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Abstract. We perform data assimilation experiments with a

widely used quasi-geostrophic channel model and compare

the Local Ensemble Kalman Filter (LEKF) with a 3D-Var

developed for this model. The LEKF shows a large improve-

ment, especially in correcting the fast growing modes of the

analysis errors, with a mean square error equal to about half

that of the 3D-Var. The improvement obtained in the anal-

ysis is maintained in the forecasts, implying that the system

is capable of correcting the initial errors responsible for later

forecast error growth.

Different configurations of the LEKF are tested and com-

pared. We find that for this system, adding random pertur-

bations after every analysis step is more effective than the

standard variance inflation in order to avoid underestimating

the background error covariance and the consequent filter di-

vergence.

Experiments indicate that optimal results are obtained with

a relatively small number of vectors (∼30) in the ensemble.

The LEKF is characterized by the “localization” of the anal-

ysis process over local domains surrounding each gridpoint

of the model grid. We find that, when using a fixed num-

ber of ensemble vectors, there is an optimal size of the local

horizontal domain beyond which the results do not change

further.

1 Introduction

Numerical weather prediction has substantially improved in

recent years, due to both an enhancement in the dynamics

and physical parameterizations in models, and to new meth-

ods to generate initial conditions in the data assimilation pro-

cesses (e.g. Kalnay, 2003). It is well known that the atmo-

spheric flow is a chaotic system and that numerical forecasts
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are sensitive to small changes in the initial conditions, with a

rapid growth of the initial errors that leads, in a relatively

short time, to deviations responsible for limiting the pre-

dictability of the flow to a week or so. For this reason, dur-

ing the last decades a great effort has been devoted to study

new methods aimed at improving the description of the pre-

dictability of the flow and, as a consequence, of the initial

conditions.

Presently, several operational centers use 3-Dimensional

Variational data assimilation systems (3D-Var, e.g. Parrish

and Derber, 1992; Lorenc, 1986) to generate the analyses

required to provide initial conditions to the model. This

method is a statistical interpolation between the new obser-

vations and a short range forecast (typically 3 to 12 h), which

is used as first guess or background. In this process, the cor-

rections of the background toward the observations, i.e. the

analysis increments, are strongly dependent on the inverse of

their error covariances, and only take place within the sub-

space spanned by the background error covariance. There-

fore a good representation of the observation and background

error covariances is one of the most important aspects in the

framework of the present efforts in developing data assimi-

lation systems. In 3D-Var methods the background error co-

variance B is given by a statistical average of the error struc-

tures, and is maintained constant in time. That is, there is

no accounting for the variations of the atmospheric state and

consequent day-to-day variability of the background errors

due to the actual state of the flow. These flow-dependent er-

rors are hereafter referred to as the “errors of the day”, the

importance of which has been described in several recent

papers and books (e.g. Courtier et al., 1994; Kalnay, 2003;

Corazza et al., 2003).

Kalman filtering (see Daley, 1993), in which B is pre-

dicted (Bt=L Bt−1LT, where L is the tangent linear model,

LT its transpose and t is time) can be considered the nat-

ural and complete approach to the problem of representing

the variability of B, but the computational cost related to
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this formulation makes its operational application impossible

without major simplifications, even considering the potential

development of the computational facilities during the next

decade. There are other methods that try to account for the

“errors of the day” in the forecast error covariance, such as

the modification of B in 3D-Var (Purser, 2005; De Pondeca

et al., 2006; Corazza et al., 2002), 4-dimensional variational

data assimilation (4D-Var, e.g. Courtier et al., 1994; Rabier

et al., 2000; Klinker et al., 2000), ensemble Kalman Filter-

ing (EnKF, e.g. Houtekamer and Mitchell, 1998; Hamill and

Snyder, 2000), and the method of representers (Bennett et al.,

1996).

Recently, several studies have been carried out in order

to substitute the standard B in 3D-Var with a more complex

covariance matrix, no longer constant, but capable to take

into account time dependent flow. In particular, a general

method to implement any arbitrary anisotropy, and therefore

also flux-dependent anisotropies, has been implemented at

NOAA/NCEP, as described by Purser (2005), regarding the

theoretical geometrical implementation, and by De Pondeca

et al. (2006), concerning different implementations of the fil-

ter. All the implementations produced an improvement re-

spect to the standard 3D-Var, further confirming the impor-

tance of the inclusion of the errors of the day in the data as-

similation process. Corazza et al. (2002) experimented with

a simpler method, based on the use of the information pro-

vided by an ensemble of bred vectors in B, using the same

system as in this work, and also showed significant improve-

ments with respect to 3D-Var.

4D-Var is a powerful approach that reduces the compu-

tational cost of Kalman Filtering by estimating the initial

conditions such that the model forecast best fits the obser-

vations within a data assimilation window. 4D-Var produces

the same results as Kalman Filtering under the assumptions

of perfect linear model framework, of Gaussian errors, and

of a Kalman Filter representation of the background error

covariance matrix at the beginning of the computation. Al-

though 4D-Var is computationally affordable with the most

powerful available computers, its cost is still high compared

to 3D-Var. In addition, it requires the development and main-

tenance of the adjoint of the model.

Another approximation to Kalman Filtering is Ensemble

Kalman Filtering (EnKF), where the background error co-

variance is estimated by the sample covariance from the

background ensemble vectors. As a result it has the advan-

tage of being model independent, i.e. no tangent linear and

adjoint model are needed, since EnKF only requires as input

an ensemble of forecasts and their corresponding predictions

of the observations, and from that it produces a new ensemble

of analyses. In recent implementations that allow for the use

of a relatively small number of ensemble members, EnKF

has been shown to be less computationally expensive than

4D-Var (Evensen, 1994). A number of studies have been car-

ried out with promising results (Houtekamer and Mitchell,

1998; Hamill and Snyder, 2000; Tippett et al., 2002; Ander-

son, 2001; Etherton and Bishop, 2004), and the system de-

veloped by Houtekamer et al. (2005) has been implemented

in Canada to provide initial ensemble perturbations.

Kalnay and Toth (1994) have pointed out that the breeding

technique used for ensemble forecasting describes the local

pattern of the “errors of the day” and proposed a method to

use the information made available by an ensemble of bred

vectors to in effect approximate the background covariance

matrix. In their work they argued that the similarity between

breeding (Toth and Kalnay, 1993, 1997) and data assimila-

tion suggests that the background errors should have local

structures similar to those of bred vectors, and this conjec-

ture has been confirmed by Corazza et al. (2003) with the

same Quasi-Geostrophic model used in this work.

More recently, based on the results of Patil et al. (2001),

Ott et al. (2002, 2004) developed a new system, called Lo-

cal Ensemble Kalman Filter (LEKF), in which the Kalman

Filter equations are solved within the space of the ensemble

forecasts, but locally in space. This system has been tested

on a simple 40 variables Lorenz model (Ott et al., 2004), and

on the NCEP Global Forecasting System (Szunyogh et al.,

2004, 2005). It is one of the possible implementations of

the square-root ensemble Kalman filters, where the analysis

increments and errors are computed using a background er-

ror covariance derived from the ensemble of vectors, so that

the increments lay in the subspace spanned by these vectors.

This gives the major advantage of capturing the dominant er-

ror growing directions, thus providing a large improvement

to the informations available from the observational errors.

Other square-root filters derive their computational efficiency

from the assimilation of one observation at a time (Tippett

et al., 2002), whereas the LEKF computes the analysis inde-

pendently at each grid point, using all the observations avail-

able within a local volume surrounding it. This is advanta-

geous in the presence of a large number of observations, such

as satellite data, and it allows for a very efficient parallel im-

plementation.

In this work we test different configurations of the LEKF

by implementing it on a quasi-geostrophic channel model de-

scribed in Rotunno and Bao (1996). The results are com-

pared with those obtained with an optimized 3D-Var system

developed by Morss (1998). A perfect model framework is

assumed, so that the conclusions of this work are not neces-

sarily valid for a more complex model with errors. However

this assumption allows us to explicitly define the “true state

of the atmosphere” (by integrating the model from a given

initial state) and therefore perform a direct comparison in

which the analysis and forecast errors are explicitly repre-

sented.

The outline of the work is as follows. In Sect. 2 the im-

plementation of the quasi-geostrophic model and of the 3D-

Var data assimilation system are briefly reviewed. In Sect. 3,

a description of the implementation of the Local Ensemble

Kalman Filter is presented. Results are discussed in Sect. 4,

and a summary and conclusions close the work.
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2 Model and 3D-Var data assimilation system

This study uses the model developed by Rotunno and Bao

(1996) and used by Morss (1998) and Morss et al. (2001)

to develop a 3D-Var scheme. It is a quasi-geostrophic mid-

latitude, β-plane, finite-difference channel model, periodic

in longitude, and with impermeable walls on the north and

south boundaries. The bottom and the top boundaries are

treated as rigid lids. It has no orography, land-sea contrast

or seasonal cycle. Quasi-geostrophic potential vorticity is

conserved except for Ekman pumping at the surface, ∇4 hor-

izontal diffusion and forcing by relaxation to a baroclinically

unstable zonal mean state. All the experiments described in

this work have been performed over a domain corresponding

to an area of roughly 16 000×8000×9 km with a grid com-

posed by 64 points east-west, 32 south-north and 5 vertical

interior layers, plus the bottom and top of the domain, where

potential temperature is forecasted to provide vertical bound-

ary conditions for the streamfunction.

As indicated in the introduction, the “true” state of the at-

mosphere is created by a long integration of the model. The

3D-Var data assimilation system used in this work as the ref-

erence data assimilation scheme is based on the code of the

scheme originally described in Morss (1998). “Rawinsonde”

observations of u, v and T are obtained from the true state of

the atmosphere at a fixed number of grid-points in order to

avoid interpolation errors. Random Gaussian noise is gener-

ated and added to the observations to simulate observational

errors compatible with those of the real radiosonde stations

of the global operational network.

Analyses are performed every 12 h and the 12 h forecast

is used as background for the 3D-Var. The system has been

optimized for the number of stations used in this work by

tuning the amplitude of the background covariance matrix B

originally developed by Morss (1998) so as to minimize the

analysis and forecast errors of the 3D-Var. The optimization

has been limited to a careful tuning of the amplitude of B,

because Morss (1998) showed that the spectral coefficients

of B obtained for the original system are not sensitively de-

pendent of the density of the observational network.

In the original formulation Morss (1998) defines the ob-

servation operator H as the operator that transforms the

model variables (grid point components of the potential vor-

ticity and potential temperature) into “rawinsonde observa-

tions”. The global spectral transforms for the Poisson equa-

tion solver and its inverse (required to transform model po-

tential vorticity into observed winds and temperatures and

vice versa) are conveniently computed using a global spectral

approach within the 3D-Var. As we will see in the next sec-

tion, this method cannot be directly applied in the framework

of the LEKF formulation, since the analysis is computed on

local domains, and a different approach has been developed.

3 The implementation of the Local Ensemble Kalman

Filter data assimilation system

3.1 The localization

The implementation of the Local Ensemble Kalman Filter

has been performed following Ott et al. (2002). In the LEKF

the representation of the state of the flow is decomposed over

local domains around each grid point. A detailed description

of the LEKF can be found in Ott et al. (2004) so here we only

provide an overview of the approach, following the notation

adopted in their paper.

In the 2-dimensional horizontal grid of the model, the state

of the flow may be represented by means of a vector field

x(r; t) where r runs over the grid points rmn. At each grid

point x is a vector of the state variables of the model (in our

case potential vorticity and temperature) at all vertical levels.

Let U denote the dimension of x(r; t) at a fixed r . In the

framework of the QG-model used in this work, where the

forecast variables are potential vorticity in the five internal

layers and potential temperature at the top and the bottom

levels, U=7. However, as discussed in Sect. 3.5, the method

adopted to locally handle the observation operator requires

instead the alternate use of u, v, T at all levels, so that in the

implementation used in this work U (in observation space)

is equal to 21. We could have also localized in the vertical,

as done in Szunyogh et al. (2005), but because of the low

vertical resolution we have included a full column in each

local volume.

Following the work of Patil et al. (2001) and Ott et al.

(2002), we introduce at each grid point a local vector xmn de-

fined as x(rm+m′,n+n′ , t) for −l≤(m′, n′)≤l. That is, xmn(t)

contains the information of the state of the model over the lo-

cal area within a (2l+1) by (2l+1) sub-grid points centered

at rmn, with a dimension equal to (2l+1)2U . Considering

an ensemble of k forecasts started from the previous analysis

step, it is possible to construct the local vectors associated

with each member of the ensemble (denoted by x
b
mn, where

the superscript b stands for “background”). As in Ott et al.

(2002), x
b
mn at time t can be described by a probability dis-

tribution function Fmn(x
b
mn, t), approximated by a Gaussian

distribution identified by a local background error covariance

matrix Pb
mn and the most probable state x̄

b
mn. Assuming that

the dimension of the null space of Pb
mn is large compared

with the k dimensional subspace orthogonal to the null space,

and since Pb
mn is symmetric, it is possible to compute an or-

thonormal set of k eigenvectors {u
(j)
mn(t)} with a correspond-

ing set of k non-negative eigenvalues {λ
(j)
mn(t)} generally dis-

tinct and such as λ
(j)
mn(k)>0.

In terms of u
(j)
mn and λ

(j)
mn the covariance matrix is given by

Pb
mn(t) =

n
∑

j=1

x̃
b(j)
mn (t)

(

x̃
b(j)
mn (t)

)T

(1)
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where

x̃
b(j)
mn (t) =

√

λ
(j)
mn(t)u

(j)
mn(t). (2)

Working in the k dimensional space Smn spanned by the vec-

tors {u
(j)
mn(t)} is particularly advantageous since it is possible

to represent Pb
mn(t) as a diagonal matrix equal to

P̂b
mn(t) = diag

[

λ(1)
mn, λ

(2)
mn, . . . , λ

(k)
mn

]

, (3)

so that its inverse is trivial (here and in the following text, the

hat represents vectors or matrices in the Smn space).

Patil et al. (2001), used 30-pairs of ensembles of bred

vectors from the NCEP system (Toth and Kalnay, 1993,

1997) and found that forecast errors in the mid-latitude

extra-tropics tend to lie in a low dimensional subset of the

(2l+1)2U dimensional local vector space. For the system

used in this work, this result was also very apparent in

Corazza et al. (2003). Thus, it is possible to make the hy-

pothesis that the dimension of Smn is rather low, and that the

error variance in all other directions is negligibly small com-

pared to the variance

k
∑

j=1

λ
(j)
mn, (4)

in the directions umn(j), j=1, 2, . . . , k.

3.2 Data assimilation

Following Ott et al. (2002), let x
a
mn denote the random vari-

able (analysis) at time t representing the local vector after

using the observations. If ŷ
o
mn(t) is the vector of observa-

tions within the local region, with errors normally distributed

with covariance matrix R̂mn(t), the probability distribution

of x
a
mn is also Gaussian, and is identified by the most prob-

able state x̄
a
mn and the associated covariance matrix Pa

mn(t).

The data assimilation step determines x̄
a
mn (the local analy-

sis) and Pa
mn(t) (the local analysis covariance matrix). Sim-

ilarly to a global 3D-Var data assimilation system, the solu-

tion to this problem can be written in the ensemble subspace

Smn as follows

ˆ̄x
a
mn(t) = x̂

b
mn(t) +

{

P̂b−1

mn (t) + ĤT
mnR̂−1

mnĤmn

}−1
×

ĤT
mnR̂−1

mn

(

ŷ
o
mn(t) − Ĥmnx̂

b
mn(t)

)

(5)

and

P̂a
mn(t) =

[

P̂b−1

mn (t) + ĤT
mnR̂−1

mnĤmn

]−1
(6)

where Ĥmn (assumed to be linear) is the local observation op-

erator which maps the local vector x̂mn(t) to the local obser-

vations ŷ
o
mn(t). Going back to the local space representation,

we have

x̄
a
mn(t) = Qmn(t) ˆ̄x

a
mn(t) (7)

Pa
mn(t) = Qmn(t)P̂

a
mn(t)Q

T
mn(t), (8)

where Qmn is the (2l + 1)2U by k matrix:

Qmn(t) =
{

u
(1)
mn(t)|u

(2)
mn(t)| . . . |u

(k)
mn(t)

}

. (9)

3.3 Updating the background field

The analysis information Pa
mn and x̄

a
mn can be used to

obtain an ensemble of global analysis fields {xa(i)(r, t)};

i=1, 2, . . . , k as described below (see Ott et al., 2002).

These fields represent the ensemble of initial conditions

for the atmospheric model. By integrating the ensemble

of global fields forward in time to the next analysis time

t+1t , it is possible to obtain the background ensemble

{xb(i)(r, t+1t)}. This completes the analysis cycle which,

if the procedure is stable, can be repeated for as long as de-

sired. Thus, at each analysis step a global initial condition

is available to be used to compute forecasts of the desired

duration.

The remaining task is to specify the global analysis fields

for the members of the ensemble {xa(i)(r, t)}, starting from

the analysis information, Pa
mn and x̄

a
mn. Let

x
a(i)
mn (t) = x̄

a
mn(t) + δxa(i)

mn (t) (10)

denote k local analysis vectors, where

k
∑

i=1

δxa(i)
mn (t) = 0, (11)

and

Pa
mn = (k − 1)−1

k
∑

i=1

δxa(i)
mn (t)

[

δxa(i)
mn (t)

]T

. (12)

By Eq. (11), the local analysis state x̄
a
mn(t) represents the

mean over the local analysis ensemble {xa(i)(t)}, and, by

Eq. (12) the error covariance matrix is computed from the

vectors {δxa(i)(t)}. The vectors δx
a(i)
mn (t) can be represented

in the form

δxa(i)
mn (t) = Ymn(t)δx

b(i)
mn (t), (13)

where the matrix Ymn(t) can be thought of as a generalized

“rescaling” of the original background fields and δx
b(i)
mn (t)

are defined as

δxb(i)
mn (t) = x

b(i)
mn (t) − x̄

b
mn(t) (14)

and are such that

Pb
mn(t) = (k − 1)−1

k
∑

i=1

δxb(i)
mn (t)

(

δxb(i)
mn (t)

)T

. (15)

There are many possible choices for Ymn(t) due to the

nonuniqueness of the square root of matrices. Here we fol-

low the choice made by Ott et al. (2004) making the hypoth-

esis that the original background fields are a good represen-

tation of a physical state, so as to minimize the difference
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(a) (b)

Fig. 1. (a) Time evolution of Analysis Error (rms) of potential vorticity at mid-level for the regular 3D-Var system (filled dots). The empty

dots line represents the 48 h forecast error. (b) Same as (a) for the reference LEKF system. Here as in the other figures, variables are

nondimensionalized following the relations described, for instance, in Rotunno and Bao (1996, page 1058, Sect. 3.c).

between the new analysis and the background ensembles. As

a result the solution for Ymn(t) is:

Ymn = (16)
[

I + XbT

mn

(

Pb
mn

)−1 (

Pa
mn − Pb

mn

) (

Pb
mn

)−1
Xb

mn

]
1
2

where

Xb
mn = (k − 1)−

1
2

{

δxb(1)
mn | δxb(2)

mn | . . . | δxb(k)
mn

}

(17)

We can therefore build an ensemble of global fields

{xa(i)(r, t)} that can be propagated forward in time to the

next analysis time. For this purpose it is possible to set

x
a(i)(rmn, t) = Jx

a(i)
mn (t), (18)

where J maps the (2l + 1)2U dimensional local vector to

the U dimensional vector updating the vertical profile of the

model (U=7) at the grid point rmn at the center of the patch.

Equation (18) is applied at every grid point (m, n) of the at-

mospheric model. Thus Eq. (18) defines an ensemble of k+1

global analysis fields x
a(i)(r, t) for i=1, 2, · · · , k.

3.4 Handling the stability of the system

It is known that a frequent problem that can arise from an en-

semble of vectors not globally orthogonalized is its tendency

to collapse toward a subspace that is too small. As a result,

even for a perfect model, the background error covariance

tends to be underestimated. These effects will tend to un-

derestimate the forecast error, and therefore to give too little

weight to the observations, which can lead to the divergence

of the filter (Anderson, 2001). In order to avoid this problem,

two different methods aimed at separating and enlarging the

ensemble perturbations have been tested and compared in the

implementation of the Local Ensemble Kalman Filter.

1. Multiplicative inflation: the amplitude of each pertur-

bation vector is increased by a factor larger than 1. By

applying this method no change in direction is added at

the analysis step, but the amplitude of the forecast per-

turbation vectors is kept sufficiently large (Anderson,

2001).

2. Additive random perturbations: a global HT operator

is applied to a set of k random perturbations vectors in

the observational space with an amplitude comparable

with the errors of the observations. The resulting fields

are added to the global vectors of the ensemble. This

allows to “refresh” the ensemble at every analysis step

(Annan, 2004), by introducing perturbations in new ran-

dom directions and therefore increasing the Local En-

semble Dimension (Patil et al., 2001; Oczkowski et al.,

2005), which represents the effective number of inde-

pendent directions present in an ensemble. This method

(Corazza et al., 2002) effectively avoids the excessive

convergence of bred vectors into a small dimensional

space (Wang and Bishop, 2003), and is therefore an al-

ternative solution to the rank-deficiency problem that

causes filter divergence. We note that in practice this

additive inflation can be implemented without requiring

the use of the transpose of the observation operator (e.g.,

Hunt, 2005).
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(a)

(b)

Fig. 2. (a): Shaded: example of background error for potential

vorticity at mid-level at a fixed time (day=123) for the regular 3DVar

system. The contour plot represents the analysis increments and the

red dots indicate the position of the radiosonde stations. (b): same

as (a) but for the LEKF. Note different scales in the two figures.

3. Methods 1) and 2) can be used at the same time, in what

we call “the combined system”.

3.5 Handling the Poisson Solver in the local domain

As mentioned in Sect. 2, the observation operator H performs

the transformation from potential vorticity and potential tem-

perature in the model space to horizontal wind velocity and

temperature in the observation space. The introduction of H

and HT requires the solution of a Poisson equation that in the

original system used by Morss (1998) is solved by means of

the use of global spectral transforms with two boundary con-

ditions: (1) periodic solution in the zonal direction and (2)

rigid lateral boundaries at the northern and southern walls.

When we work locally, as in the LEKF, this global spectral

approach is not feasible. A solution to this problem is found

by splitting the observation operator into two parts

H = H̄ H̃ (19)

where H̄ is the operator mapping u, v and T defined on the

model grid to the observation locations, and H̃ is the opera-

tor transforming potential vorticity and potential temperature

into u, v and T over the global model grid.

Localizing H̄ is trivial, since only an interpolation pro-

cess has to be carried on. In our experiments, this process

is even simpler, since the observation locations are on the

grid points. Thus it is possible to apply H̃ once, at the begin-

ning of the data assimilation step, to all the vectors, in order

to compute global vectors for u, v and T over the model do-

main. The computation of the new analysis and perturbations

can therefore be carried on considering these as the model

variables. At the end of the process the new global vectors in

u, v, and T are transformed back to the potential vorticity and

potential temperature fields needed by the quasi-geostrophic

model.

Table 1 summarizes the parameters used for the configura-

tion of the LEKF. The optimal parameters shown in this table

are used unless otherwise noted.

4 Results

4.1 Comparison between the 3D-Var and the LEKF

The time evolution of the analysis root mean square error of

the potential vorticity as well as of the 48 h forecast error for

the optimized version of the 3D-Var scheme is presented in

Fig. 1a, plotted every 12 h for about a year (711 values). The

system is stable in time, even though the presence of partic-

ularly large maxima (e.g. around days 50 and 120) indicate

significant variability of the errors in time. This is an ex-

ample of the importance of the “errors of the day”, i.e., the

variability of the errors in space and time discussed in the

introduction that can be considered an intrinsic property of

the stability of the flow. The results shown in Fig. 1a are

consistent with those obtained using the original 3D-Var sys-

tem developed for this quasi-geostrophic model (see Morss,

1998).

The correspondence of large forecast errors with peaks in

the analysis errors valid at the same time is a clear indica-

tion that these errors are linked to the most unstable modes

of the flow. This implies that their correction is important

not only to reduce the amplitude of the fluctuations of the

analysis errors but also to delay the fast growth of the most

unstable (and therefore most important) errors of the flow.

The corresponding results for LEKF (Fig. 1b), discussed in

the next subsection, clearly indicate that most large “errors

of the day” are eliminated.

The Local Ensemble Kalman Filter implementation

(Sect. 3) uses the same observational settings as the opti-

mized 3D-Var system. Unless otherwise noted, the number
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Table 1. List of the optimal settings LEKF system used for the simulations presented in this work unless otherwise noted. In particular we

have adopted a local domain characterized by an horizontal base of 7×7 points (l=3), with no vertical localization (7 layers). Since the data

assimilation variables are u, v, and T , U=21 (number of variables in a column, Sect. 3.1). Reference simulations have been performed using

30 ensemble members (k=30), and constructing the final global fields as an average of all the analysis fields available from different local

domains (“multi column” method, Sect. 4). The average amplitude of the random perturbations added to the ensemble members at the end

of the analysis step is 5% of the average amplitude of the ensemble vectors (Sects. 3.4 and 4). Finally, when multiplicative inflation is used

in the combined method, the ensemble vectors are multiplied by a factor equal to 1.02 at the end of the data assimilation step (Sect. 3.4).

Horizontal grid 64×32 points

Vertical levels 5 plus top and bottom

Horizontal dimension of the local domain l=3

Number of variables in a column (u, v, and T in 7 layers) U=21

Number of members in the ensemble k=30

Method to update the global field average (“multi column”)

Amplitude of the random perturbations ∼5% of the average amplitude of the

ensemble vectors

Inflation factor for the combined system 1.02

of ensemble members is equal to 30. Two methods for up-

dating the new global vectors were tested (see Sect. 3.3). In

the first one only the central column of the local domain is

updated, so that each point of the global domain is modified

only once (“central column method”). In the second method

all the points within the domain of each local assimilation

are updated, so that the final analysis global vector is repre-

sented by an average of the (2l+1)2 values (“multi column

method”). Only results for the multicolumn method are pre-

sented since they were slightly better than those of the central

column method.

Several tests were performed using different values of

multiplicative inflation, and we found that this method was

initially able to improve significantly the simulation results

(during the first 100 analysis steps). However, a slow in-

crease of the error was observed in the second part of the

simulation for a wide range of inflation values, suggesting

that, at least for this system, inflation alone is not enough to

keep the dimension of the space spanned by the ensemble

vectors sufficiently large. This result is not necessarily rep-

resentative of the behavior of a real, more complex, system

(e.g. Szunyogh et al., 2005) where multiplicative inflation

was satisfactory. In the present quasi-geostrophic system it is

possible that the amplitude of the vectors is sufficiently small

to keep their behavior close to linear. Under this assumption,

the inflation method gives more weight to the observations,

but only within the same subspace of the ensemble perturba-

tions, which with time may become too small.

A marked improvement in the stability of the LEKF with

time was obtained by the use of additive random perturba-

tions instead of inflation. Unless otherwise noted, all the re-

sults shown hereafter are obtained using this method. Tests

using the combination of additive perturbations and inflation

were slightly better compared to those of the random pertur-

Fig. 3. Shaded: example of background error for potential vortic-

ity at midlevel at the same time of Figs. 2a and b (day=123) for

the LEKF system. The contour plots represent one vector of the

ensemble.

bations alone. A similar strategy was found optimal in Yang

et al. (2007)1.

Optimal results have been obtained by adding random per-

turbations to the analyses at the observation points following

the procedure described in Sect. 3.4. The standard deviation

of the perturbations is equal to about 5% of the average am-

plitude of the ensemble vectors. Since the average error of

the analysis decreases with the density of the observational

network, and the amplitude of the ensemble vector spread de-

1Yang, S. C., Corazza, M., Carrassi, A., Kalnay, E., and

Miyoshi, T.: Comparison of ensemble-based and variational-based

data assimilation schemes in a quasi-geostrophic model, in prepara-

tion, 2007.

www.nonlin-processes-geophys.net/14/89/2007/ Nonlin. Processes Geophys., 14, 89–101, 2007



96 M. Corazza et al.: LEKF in a QG model and comparison with 3D-Var

(a) (b) (c)

Fig. 4. (a): Scatterplot of Analysis Error of potential vorticity at mid-level for the regular 3D-Var and for the LEKF. (b): same as (a) for

streamfunction. (c): same as (a) for the 72 h forecast.
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Fig. 5. Forecast evolution of the Average Squared Error for the 3D-

Var and the LEKF system.

creases as well, it might be thought that in order to keep the

system optimal, the amplitude of the random perturbations

also needs to change with observational density. However,

an important result of this work is that the ratio between the

amplitudes of the optimal random perturbations and the en-

semble vector spread does not depend on the observational

density and is equal to about 5%.

As indicated before, Fig. 1b shows the same analysis and

2-day forecast errors as Fig. 1a but for the LEKF system.

Compared to 3D-Var, there is a marked improvement in both

the analysis and the forecasts. In particular, the analysis er-

ror peaks are reduced, with the consequence that the corre-

sponding forecast errors are much smaller as well. As will

be discussed further, this indicates that the LEKF system is

capable of correcting the errors lying in the directions of the

fast growing modes.

Figure 2a shows an example of background errors (color

shaded) for potential vorticity at mid-level obtained by means

of the regular 3D-Var scheme. The corresponding analy-

sis increment is shown by contours. The location of the

rawinsonde observations is marked by red dots. This time

(day=123) has been chosen because it is representative of

a relatively large error maxima both for the 3DVar and the

LEKF systems (see Figs. 1a and b, respectively). As ex-

pected, the analysis increments generally correct the errors

according to the information provided by the observations,

with the amplitude of the increments decreasing with the dis-

tance to the observation. However, the 3D-Var corrections do

not take into consideration the shape of the background error,

since the constant 3D-Var background error covariance ma-

trix is built as the time average of many error estimations.

The performance of the LEKF in computing the analy-

sis increments is shown in Fig. 2b. As anticipated at the

beginning of this section, the representation of the back-

ground covariance matrix by means of the ensemble of vec-

tors allows the creation of analysis increments with a shape

similar to that of the background error. This is in con-

trast to 3D-Var where the analysis increments are isotropic

rather than stretched toward the errors of the day, because

the background error covariance matrix has been obtained

from a time average of estimated forecast errors (the “NMC

method” of Parrish and Derber, 1992). In the LEKF the ma-

trix is locally built from the vectors of the ensemble, each of

which contributes to the estimation of the errors of the day.

This can be seen in Fig. 3, where one of the vector pertur-

bations after a data assimilation step is plotted on top of the

background error. The similarity of the analysis increment

shown in Fig. 2b with this vector is apparent.

Figure 4a is a scatterplot of the space averaged analysis

errors at midlevel for the LEKF and the 3D-Var respectively.

It shows a consistent reduction in the LEKF analysis errors

compared to 3D-Var. Most of the large errors from 3D-Var

are reduced or completely removed. The only exception in

this figure, where errors from the two schemes have similar

Nonlin. Processes Geophys., 14, 89–101, 2007 www.nonlin-processes-geophys.net/14/89/2007/



M. Corazza et al.: LEKF in a QG model and comparison with 3D-Var 97

5 10 20 50 100
10

−8

10
−6

10
−4

10
−2

N
wv

P
ow

er
 s

pe
ct

ru
m

PV of the true state

5 10 20 50 100

10
−6

10
−4

10
−2

N
wv

P
ow

er
 s

pe
ct

ru
m

KE of the true state

5 10 20 50 100

10
−8

10
−6

10
−4

10
−2

N
wv

P
ow

er
 s

pe
ct

ru
m

SF of the true state

5 10 20 50 100
10

−8

10
−6

N
wv

P
ow

er
 s

pe
ct

ru
m

PV of the errors

5 10 20 50 100
10

−14

10
−12

10
−10

N
wv

P
ow

er
 s

pe
ct

ru
m

KE of the errors

5 10 20 50 100
10

−12

10
−10

10
−8

10
−6

N
wv

P
ow

er
 s

pe
ct

ru
m

SF of the errors

LEKF
3DVAR

LEKF
3DVAR

LEKF
3DVAR

Fig. 6. Power spectrum of the true state (top panels) for potential enstrophy, kinetic energy and streamfunction, respectively. The same

quantities for the analysis errors of 3D-Var and LEKF are represented in the bottom panels. Figures are computed using data from step 361

to step 720 (180 days).

amplitude, corresponds to the first part of the simulation, that

can be considered a transition phase (see Figs. 1a and b). A

large part of the improvement (about 40% reduction in rms

error) is due to the reduction of the error maxima. These

results are similar for the space averaged analysis errors in

streamfunction at midlevel reported in Fig. 4b. For this vari-

able the improvement is even larger than for potential vortic-

ity: the larger error peaks are significantly reduced, and the

relative average improvement in the rms error is about 50%.

In Fig. 4c the scatter plot of the forecast errors for the 72 h

forecast is shown for LEKF and 3Dvar. It is important to

notice that the improvement gained at the analysis is main-

tained during the forecast (Fig. 5), further confirming that

the errors corrected by the LEKF are those responsible for

the large growth of forecast errors. In Fig. 1 it can be seen

that the peaks in analysis errors and 48 h forecast errors oc-

cur at the same time. This indicates that fast growing “errors

of the day” are present in the initial conditions 48 h before

attaining their large amplitude, and that the LEKF evidently

succeeds in correcting these small amplitude, fast growing

analysis errors before they have a chance to grow into the

forecast.

The top panels of Fig. 6 represent the power spec-

trum coefficients for potential enstrophy, kinetic energy

and streamfunction computed from the true state, plot-

ted against the global wavenumber. Following Morss

et al. (2001) the global wavenumbers are computed as

NWV =
(

(2.5×k)2 + (5.2×.5×l)2
)

1
2 , where k is the zonal

wavenumber and l is the meridional half wavenumber, while

the coefficients 2.5 and 5.2 are introduced in order to make

the global wavenumber comparable to that of the “real”

global atmosphere. The distributions of the power spectrum

coefficients of the three quantities are similar. Most of the

spectrum amplitude is concentrated at wavenumbers smaller

than 20. The corresponding spectrum coefficients for the

analysis errors are shown in the bottom panels of Fig. 6.

LEKF has smaller errors than 3D-Var for all wavenumbers

and shows a very large improvement for all scales in the

kinetic energy field. The improvement for potential vortic-

ity is distributed particularly in mid to small scales while

the improvement in the streamfunction appears at the larger

scales. The large improvement in the KE field benefits di-

rectly from the fact that the assimilation variables are u, v,

and T (Sect. 3). The 3D-Var background covariance matrix is

able to successfully correct large wavelengths, but its perfor-

mance becomes much worse as the wavenumber increases.

This is due to the fact that information on small scales in

3D-Var background error covariance is lost in the statistical

average. By contrast, LEKF is able to reduce errors at all

wavelengths, so that its error spectrum is similar to the spec-

trum of the true state. The forecast error is dominated by

local structures, and the results suggest that the background

error covariance in LEKF represents well these errors.
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Fig. 7. (a): Analysis and Forecast Errors averaged in space and time for potential vorticity at midlevel for the LEKF system as the number

of vectors used in the ensemble varies. Cases for 10, 15, 20, 25, 30 and 40 vectors are reported. (b): same as (a) but the Forecast Errors are

shown as the horizontal dimension of the local domains varies. Cases for l=2, 3, 4, and 5 are reported. In both figures 3DVar Analysis error

is shown for reference.

4.2 Sensitivity of the LEKF to choice of parameters

As could be expected, LEKF results are sensitively depen-

dent on the number of vectors forming the ensemble. In

Fig. 7a the error averaged in space and time for potential

vorticity at midlevel is shown for the LEKF system running

with 10, 15, 20, 25, 30 and 40 vectors, using a fixed size of

the local domain (l equal to 3). The results with 3D-Var are

also shown for reference. It can be seen that for this system

10 vectors are not sufficient to improve upon 3D-Var. The

performance of the LEKF improves with the number of en-

semble members but only up to 30 (chosen as reference in

the previous results). The reduction of errors with ensem-

ble size converges and no further significant improvements

are observed with 40 members. An ensemble of 30 mem-

bers has much fewer degrees of freedom than the model, and

supports the hypothesis that the local subspace of the most

unstable modes is small and that the LEKF could be used for

operational purposes with a reasonable computational effort.

Another important parameter in the LEKF is the size of

the local volumes (“patches”) used in the localization. Fig-

ure 7b shows the analysis and forecast errors for different

patch sizes (l=2, 3, 4, 5, corresponding to squares of 5×5,

7×7, 9×9 and 11×11 grid points respectively), using an en-

semble of 30 members. The analysis errors improve with size

up to l=4 (9×9 grid points), and then they become slightly

worse. This can be explained by the fact that when the num-

ber of points of each local domain increases, the local dimen-

sion of the system also increases, and the number of vectors

required to describe well the local instabilities of the system

eventually needs to be larger. In other words, the larger the

local dimension, the larger the sampling errors in the repre-

sentation of the background errors with a limited number of

ensemble perturbations.

This interpretation is supported by an analysis of the abil-

ity of the ensemble of vectors to describe the background

error. In Fig. 8 the error variance explained by the ensem-

ble (relative amplitude of the projection of the background

error onto the subspace spanned by the ensemble of vectors)

is shown. This is done by projecting at each local domain the

local vector of the values of the error in potential vorticity

onto the subspace spanned by the local vectors representing

the n members of the ensemble. The ratio between the am-

plitude of this projection and the total amplitude of the error

is computed, and then averaged over all the local domains

and represented in the plots. The process is then repeated at

each data assimilation step. Two cases are shown: in Fig. 8a

the variation of the projected component is represented using

a fixed dimension of the local domain with a varying number

of vectors. In Fig. 8b the number of vectors is fixed and the

size of the local domains is varied. The percentage of the er-

ror represented by the ensemble is on average of the order of

90% and it increases with the number of ensemble members

and decreases with the dimension of the local domain.

It is interesting to see how the ensemble’s ability to explain

the background error depends on the amplitude of the error.

In Fig. 9, the relative amplitude of the projection of the back-

ground error at a fixed time (the same as in Figs. 2a, 2b, and

3) is compared with the total amplitude of the error (contour

plot). It clearly shows that the percentage of the vector pro-

jected onto the subspace varies substantially in space and that

the larger the error, the better its projection on the ensemble.

This important property of the LEKF indicates that the pro-

jection of the largest errors of the system onto the ensemble

is even larger than what is suggested by the average values

shown in Fig. 8, and explains the success of the LEKF in re-

ducing the analysis errors even with relatively few ensemble

members (in agreement with Szunyogh et al., 2005) .
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Fig. 8. Time evolution of projection of the background error in potential vorticity on the subspace spanned by the ensemble of local vectors.

(a): The dimension of the local domain is constant (l=3) and the number of vectors varies (N=20, 30, 40). (b): The number of vectors is

constant (N=30) and the dimension of the local domain varies (l=2, 3, 4).

The sequential methods for assimilation of observations

(Houtekamer and Mitchell, 1998; Tippett et al., 2002), use

a “localization” of the error covariance obtained by multi-

plying the correlation between grid points and observation

points forecast errors by a Gaussian function of the distance

between these points. This has the effect of reducing the

covariance sampling errors at long distances. By contrast,

the LEKF uses a step function (1 within the local domain

and zero outside). Miyoshi (2005) found that this made the

LEKF slightly worse than the Ensemble Square Root Filter

(EnSRF) of Whitaker and Hamill for the SPEEDY global

model (Molteni, 2003). He followed a suggestion of Hunt

(2005) to apply instead the inverse of the Gaussian localiza-

tion operator, to the R matrix, in such a way that:

R̃ = e
(r−ro)2

2σ2 ◦ R, (20)

where σ is of the order of l, r−ro is the distance from the

center of the domain and the symbol ◦ indicates a Shur (or

Hadamard) product. The effect of this is to increase the ef-

fective observation error for observations far away from the

central analysis point, achieving the same result as with the

standard localization. We tested this approach and found a

very small improvement (about 2%) when using the “multi-

column” approach.

Finally we discuss the vertical localization of the domain.

In all the experiments performed in the framework of this

work the local domain has been computed including all the

vertical levels of the model without vertical decomposition of

the domain. Nevertheless, it is interesting to explore whether

further improvements could be expected from vertical de-

composition of the local domain. For this decomposition to

be useful, it is necessary to prove that there is not a high

correlation between the background errors at different lev-

els. In Table 2 the average vertical correlation between the

background error at each level of the local domain is shown.

The correlation is computed considering each local domain

and then averaged in space and time. The values presented

in Table 2 do not depend significantly on the detailed im-

plementation of the system. Results clearly show a signifi-

cant correlation between each level and its closest neighbors,

while the correlation with the second neighbor and levels fur-

ther away is much smaller. This is a clear indication that for

an optimal configuration of this system vertical localization

should be introduced with local domains based on 3 vertical

levels.

5 Summary and conclusions

In this work we have implemented the Local Ensemble

Kalman Filter (LEKF) described in Ott et al. (2004) for a

quasi-geostrophic model widely used in the literature. Re-

sults obtained with the LEKF have been compared to those

obtained by means of an optimized version of a 3D-Var,

showing a marked improvement both in the analyses and the

forecasts. As pointed out in the introduction, the optimiza-

tion of the 3D-Var did not include an attempt to generate a

flow dependent background error covariance matrix B, which

could have reduced the improvement of the LEKF. A more

general comparison between different data assimilation sys-

tems, including 4D-Var and hybrid systems, is presented in

Yang et al. (2007, see footnote 1 at page 95). In order to adapt

to the local framework of LEKF in the presence of model

global spectral transforms, we proposed an alternative split

of the observation operator that can be easily implemented in

operational setups.

Different configurations of the LEKF system have been

considered and compared to the 3D-Var. With an ensemble of

30 vectors, best results have been obtained using a horizontal
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Fig. 9. Example showing the relationship between the percentage

projection of the background error onto the subspace spanned by

the local vectors (colors) and the background error (contours). The

time chosen is the same of Figs. 2a and b and 3; the number of

vectors used is n=30 and the dimension of the local domain is of

7×7×5 grid points (l=3).

dimension of the local domains of 9×9 grid points, which al-

lows for the inclusion of a sufficient number of observations,

leaving the dimension of the local space small enough to be

described by a small set of vectors. The fact that, using a

relatively small ensemble, an optimal value of the horizontal

dimension of the local domain does exist is an indication of

the need to find a compromise between including the maxi-

mum observational information, and limiting the dimension

of the local vectors in order to let the ensemble member pro-

vide an optimal description of the instabilities of the system.

By contrast, using a fixed local domain (l=3), results show

a monotonic improvement as the number of ensemble mem-

bers increases, with saturation at about 30 members indicat-

ing that a relatively small ensemble is sufficient to provide a

good description of the instabilities and therefore of the er-

rors.

In order to get stable results, it is necessary to prevent the

forecast perturbations from collapsing with time into a sub-

space which is too small. For the quasi-geostrophic model,

the use of additive random perturbations after each data as-

similation step gives much better results than multiplicative

inflation, which in fact fails to prevent filter divergence.

For this system the introduction of the localization of the

observational error covariance matrix R tested by Miyoshi

(2005), based on a suggestion of Hunt (2005), does not result

in a significant improvement. This result may not be general

and may be associated with the fact that we obtained best

simulations by means of the “multi column” method, so that

the contribution of the localization is less important than in

the case of the “central column update” method.

It is important that the entire relative improvement ob-

tained for the analysis is maintained throughout the 3-day

Table 2. Time and space average of vertical correlation of the back-

ground errors in potential vorticity at different levels of the local

domain. Level 1 represents the bottom level, level 5 the top level.

Level 1 2 3 4 5

1 1.00 0.46 0.17 0.10 0.10

2 0.46 1.00 0.35 0.17 0.14

3 0.17 0.35 1.00 0.47 0.33

4 0.10 0.17 0.47 1.00 0.63

5 0.10 0.14 0.33 0.63 1.00

forecasts, indicating that the system is indeed correcting the

analysis errors laying in the directions of the fast growing

modes.

The vertical correlation of background errors (Table 2)

shows that the correlation quickly drops beyond the closest

level. This suggests that the LEKF system used in this work

could be improved by introducing a vertical localization of

the domain, in particular considering local domains based on

3 vertical levels.

Our results are very encouraging, indicating that LEKF is

much more accurate than 3D-Var even with a rather small

ensemble size. Some areas that still require further study are:

1. the use of a flow-dependent amplitude of the additive

random perturbations;

2. the performance of the system during the initial spinup,

especially if the starting point of the simulation is far

from the true state of the flow;

3. the relationship between additive or multiplicative in-

flation and the observational density, in particular when

the observational network is not homogeneous.
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