having 130 melanoma and 160 benign. For validation of

proposed algorithm, we have performed four experiments

on different types of features (i.e. Harlick features, Color

features, HOG features and proposed features fusion and

selection vector). Four different classification methods

are compared with the base classifier ( multi-class SVM).

The proposed features fusion and selection results are

shown in Table 7 having maximum accuracy 97.2%, sensi-

tivity 96.60% and specificity 98.30% on the base classifier.

The individual feature set results are depicted in Table 8,

and base classifier (multi-class SVM) perform well as

compared to other methods. The base classifier results

are confirmed by their confusion matrix given in Table 9.

From ISIC UDA dataset, we select total 233 images

having 93 melanoma and 140 benign. The proposed

method results are depicted in Table 10 having maximum

accuracy 98.3% and specificity 100% on the base classifier.

Also, the results on individual feature sets are depicted

in the Table 11, which shows that the proposed features

fusion and selection method perform significantly well as

compared to Table 10. The base classifier results are con-

firmed by their confusion matrix given in the Table 12,

which shows the authenticity of proposed method.

ISBI - 2016& 17

These datasets - ISBI 2016 [52] and ISBI 2017 [53], are

based on ISIC archive, which is a largest publicly avail-

able collection of quality controlled dermoscopic images

for skin lesions. It contains separate training and test-

ing RGB samples of different resolutions, such as ISBI

2016 contains 1279 images (273 melanoma and 1006

benign), where 900 images for training and 350 for test-

ing the algorithm. The ISBI 2017 dataset contains total

2750 images (517 melanoma and 2233 benign) including

2000 training images and 750 testing. For experimental

results, first experiments are done on each dataset sep-

arately and obtained classification accuracy 83.2%, and

88.2% on ISBI 2016, and ISBI 2017, respectively. The clas-

sification results are given in Tables 13 and 14, which

is proved by their confusion matrix given in Table 16.

After that, both datasets are combined and 10 fold cross-

validation is performed for classification results. Themax-

imum classification accuracy of 93.2% is achieved with

multi-class SVM, presented in Table 15, which is also

confirmed by their confusion matrix given in Table 16.

The proposed method is also compared with [54], which

has achieved maximum classification accuracy of 85.5%,

Table 14 Classification results on ISBI 2017 dataset

Method Sensitivity (%) Precision (%) Specificity (%) FNR (%) FPR Accuracy (%) AUC

DT 74.5 75.0 77 25.5 0.255 74.8 0.77

QDA 77.5 78.0 81 22.5 0.254 77.6 0.78

Q-SVM 86.5 86.5 87 13.8 0.135 86.2 0.92

LR 84.5 84.5 86 15.4 0.135 84.6 0.92

NB 79.5 80.0 83 21.5 0.212 79.5 0.80

W-KNN 87.5 88.0 88 12.2 0.125 87.8 0.92

EBT 86.0 83.5 92 14.2 0.140 85.8 0.91

ESDA 83.5 83.5 87.0 16.5 0.165 83.5 0.90

Proposed 88.5 88.0 91.0 11.8 0.120 88.2 0.93

Data in bold are significant
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Table 15 Classification results for challenge ISBI 2016 & ISBI 2017 dataset

Method Performance measures

Sensitivity (%) Precision (%) Specificity (%) FNR (%) FPR Accuracy (%) AUC

DT 87.5 88.0 86.0 12.4 0.125 87.6 0.86

QDA 80.0 80.0 79.0 20.0 0.200 80.0 0.86

QSVM 92.5 92.5 95.0 7.4 0.075 92.6 0.95

LR 92.0 91.5 95.0 8.2 0.08 91.8 0.95

NB 92.0 92.5 97.0 8.2 0.08 91.8 0.93

W-KNN 88.5 88.5 91.0 11.6 0.115 88.4 0.88

EBT 92.0 92.0 97.0 8.3 0.08 91.7 0.95

ESDA 89.5 89.5 91.5 10.4 0.105 89.6 0.94

Proposed 93.0 93.5 97.0 6.8 0.07 93.2 0.96

Data in bold are significant

AUC 0.826, sensitivity 0.853, and specificity 0.993 on ISBI

2016 dataset. However, with our method, achieved clas-

sification accuracy is 93.2%, AUC 0.96, sensitivity 0.930,

and specificity 0.970, which confirms the authenticity and

efficiency of our algorithm on combined dataset com-

pared to [54]. Moreover, in [55] reported maximum AUC

is 0.94 for skin cancer classification for 130 melanoma

images, however, our method achieved AUC 0.96 on 315

melanoma images. In [56] and [57], the classification accu-

racy achieved is 85.0% and 81.33% for ISBI 2016 dataset.

Upon comparison with [54–56], and [57], the proposed

method performs significantly better on both (ISBI 2016

& 17) datasets.

Discussion
In this section, we epitomized our proposed method in

terms of tabular and visual results. The proposed method

consists of two major steps: a) lesion identification; b)

lesion classification as shown in the Fig. 1. The lesion iden-

tification phase has two major parts such as enhancement

and segmentation. The lesion enhancement results are

shown in the Fig. 3, which shows the efficiency of intro-

duced technique. Then the lesion segmentation method is

performed and their results in terms of quantitative and

tabular in Table 2 and Figs. 4, 5, 6 and 7. After this extract

multi-level features and fused based on parallel strategy.

Then a novel feature selection technique is introduced

and performed on fused feature vector to select the best

features as shown in Fig. 8. Finally, the selected features

are utilized by a multi-class SVM. The multi-class SVM

selected as a base classifier. The purpose of features fusion

and selection is to improve the classification accuracy and

also make the system more efficient. Three publicly avail-

able datasets are utilized for classification purposes such

as PH2, ISIC, and Combined dataset (ISBI 2016 and ISBI

2017). The individual feature results on selected datasets

are presented in the Tables 4, 8, and 11. Then compared

their results with proposed features fusion and selection

as presented in the Tables 3, 7, and 10, which shows that

proposedmethod performs significantly better in terms of

classification accuracy and execution time. The base clas-

sifier results are also confirmed by their confusion matrix

given in Tables 5, 9, and 12. Also, the comparison results of

the PH2 dataset with existing methods is presented in the

Table 6, which shows the efficiency of proposed method.

Moreover, the proposedmethod is also evaluated on com-

bination of ISBI 2016 and ISBI 2017 dataset and achieved

classification accuracy 93.2% as presented in Table 15.

The classification accuracy of proposed method on Com-

bined dataset is confirmed by their confusionmatrix given

in Table 16, which shows the authenticity of proposed

method as compared to existing methods.

Table 16 Confusion matrix for ISBI 2016, ISBI 2017, and
Combined images dataset

ISBI 2016

Classs Classification class
TPR (%) FNR (%)

Method Benign Melanoma

Benign 93% 3% 93% 3%

Melanoma 11% 53% 53% 11%

ISBI 2017

Class Classification class
TPR (%) FNR (%)

Benign Melanoma

Benign 91% 9% 91% 9%

Melanoma 14% 86% 86% 14%

Combined

Class Classification class
TPR (%) FNR (%)

Benign Melanoma

Benign 97% 3% 97% 3%

Melanoma 11% 89% 89% 11%

Data in bold are significant
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Conclusion
In this work, we have implemented a novel method for

the identification and classification of skin lesions. The

proposed framework incorporates two primary phases:

a) lesion identification; b) lesion classification. In the

identification step, a novel probabilistic method is intro-

duced prior to features extraction. An entropy controlled

variances based features selection method is also imple-

mented by combining Bhattacharyya distance, and with

an aim of considering only discriminant features. The

selected features are later utilized for classification in its

final step using multi-class SVM. The proposed method

is tested on three publicly available datasets (i.e. PH2,

ISBI 2016 & 17, and ISIC), and it is concluded that

the base classifier performs significantly better with pro-

posed features fusion and selection method, compared

to other existing techniques in term of sensitivity, speci-

ficity, and accuracy. Furthermore, the presented method

achieved satisfactory segmentation results on selected

datasets.
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