
A major purpose of the Techni-
cal Information Center is to provide
the broadest dissemination possi-
ble of information contained in
DOE’s Research and Development
Reports to business, industry, the
academic community, and federal,
state and local governments.

Although a small portion of this
report is not reproducible, it is
being made available to expedite
the availability of information on the

.,

. research discussed herein.

1

b“
,.

LA4JR -87-1541

LOC Alcmot Mc- Labofabfy ic WWslod by Ihc UnhfcrahY d CCIHOrfU b * Unhd SICtCC MPC~ d EfI-OY unda caWUI W-7405-EMO-3S.

TITLE AN IMPLEMENTATION OF THE NEW IEEE STANDARD ROUTINES
FOR FASTBUS

LA-UR--87-1541

DE87 010107

AUTHOR(S): Thomas Kozlowski and Will M. Foreman

SUDMITTED TO Fifth Conference on Real-Time Computer
Applications in Nuclear, Particle and Plasma Phyaica
May 12-15, 1987
Snn Fr:lll:;isco,CA

DISCLAIMER

This roporl wnsprcpmcduaan acwunlof work nponaorcdby nnngencyorlhe WdtadStdcn
(juverrrmrni. Nehhertha Unitd Stntcs(tiernment norllny agcmytkrmf, noranyofthlr
cmpluyccs, mnkm ●y warranty, caprcsnor lmpllcd, or w+aumcnany Iqul Ilnbllity or rospond-
hlllly (or the mcuracy, completerwm, or usdulncss of any Mwmnlkrn, appcratus, product, or
prweaa dincloccd. nr mprcscntn thnl 1!s UM wnuld nol Infrhrgc prlvalcly owned rlg!ils, Refer.

CIICCherein to wry qmcific comrnercltil producl, procmc, or cervicwhy Irndc nnmc, !radcmnrk,
munulw!luW, m o(herwkc Ihws nol ncmmcnrily com!lilulc or Imply IIs ●ndorccmcnl, rccom-
nrcndnlilm, or hworing by the [Jni@d SlalcK (Jnvernmcnt or mty ngcncy thereof’. The VICWS
rnrl opinions nf uuthorn exprcnncd herein &I nr.1 nccemority rntatc or rcflcci Ihncc nf ihc
I l.litcd SIIIICII(Iovcrnmcnt or wry agency Ihcrcot,

11,.,, , ,.,s1,, ,,, ,,1 ,. ,,, , ,,. ,, , ,,, ,,,,,.,,,,.4 ,,,, ,,,,,,,,,. !, !1,,1, 11,,! II !, I ,1,”l. tllll!lvlt11,101111,, ,1 11,,11,, ., 1,1,,, ”,. !! 1,,11!, 11!.,. l,, ,I,lhcl 1,) :Il,llllw IJl Iiqw,)d,, (,1

913,, ,,, ,1,,, ,1,,,,, !,,,!, ,1 ,, .,, ,,, !!,!,,,!, ,,, ,, 101 ,111,1* ,11111,. ,, 1,1 ,1,1 .,,1 1111 II ,, I ,,, ”,,, 11,,,,.,11 ,Ml,l, ,,.,,..,

I II,’ I !,,, Allt$ll f,,, ‘,.1, ,,1, .!1 I 11,,,,.,1.11, 1(. ! 1,,,,.,!., 11,,,1 II,, ! ,11,1,1 !,,111!1 ,,l,,l,llf” l!,, % .IIIII III .In. w,lh II I, Ifa It I!lIIIl U, IIIIIII 11111 ,II,%IIU m III thm ! I *V [WI If I@IrIII,t!I tjl I ,!orqv
.— —-—. ,.-

I 11!,,1 1,! ,,,, ,,,

.
mnnqm,--m m- -,,.- u-- .- ..- .. ------

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

AN IHPLEHENTATION OF THE NEW IEEE STANDARD ROUTINES FOR FASTBUS

Thomas Kozlowski and Will M. Foreman
Los Alamos National Laboratory*

Los Alamos, NM 87545
Los Alamos, N.M. 87545

We have implemented a subset of the new 1987 IEEE standard
routines for FASTBUS for the General Purpose tlaster(GPM) [1], a
FASTBUS master developed at CERN. Experiences in implementing and
using the new standard routines for FASTBUS are reported.

1987 Standard Routines for FASTBUS

Standards for routines for FASTBUS were first published in 1983
[2]. Over several years of experience in developing FASTBUS software
and in using the 1983 routines some deficiencies were apparent in this
preliminary standard. The deficiencies include problems in the use of
the routines in a multiple user environment, and t00 much
implementation level detail defined in the standard.

The process to develop a new improved standard for routines for
FASTBUS was begun in 1986. An initial proposal was made in 1986, the
so-called “revisionist” routines [3]. This revised standard removed
many of the previous deficiencies and added some new useful features
such as automatic error reporting. It was oriented towards list
processing, and it still included some details perhaps more properly
left to the implementor. The “revisionist” routines formed a basis
for the standard routines finally adopted in 1987 [4].

The 1987 standard has a minimum of implementation level details.
Host data structures are hidden from the user of the routines in an
“environment”, :-qfmrencedby an f~ID!larg(]mentpresent in most standard
routine calls. Enviro[~~~nt$ pl.[lsp;~rtallocation and deallocation
routines (the latter tied to a “process”} provide good support for
multiple user inlpl.ementatiorls. All parameter names and status returns
are defitiedsymbolically, actUal nllm~ric codes being left to thr
implementor.
specifir extcll:
pnrnmctcr:;).
10(11. illes ilt”(’ (1

Pr~vision is tni]d~ in man y cases for implementrttioi]
i 011:; (fol” (!XilMplfl,irllplc~ln(?tlt-itioll specific opct-at ionnl
:;0111(1 rest Ilrrs dir(i(’t ly I“elc’vantto implcwtv!llill}!111(I
sc’.l’;scd in nlol-(’(1{’tili I illil ‘;tll)seqllvl]t:;[’ction.

‘1’l)t.t (;(’i](~ti{l l’IIIl)()!; {I M(I[;t(~I

Airllit(’ct~lt(’

:;lll)1)011(1(1 I)y 11, !;, 1)1,1)1, 01 I:I,I}IJIV (’0111 141(’! w //,()’, I;N(; \(, , g’d!,

AA AP-’Pn -------A,,UFLIIH I@ IIhfi lMITEn

,

The GPt4is based upon a Motorola 68000 (t468000)seritisprocessor,
and resides on a single FASTB!JSboard. It supports 256K bytes to 512K
bytes of Ml and a large EPROM space. Direct FASTBUS access is
available to from 128K bytes to 256K bytes of fast two-port memory.
There are two RS232 ports (up to 19200 baud) that can be connected to
a terminal or host processor terminal ports, and a parallel port that
can be used as a high speed connection to another processor or device.

Software access to FB is through special addresses in the
t468000’s address space. For example, a primary address cycle may be
done by a single instruction of the form

PIOVE.LPRIM AI.)DR,DGEOG

where “FRIH ADDR” contains the value of the primary address and
l!~E~fl in~icates a FASTBUS primary address cycle to data space vith
the master asserting EG. Hardware option bits in control registers
allow optional selection of pipe-lined block transfers, holding AS/AK
at the end of a transaction, assertion of EC, etc. Error conditions
are flagged by interrupts; for example, there are 16 interrupt vectors
for the 16 possible addres~ cycle and data cycle SS codes.

Applications—.

Our present use of the GPM is for a particular experiment at the
Los Alamos IlesonPhysics Facility (LAMPF) [7]. In the future it may
be supported for general use at LAMPF as a FASTBUS master and host
interface. In our particular application the GPM serves as both an
intelligent mastur in the FASTBUS and as host interface to a MicroVAX
II

In its application as an intelligent FASTEUJSmaster the GPM will
move data from frontend FASTFIUSslaves to a microprocessor farm [71
via another FASTBUS slave. It will also be used for running high
performance diagnostics in the FASTBUS network. in these cases the
software executes in the Gf)M.

In our use of the (;PMii!; a host interface it is connected to a
MicroVAX-11 via RS232 lines. in our particular application th~ sp~ed

of this connection is ildcquate (approximately 2K bytes/secot!d). The
GPM itself ra[liilsosctvc as a FASTIJIJShost processor wil:ha tcrmil~al
(! Onn(?ctd to 011(” 01 th(’ 1{s2 :12 port !;. A user is able to write iItld1’(111
M6W)(W ru:;id{’l)fct)d~’~l:;inj;Ili[;tlltIvcllntl~ua~es (I17)RTI{AN, PASCAI,) wi:ll
!;llpporl 01 tl~II MONI(:A mtjtlil{)t :11)(1 d[’l)ll}~~(?r[[1].

Implementation

Important Features of 1987 Routines.—— .

Some features of the standard routines have a direct impact on
the implementation. These include environments, definition of a
“process”, error handling, and items mandated by the standard.

Environment and data buffers: The environment incorporates the
current values --iif— operational parameters that affect FASTBUS
operations, status history information and pointers for sequential
buffers. The internal structure and implementation is completely left
to the implementor. Thus it is recommended that the environment be
referenced only through the standard routines. The implementation
must provide a way for creating and deleting independent environments
in the case of multiple users. If the optional delayed execution mode
environment (“list processing”) is supported, the implementation can
be significantly more complex.

The standard defines a mandatory default environment ID
(FB_DEFAULT_EID) that corresponds to an environment that is always
available to a user/process (no creation necessary). In the multiple
user case the implementor must take care that the default environment
for different users/processes are independent.

The implementationmust take into account which of the buffering
schemes offered by the standard are to be supported. Sequential
buffers (data associated with multiple transactions is transferee
to/from the same buffer in sequence) require an underlying structure
of pointers and other accounting information, which is associated with
an environment. The definition of an “external” sequential buffer (a
data storage device for example) is left entirely to the implementor.

Processes: The standard routines documel~t uses the terms
“processti”aud “user” interchangeably. A functional definition for
“processf’in the context of the routines is the code executed between
thc? calls to the FB OPEN routine and the FllC!,OSEroutine. Most
multiple user computing-environments (operating iiystems) incorporate
the cone.cptof n process which is compatible with this definition, It
.sII(IIII(I 1)1~ Ilot(d th,at ,3 single proc. e.ss m,~y crate Sc!vor (al “.Slmlll t.aneot l!;

(jt~vi I OI)m(IrIt:;, ;111(1 il separate detalllt cnvironm(’ilt ::lIoIIl(i exist for
(*v(’l”’/ !;(’1);11 ,11 (! 1)1 ()(’(J:; S. ‘1’llC al locat iot)01”(f(?illloc’(ltir)l) Of il pol’t i:;

floll(” f01 i]11,ItIi (’lll,tt pt’occ:; s (I~Ot for aI) (~tlvitotlttl(~llt).

1~1101 Il,ll)lllin}t: ‘1’11(’ l(?V(>l 01 il(ltolllii[i(” (}l’1 -01 l)i!l)(llill~; tll:ll

(’110 !;1}11

is

will illl lII(BII(S(B t,ll(! cOnlplvxi ty () f 111(’ illl[)l (’lll(!ll tilt. ion. ‘III(’
!;t;l; l(l;ll(l (il*f ill(’s il r illl}~(’ of I(?VVIS fol” impl(~m(”nl il]fi (’1’ 1’01 I“(?port il)[:

‘1’11(1 Illilll(l(ll 01 y 1ow(~!; t l<!vt~l ill(’ 111(1(’!: only tll(’ I’ollt ill(~
1;1) !; ’I’A’I’II!; (;11’1’ !; II MMARY wllirh p(IImj ts rt:t ri(*vi~l () t t 11(’ !;tall l!; 1“[11111’11

f I 0111 t II(! 1,1?;1 ;II’ t iotl I otlt itlv (’ill l(l(! illoll~ wi Ill 111($ I)ylf) {’OIIIII$; fol
I$A!+’I’1 {11’; t t ,Ill,:f(l] ::, lli};l~(jl I(*V(31!; l)otmi~ il Ii\tll(’1 (,l,lf)ol,lt(l (11 101

11’ 1)(11 1!,1 wi III III,IIIy t IIl)t)t I itl}{ 01)1 if)ll:;,

Mandator routines and features:
of thnes andc~alnfeat.res. These are: thero.tines for

The standard mandates a subset

simple transactions (single word and block transfers for a specified
primary and secondary addresses, etc.), support of immediate execution
mode environments, a default environment, setting and retrieving
operational parameters, the simple array form of data buffer and
sequential buffers if delayed execution mode is supported, those
primitive cycle routines supported by the interface hardware, those
interrupt and SR service routines supported by the interface hardware,
and a minimum of status reporting.

Implementation on the GPM——. ——

For our application the GPIiserves both as a master resident in
FASTBUS and as a host interface. Therefore routines are needed to run
both on the GPfl1168000a~d on the host processor, a FlicroVAXII. The
GPM resident routivcs ztiea basis for the VAX resident routines.

The GPM is delivered with the CERN MONICA debugger-monitor in
EPROM. MONICA provides, besides a symbolic debugger, a simple
operating system with support for a loader, RS232 support,
heap

stack and
management, etc. This underlying software reduced the effort

required in develo~ing GPM software. Code development was done using
CERN cross-software tools for the Motorola 68000 that run under WAX
Vtls [9]0 These include FORTRAN, PASCAL, an assembler, an include file
utility, a link~r, and loader.

Routines implemented: The following routines and features were
implemented= In actua~ty only the short (6 character) form of the
names is used in the GPM implementation because of limitations of the
cross-software compilers.

environment management:

o FBO1’HN, FE CLOSE—

o FB CRLA’I’EIMMEDIATE ENVIRONMENT,..
FB RELEASE ENVIRONMfiN’1’,
FD-RESfW ENVIRONMENT

op(II, It il)t~,ll ptIIiIIII(I!QI rIIiII);IjT(!III{!I)t :

() I;IJ I’Al{ IN I’I’, 1:11 I) Al/ Si;’1’, Fii 1),11{ (,[;’1’

(1,11!1 I)lltl,’ l!;:

.

simple transactions:

o FB READ DAT, FB WRITE DAT,
FB-READ-CSR, FB-WRITE-CSR,
FB–READ-DAT f4UL~, FB ‘iiITE DAT tiULT,
FB-READ-CSR–BLOCK tlU~T, FB–WRI~E CSR BLOCK tiULT.- - ——

o FB_READ_DAT_BLOCK, FB_WRITE_DAT_BLOCK,
FB READ CSR BLOCK, FB WRITE CSR BLOCK,
FB–READ-DAT-BLOCK MUL~, FB thiIT~ DAT BLOCK MULT,
FB:PEAD:CSR-BLOCK:MULT, FB–WRITE:CSR:BLOCK:MULT—

o FB READ DAT SA, FB WRITE DAT SA,
FB--READ–CSR–SA, FB–WRITE-CSR-SA— -— ——

o FB READ LENGTN—

route tables:

o FB READ ROUTE TABLE,
FB-WRIT~ ROUTE TABLE

o FB READ ROUTE TABLE BLOCK,
FB–WRIT~ ROUTE TABLE BLOCK.- .- -. —

primitive actions and single lines:

o FB CYCLE ARBITRATE

0 FB CYCLE RELEASE aus—

o FB CYCLE PA DAT, FB CYCLE PA CSR
FB-CYCLE-PA–DAT MUL~, FB ~YC~E PA CSR MULT-—. -. —. —

o FB CYCLE DISCONNECT

o FB CYCI,l? RI?AD VORD, F13 CYCI,E WRITE WORD,
FH-CYCLH”-READ-””SA, Ffl CYC1)E Wlil’~l? Sii’— .-

0 Fil CYC[,K READ BI,OCK, FH (: Y(:!,I; WRITK 131,0CK

() 1’1! I, INK I{ EAI), FH

1)01 I ,11 1(1(’;ll ioll/(1[’ill

() 1“1{ l’()} {’1’ l{}lsl; ’1’

() E’]) 1’01{’1” AI, I,()(:A’I’K

I.INH Wl{l’1’lfl

(~fI;Il iol, ,11)(1 I (1::(11 :

Fl) 1’01{’1” I)I(AI,I,()(;ATH

error reporting:

o FB_STATUS GET_SUMt4ARY

o FB STATUS SEVERITY, FB STATUS HATCH,
FB–STATUS–THRESHOLD - -— —

o FB STATUS TRANSLATE

Environment and data buffers: Only immediate ●xecution mode
environments are~u~ted by the GPM resident routines. This is
adequate for most applications because of the efficient architecture
of the interface to FASTBUS. When a new environment is created a
fixed amount of space is allocated from the MONICA heap. Each
environment includes an array of all current values all writable
operational parameters. In addition it includes space for storing the
summary status and the (future) supplementary status history, and for
support of four sequential buffers (pointers). At execution time
every routine that references the environmeilt, checks if the
environment ID has changed since the last such call; if it has, a new
environment is created. Changing the environment involves some
hardware operations (setting and clearing bits in GPH coutrol
registers). Setting the GPfl’s arbitration level (an operational
parameter) can be problematical since the only access is through a
FASTBUS transaction. The software simply trys to do the FASTBUS
transaction.

The GPM
– ‘ _rom

All standard routine calls which do not
directly orlglnate a standard routine call on the VAX (see the
next section) are considered part of a single process on the GPM. In
other words, the application resident in the GPM is a single process,
‘Thisdefinition was chosen as the simplest, since MONICA is a single
task monitor. Thus the GPM resident application can allocate the
FASTBUS port, locking out all VAX resident applicatio[ls using the
F’ASTBUS ro~tines.

Erroq 11.~ndling:Ikcausc of the limited resources of the GPM
tllicr(]pl”ocesiot:,Only a simpl~ el”l”ol’Fcportinfi mechanism has been
i Inp] QmPn Ld. All Gf’M FASTIIIJS {’tlors gei)er~t~ intelrl]l)ts. Siml)lr
interrupt :;(!I’v i (*(I rotlt lne!; fli~~;~tlyIJASTIIIJS error interr(lpthy settill~~
;{I)i t ill il (’0111111011” ill’(? il. This conimoft” ilr(?a is then examined by hi~ll{~l
I(lV(JI softwarv i 1 iilly (,11(,] (~ot](li t i oh Oc(:url”(?d, to g(?ll(’t’; lto 11}1’

iilll)iopui;lt(” S;[;ll)(iilI”(l Still {l!; l“(}l\lI’ll (’()(1(~. ‘1’his code and tlie I)yl(’ (1011111

Illilt 1(’!;ul (s f loll! #.!i](Stl i~I~[iol~ I’0111 itl(~ (,;II] ~S stol’(~(j ill tl)(: ,S\lllllll;ll ~

Sl;it(is history for the ellvirollnlent. The status jnfot.m;ltiot! is
ilViiilill)l C? t)y o call to f~fl(;ETSI;MM4RY. H[?cause the JPM is (Isfjtjirln
VAX envit”onmet~t VAX Iotmat elror I’[)(IPs WPI’(J (Is(’!d. Th~ VAX :;~v(:l.i ty

IOV(!IS ill’(~tl](ts;lll]~,ilS (11[’ s(>vvrity l(?V(?IS (ft?fillP(l in 111(’ !itilll(l;ll’(1

(!;[l(:(:l;!; s, INI$OI{MATION, ” WAi;NIN(;, 1$)1{}{01{ illl{i]+’A’l’Al,). ‘1’11(’ * ()[]] ‘i I ;111(1;11”(1

(1(~1 ill(’d sp(’(’il i(’ 1111111(11i{~,ll V,l 111(1:: 10 I)(* Il!;(!d tot” ~~1 l“(’) (()(1{’!:

GPM specific features of routines: Certain hardware features of
the ~ necessitated add~g some GPfl specific features to the
implementation of the routines. These additions were easily
accommodated by the standard. The major additions were:

o

0

0

0

The GPP timers do not map directly onto the timers defined in the
hardware standard; there is one short timer used for most FASTBUS
cycles arida long timer used when WAIT is asserted. They are both
software settable. Operational parameters were added that
correspond to these timers (FB PAR GPflLONG TIMER and
FB_PAR_GPM_SHORT TIHER). The operational pa;ame~ers ~orresponding
to the standard ~ASTBUS AK, DK, MAIT, and LONG timers were made
“not-supported”.

A GPM option allows overlapping a FASTBUS block transfer read
cycle with the memory store of the previous data word. Another
operational parameter was added to allow enabling or disabling
this option (FB_PAR_ENABLE_OVERLAPPED).

To avoid interference of users with each other, port allocation is
required for certain operations that leave the FASTBUS in a state
such that another complete transaction can not be carried out by
another user (all primitive routines, setting the FB PAR HOLD AS
operational parameter, etc.). If a user attempts to ‘do ‘one ‘of
these operations without having allocated the port, a “port not
allocated” status is returned.

Some error return codes were defined that are specific to the GPM.
These implementation specific error returns would best be reported
as supplementary status, reporting a standard return code as
summary status, e.g.? FB ERR HARDWARE. Since our simple
implementation does not suppor~ s~pplementary status, they are
returned as summary status.

VMS im~lementation for GPM as host interface——. — ——.—- .—.—---... - . .. — -..— .--...—— —

The initial imp].ementationof the standard routines on the VAX is
simple. it is expected that it will become more elaborate in the
future. The present implementation allows multiple users but each
must ailocato tile VAX termil)aldevice connected to the (;PM’s RS232
line whetiacc(!:i:iill~;FASTH(JS. only the routines that are irlcluded in
the implf’moi)t:lt ion 01 tt)(’ routin(!s resident in the GI’M ;lI-(? implf?mented
jor tl]cVAX. AI l)l’()!; (>tlt II() !:c~(l(l(!llt iii] t)llf fer,: a~-(. ill IOW(J(I f OIA til{’VAX
Iosi<lriltI0111i 11(1::, M;lt}y of ttlc>};t$ fr:tt(ltcs tlil V[? 1)(!(!11 (’llofi(’11 10 ill IOW
,“trai[;l]tl~)tw~ll~l,, 11!;(’of I (*lllot(> plo(’(dlllv (“al Is 101’ tIll.’VAX (;I)M I ink
(:;rt~ II1(J ,I(IXI ;;III):;I}(I ioil).

1{(’III!)I(l 1)1”()((}[flll”(~(’;II1:;: ‘1’tl(,11s(’of I“olllot(”pl”oc(ul(ll’(tC;lll:; (RPC)
~11lo’~!;il folIt ill(~to I)(’(’ill It](f01) tllf?VAX whirl) aCt(lal l,y,but
ll’illl !;l)ili~’llt ly t () I 11(’ (“(11 1(11’, (~)((’f”llt (’s 011 (h (’ (;l’M . llQllcf? t hi?

d[’sii(~,ll~iIily (11 m,lil~lilillill,i:(I():;(Il)itlnlI(II i:; m I)(ttw(iflll t!~t~ If)IIt it)(?.q

I {~!;i{l~”jt)l t]t) I 11{$ (;I)M ;11)(1 t llo:;(~ I(j::i{l(}tlt 011 II)(I VAX. ‘1’11(’ 1(,:;!;
I); II, II I(II i’; m Ill(llt, i,: tll,, 11101(1 11,111(1 Itli lot illp, (: I 111(! 1(’111!)11’ IIlo[’(j(llll(,

call software that has to be done. Our implementation uses the remote
procedure call software developed at CERN [10]. The implementation
effort for the minimal initial system was (almost) trivia].

A VAX Process: The VAX process for the purpose of the standard
routiiie~is exactly equivalent to a VAX VMS process. The identifier
is the VtfSProcess ID, which is passed to the GPtifor each call.

A VAX user (process) is able to lock out another VAX user, or the
GPM resident application by allocating the FASTBUS port
(FB ALLOCATE PORT). It is necessary to handle carefully various
pro~lematicai situations which can arise (for example, if a VAX
process dies without deallocating the GPM FASTBUS port). Adding this
multiple user capability does complicate the RPC implementation.

Implementation Overheads

Memory resources: Memory is not a particular problem in the
implernintation for the GPM. Of course the space associated with each
environment is unavailable for other uses until the environment is
released (FB RELEASE ENVIRONMENT). The present size of an environment
resident in The GPM Is 190 bytes. At worst space is wasted for each
environment if there is unused status history memory (64 bytes at
present, intended for future support of a supplemental status
history), and unused sequential buffers (16 bytes for each unused
buffer, at present a maximum of 4 buffers).

For the VAX resident routines, each environment that is created,
results in the creation of an environment on the GPM, thus
environments for VAX users actually reside on

Performance: For the full unrestricted
standard routifis, the average execution
transaction routine (FB READ DAT), that is a

the GPM.

implementation of the
time of a typical simple
primary address cvcle,. .

followed by
.

a sec~nda~y ad~ress cycle, followed by a data cycle, was
measured to be 198 microseconds, of which 36 microseconds is the
dutation of AS/AK. A “full” impl~mentation means full checking of
input parameter vi~lidity,and support of all options (operational
parameters).

For ilMolt> l[jstricted implementation, ttlElt js il m i n i mum of
parametcl (tl[~fk ill}: and options (no cycle suppression!allowed, etc.),
th(’ exQclIlif]ll Iimc for FB READ DAT was measllrcxi to I,e
12(I flli(io:;(~(otl(l:;,” () f which 22 nlict-oseconds is t,lle dlllntioll of AS/AK,
‘l’t)(? Ilol’mal ;111(1 “([~iick” versions of tllc
:;cl);lratc Iil)l(ll ill:;.

rout ines a 1“(? m;~it~tail]ed i 1)

If O1lC (’()(1(?:; the tt’atlsactions in MACRO, that is
staildatd 1-011[ill(?:: all, for “;:ql\;;:’’Ker:.:;cat and only checking ,,.

condilions, (JIIC C;II1 I)ro,al)at)ly achieve an execution tim(? f () J: the same

(>(111i Vill C>Ilt tl,lll!;il(.t iotl () f ~ll)l)l-oxinl;~t[?ly2(1ml(:~.()~;(’(~(]rl(l:;,of wt)icll6
mitt():; (! 1*()11(I; i:; III(’ (lllt;~tiot) of AS/AK.

.

Implementation Effort: The implementation effort was not
carefully rrronitored. However, the estimated implementation time for
the GPM ~esident routines was approximately 2 to 3 full time months.
The implementation of the equivalent routines on the VAX, was less
than one month, much of which was devoted to understanding the
idiosyncrasies of the remote procedure call software.

X!!w!!z

The minimum of implementation level details in the standard
document is helpful from the point of view of the implementor (and the
subsequent user also). The standard for the most part is defined at a
fairly abstract and functional le:el. This gives the implementor more
freedom then would otherwise be available, and results in quite
portable routines. The explicit provisior in the standard for
implementation dependent features in operational parameters, error
returns, and some routine calls, makes it quite easy to adapt the
standard to particular hardware or to a particular application
environment.

Some of mandatory features can seem unnecessary. The default
environment, and the mandatory requirement that primitive routines and
interrupt related routines supported by the hardware must be
implemented are examples. But a goal of the standard routines is to
increase uniformity of implementations, and therefore portability, and
these mandatory features help in achieving that goal.

The error reporting defined in the standard document can be
difficult to understand, because of its potential complexity. But in
our low level implementation of error reporting there were no
problems.

In the c{se of the GPM, some performance improvement could be
obtained by supporting delayed execution mode. This is especially
true in its US(? as a host interface. We have not looked at these
aspects in detail however. Because of our particular application and
the resultarlt simplicity of the implementation we have chosen not to
implement delayed execution mode. It may be useful to do so at some
time in the future.

Finally, our initial experience with implementing and using the
I](,W st:irldaId !o~ltinesfor FASTBUS is definitely a positive one.

[1[(~(rlll(’t ill(’ Vi!ll IIlgc’llf “ltxl)(~l i(~tl(’(’ wi !1) ,111 lml)l(lm(’tltat iotl 01

III(’ I{l\vi::(*(l SIilll(lill(l 1{1)(11 ill(!: 101 l$A!i’1’l\llS” , I 1}1!1{

,r”

Transactions on Nuclear Science, Vol. NS-32, No. 4, August—
983.

[4] ~4US Standard Routines, U. S. NIM Committee, March,
.

[5] Creative Electronics Systems, Case Postale 122, 1213
Petit–Lancy, Switzerland.

[6] Dr. B. Struck, Hauptstrasse 95, D-2(IOOTangstedt, Federal
Republic of Germany.

[7] M. A. Oothoudt et al, ~lTheMEGA Data Acquisition

=. i$N~~, ‘-nd=P~~~~-T~~~s~~i:~~~
Francisco, Ca~fornia, May 1987. —

[8] H. V. Eicken, MONICA a Symboli~ Debugging Monitor for the
M 68000, (User manuai ~rtpreparation), DD–Divisio~CE~——
Geneva, Switzerland, 1986.

[9] J. D. Blake, Use of Microprocessor Cross Software under
VAX Yt4S, CERN-~n~r=

.—
report, CERN/DD/SW-LM/T9, Geneva,

=tz=and.

[10] T. J. Berners-Lee and A. Pastore, RPC User Manual, CERN
DD-Division,

.—
OC-Group internal rep@rt, Geneva, Switzerland,

March 31, 1987.

