“LEGIBILITY NOTICE

A major purpose of the Techni-
cal Information Center is to provide
the broadest dissemination possi-
ble of information contained in
DOE’s Research and Development
Reports to business, industry, the
academic community, and federal
state and local governments.

Although a small portion of this
report is not reproducible, it is

being made available to expedite
‘the availability of information on the
. research discussed herein.

1

LA-UR -87-1541 / '[‘ ,{ F :;; 7/[—

Los Alamos Nauonal Laboratory is operaied by the University of California for the United States Department of Energy under contract W-7405-ENG-38.

TiTLE: AN IMPLEMENTATION OF THE NEW IEEE STANDARD ROUTINES
FOR FASTBUS

LA-UR--87-1541
DE87 010107

AUTHOR(S): Thomas Kozlowskl and Will M. Foreman

SUBMITTED TO Fifth Conference on Real-Time Computer
Applications in Nuclear, Particle and Plasma Physics
May 12-1%, 1987
San Fransisco, CA

DISCLAIMER

This report was prepared as an accuunt of work sponsored by un agency of the United States
Guvernment. Neither the United States Government nor uny agency thereof, nor any of their
cmployees, makes any warranty, express or implied, or assumes any legul liability or responsl-
hility for the mccuracy, completeness, or usefulnes; of any Information, apparatus, product, or
process disclosed. or representa that its use would not Infringe privately owned rights, Refer-
ence herein to any specific co:nmercial product, process, or aervice by trade name, trademark,
manufactures, of oltherwise doos not necessarily constitute or imply its »sndorasement, recom-
mendation, or favoring by the United States CGovernment or any agency thercofl. The views
rnd opinions of suthors expressed herein do nct nccessarily state or refleet those of the
Uaited States Government or any agency thereof,

Hy voemplocce ol e e e b corngaiges b b D Graveenment robame, 0 none e v Goygity e (g snsne g aubiish o reproduc s

Tha bt o foree b qna sttt e o alow othue g o o osa e VS Gioveromaent paat posaess,

Thee baory Aimos Pt an Daboegtary cegquests thal (he pubiiesion adentify s arhels i work peetooms] gnder (ha aunpeag af the 1% Depardiment of | nergy

” ((D(< " / \\ (2))(() ™ LosAlamos National Laboratory
Ny W) [osAlamos.New Mexico 87545

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

AN IMPLEMENTATION OF THE NEW IEEE STANDARD ROUTINES FOR FASTBUS

Thomas Kozlowski and Will M. Foreman
Los Alamos National Laboratory*
Los Alamos, NM 87545
Los Alamos, N.M. 87545

Ve have implemented a subset of the new 1987 IEEE standard
routines for FASTBUS for the General Purpose Master (GPM) [1], a
FASTBUS master developed at CERN. Experiences in implementing and
using the new standard routines for FASTBUS are reported.

1987 Standard Routines for FASTBUS

Standards for routines for FASTBUS were first published in 1983
{2). Over several years of experience in developing FASTBUS software
and in using the 1983 routines some deficiencies were apparent in this
preliminary standard. The deficiencies include problems in the use of
the routines in a multiple user environment, and too much
implementation level detail defined in the standard.

The process to develop a new improved standard for routines for
FASTBUS was tegun in 1986. An initial proposal was made in 1986, the
so-called "revisionist" routines [3]. This revised standard removed
many of the previous deficiencies and added some new useful features
such as automatic error reporting. It was oriented tovards list
processing, and it still included some details perhaps more properly
left to the implementor. The "revisionist" routines formed a basis
for the standard routines finally adopted in 1987 [4].

The 1987 standard has a minimum of implementation level details.
Most data structures are hidden from the user of the routines in an
"environment", raferenced by an "ID" argument present in most standard
routine calls. Environments plus port allocation and deallocation
routines (the latter tied to a "process") provide good support for
multiple user implementations. All parameter names and status returns
are defined symbolically, actual numeric codes being left to the
implementor. Provision 1is made in many cases feor implementation
specific extensions (for ogample, implementation specific operational
parameters). Some features directly relevant to implementing the
routines are disciugsed in more detail in a subsequent section,

The Genoral Parponse Mastes
Mchitecture
The GPM wans designed and prototypes built at CERN, It is now
available commercially from CBES [9) and Struck [6). Tt is general
purpose in the sense that it can bhe programmed in high level

lLanguagoy can oact oas o a PASTRUS master or slave, and has porta that
» (g ’]
can be conmected to o host piocennon .

Supported by Us 50 Depty of Eoerpgy Contract V24045 ENG 3o, z;:

A ‘ A P *F n L maea manuaaruy 10 1M IMITER

The GPM is based upon a Motorola 68000 (M68000) serics processor,
and resides on a single FASTBUS board. It supports 256K bytes to 512K
bytes of RAM and a large EPROM space. Direct FASTBUS access is
available to from 128K bytes to 256K bytes of fast two-port memory.
There are two RS232 ports (up to 19200 baud) that can be connected to
a terminal or host processor terminal ports, and a parallel port that
can be used as a high speed connection to another processor or device.

Softwvare access to FB is through special addresses in the
M68000’s address space. For example, a primary address cycle may be
done by a single instruction of the form

MOVE.L PRIM_ADDR,DGEOG

vhere "PRIM ADDR" contains the value of the primary address and
"DGEOG" indicates a FASTBUS primary address cycle to data space with
the master asserting EG. Hardware option bits in control registers
allow optional selection of pipe-lined block transfers, holding AS/AK
at the end of a transaction, assertion of EG, etc. Error conditions
are flagged by interrupts; for example, there are 16 interrupt vectors
for the 16 possible address cycle and data cycle SS codes.

Applications

Our present use of the GPM is for a particular experiment at the
Los Alamos Meson Physics Facility (LAMPF) [7]. In the future it may
be supported for general use at LAMPF as a FASTBUS master and host
interface. In our particular application the GPM serves as both an
intelligent master in the FASTBUS and as host interface to a MicroVAX
II

In its application as an intelligent FASTBUS master the GPM will
move data from frontend FASTBUS slaves to a microprocessor farm [7]
via another FASTBUS slave. It will also be wused for running high
performance diagnostics in the FASTBUS network. 1n these cases the
software executes in the GPM.

In our use of the GPM as a host interface it is connected to a
MicroVAX-I1 wvia RS232 lines. In our particular application the speed
of this connection is adequate (approximately 2K bytes/second). The
GPM itself can also serve as a FASTBUS host processor with a terminal
connected to one of the RS232 ports. A user is able to write and run
M6BOCO resident code using high level languages (FORTRAN, PASCAL) with
support of the MONICA monitor and debugger [8].

A point 1elevant 1o omr implementation is that our particalm
application docs not gequite use of a FASTBUS interrupt meehanism
(FASTBUS Sevvice Reguent the GPM does not support standard FASTBUS
Intervupt Messages), and therefore the initial implementation of the
standard routines doen not include any ot the interrupt handling
routines, SR handling will be added to the implementation at a jater
time,

Implementation

Important Features of 1987 Routines

Some features of the standard routines have a direct impact on
the implementation. These include environments, definition of a
"process", error handling, and items mandated by the standard.

Environment and data buffers: The environment incorporates the
current values of cperational parameters that affect FASTBUS
operations, status history information and pointers for sequential
buffers. The internal structure and implementation is completely left
to the implementor. Thus it is recommended that the environment be
referenced only through the standard routines. The implementation
must provide a way for creating and deleting independent environments
in the case of multiple users. If the optional delayed execution mode
environment ("list processing") is supported, the implementation can
be significantly more complex.

The standard defines a mandatory default environment ID
(FB_DEFAULT EID) that corresponds to an environment that is always
available to a user/process (no creation necessary). In the multiple
user case the implementor must take care that the default environment
for different users/processes are independent.

The implementation must take into account vhich of the buffering
schemes offered by the standard are to be supported. Sequential
buffers (data associated with multiple transactions 1is transfered
to/from the same buffer in sequence) require an underlying structure
of pointers and other accounting information, which is associated with
an environment. The definition of an "external" sequential buffer (a
data storage device for example) is left entirely to the implementor.

Processes: The standard routines document uses the terms
"process” and ‘"user" interchangeably. A functional definition for
"process" in the context of the routines is the code executed between
the calls to the FB OPEN routine and the FB CLOSE routine. Most
multiple user computing environments (operating systems) incorpotrate
the concept of a process which is compatible with this definition. It
should be noted that a single process may create scveral simultaneous
environments, and a separate default environment should exist for
every separate process, The allocation or deallocation of a port iy
done for a particenlar process (not for an environment).

Friot handling: The level of automatic crvor handling that s
chosen will intluence the complexity of the implementation. The
standard aclines a vange of levels for implementing crror rveporting
The mandatory lowest level inecludes only thoe routine
FB STATUS GRT SUMMARY which permits retricoval of the status return
from the Tast action routine called along with the byte counts for
FASTBUS transterse Higher levels permit a rather elaborate orron
teporter with many reporting options,

Mandatory routines and features: The standard mandates a subset
of the routines and certain features. These are: the routines for
simple transactions (single word and block transfers for a specified
primary and secondary addresses, etc.), support of immediate execution
mode environments, a default environment, setting and retrieving
operational parameters, the simple array form of data buffer and
sequential buffers if delayed execution mode 1is supported, those
primitive cycle routines supported by the interface hardware, those
interrupt and SR service routines supported by the interface hardware,
and a minimum of status reporting.

Implementation on the GPM

For our application the GPM serves both as a master resident in
FASTBUS and as a host interface. Therefore routines are needed to run
both on the GPM M68000 ard on the host processor, a MicroVAX II. The
GPM resident routincs zive a basis for the VAX resident routines.

The GPM is delivered with the CERN MONICA debugger-monitor in
EPROM. MONICA provides, besides a symbolic debugger, a simple
operating system with support for a loader, RS232 support, stack and
heap management, etc. This underlying software reduced the effort
required in developing GPM software. Code development was done using
CERN cross-software tools for the Motorola 68000 that run under VAX
VMS [9]). These include FORTRAN, PASCAL, an assembler, arn include file
utility, a linker, and loader.

Routines implemented: The following routines and features were
implemented. In actuality only the short (6 character) form of the
names is used in the GPM implementation because of limitations of the
cross-sof tware compilers.

environment management:

o FB OPEN, FB CLOSE

o FB_CRLATE IMMEDIATE ENVIRONMENT,
FB_RELEASE ENVIRONMENT,
FB RESET ENVIRONMENT

opetational patameter management:

o FB PARCINDT, FB PAR SET, FB PAR GET

data buttery:
o FB DECLARE SEQ BUFFER, FB RELEASE SE0O BUFFER

o suappot ted modoess
FBBUFFER VAR, FB BUFFER VALUL, FB BUFFER SEQ

simple transactions:

o FB_READ DAT, FB WRITE DAT,
FB_READ_CSR, FB_WRITE CSR,
FB_READ DAT MULT, FB_WRITE_DAT MULT,
FB_READ CSR BLOCK MULT, FB_WRITE_CSR_BLOCK_MULT

o FB_READ DAT BLOCK, FB_WRITE DAT BLOCK,
FB_READ CSR BLOCK, FB WRITE CSR_BLOCK,
FB_READ DAT BLOCK_MULT, FB_WRITE DAT BLOCK MULT,
FB_PEAD_CSR BLOCK _MULT, FB WRITE CSR_BLOCK MULT

o FB_READ DAT SA, FB WRITE DAT SA,
FB_READ CSR_SA, FB WRITE CSR_SA

o FB _READ LENGTH

route tables:

o FB_READ ROUTE TABLE,
FB_WRITE_ROUTE TABLE

o FB_READ ROUTE_TABLE BLOCK,
FB_WRITE ROUTE TABLE BLOCK
primitive actions and single lines:

o FB_CYCLE ARBITRATE
o FB_CYCLE RELEASE_3US

o FB _CYCLE PA DAT, FB CYCLE PA CSR
FB_CYCLE_PA_DAT MULT, FB_CYCLE_PA CSR_MULT

o FB CYCLE DISCONNECT

o FB _CYCLE READ WORD, FB CYCLE WRITE WORD,
FB” CYCLE READ SA, FB CYCLE WRITE SA

o FB CYCLE READ BLOCK, FB CYCLE WRITE BLOCK

o FB LINE READ, FB LINE WRITE

port allocation/deallocation and resot:
o FB PORT RESET

o FB PORT ALLOCATE, FB PORT DEALLOCATE

error reporting:
o FR _STATUS GET SUMMARY

o FB_STATUS_SEVERITY, FB_STATUS MATCH,
FB~STATUS THRESHOLD

o FB_STATUS_TRANSLATE

Environment and data buffers: Only immediate execution mode
environments are supported by the GPM resident routines. This is
adequate for most applications because of the efficient architecture
of the interface to FASTBUS. When a new environment is created a
fixed amount of space is allocated from the MONICA heap. Each
environment includes an array of all current values all writable
operational parameters. In addition it includes space for storing the
summary status and the (future) supplementary status history, and for
support of four sequential buffers (pointers). At execution time
every routine that references the environment, checks if the
environment ID has changed since the last such call; if it has, a new
environment is created. Changing the environment involves some
hardwvare operations (setting and clearing bits in GPM conutrol
registers). Setting the GPM’s arbitration 1level (an operational
parameter) can be problematical since the only access 1is through a
FASTBUS transaction. The software simply trys to do the FASTBUS
transaction.

The GPM process: All standard routine calls which do no:
directly originate from a standard routine call on the VAX (see the
next section) are considered part of a single process cn the GPM. In
other words, the application resident in the GPM is a single process.
This definition was chosen as the simplest, since MONICA is a single
task monitor. Thus the GPM resident application can allocate the
FASTBUS port, locking out all VAX resident applications using the
FASTBUS routines.

Evror handling: Because of the limited resources of the GPM
microprocessor, only a simple erroc reporting mechanism has been
implemented. All GPM FASTBUS errors generate interrupts. Simple
interrupt service routines flag any FASTBUS error interrupt by setting
a bit in a common arca. This common areca is then examined by nigho
level software it any orrer condition occurred, to generate the

appropriate standard status return code. This code and the bhyte count
that results from cach artion routine call is stored in the summary
status history for the environment, The status information s

available by a call to FB GET SUMMARY. Because the 7PM is usced in a
VAX environment VAX format error codes were used. The VAX severity
levels are the same as the severity levels defined in the standard
(SUCCESS, INFORMATION, WARNING, FRROR and FATAL). The 981 standard
detined specitic namerical values to be used for orecr codes,

GPM specific features of routines: Certain hardware features of
the GPM necessitated adding some GPM specific features to the
implementation of the routines. These additions were easily
accommodated by the standard. The major additions were:

o The GP¥ timers do not map directly onto the timers defined in the
hardwvare standard; there is one short timer used for most FASTBUS
cycles and a long timer used when WAIT is asserted. They are both
softvare settable. Operational parameters were added that
correspond to these timers (FB_PAR GPM_LONG_TIMER and
FB PAR GPM SHORT TIMER). The operational parameters corresponding
to the standard FASTBUS AK, DK, WAIT, and LONG timers were made
"not-supported".

o A GPM option allows overlapping a FASTBUS block transfer read
cycle with the memory store of the previous data word. Another
operational parameter was added to allow enabling or disabling
this option (FB_PAR ENABLE OVERLAPPED).

0o To avoid interference of users with each other, port allocation is
required for certain operations that leave the FASTBUS in a state
such that another complete transactiion can not be carried out by
another wuser (all primitive routines, setting the FB_PAR HOLD AS
operational parameter, etc.). If a user attempts to do one of
these operations without having allocated the port, a "port not
allocated" status is returned.

o Some error return codes were defined that are specific to the GPM.
These implementation specific error returns would best be reported
as supplementary status, reporting a standard return code as
summary status, e.g., FB_ERR HARDWARE. Since our simple
implementation does not support supplementary status, they are
returned as summary status.

VMS implementation for GPM as host interface

The initial implementation of the standard routines on the VAX is
simple. It is expected that it will become more elaborate in the
future. The present implementation allows multiple users but each
must allocate the VAX terminal device connected to the GPM’s RS232
line when accessing FASTBUS. Only the routines that are included in
the implementation of the routines resident in the GPM are implemented
for the VAX. At present no sequential buffers are allowed for the VAX
resident routines, Many of these features have been chosen to allow
straightiorvard use of remote procedure calls for the VAX GPM link
(seo the aext subsection).

Remote procedure calls: The use of remote procedure calls (RPC)
allows a routine to be called on the VAX which actually, but
transpaiently to the caller, oxecutes on the GPM. Hence the
desirveability ol maintaining close parallelism between the routines
resident on the GPM and those vesident on the VAX. The loyy
piatatlelism there in the more hand taitoring ¢l the remote procedure

call software that has to be done. Our implementation uses the remote
procedure call software developed at CERN [10]. The implementation
effort for the minimal initial system was (almost) trivial.

A VAX Process: The VAX process for the purpose of the standard
routines is exactly equivalent to a VAX VMS process. The identifier
is the VMS Process ID, which is passed to the GPM for each call.

A VAY user (process) is able to lock out another VAX user, or the
GPM resident application by allocating the FASTBUS port
(FB_ALLOCATE PORT). It is necessary to handle carefully various
problematical situations which can arise (for example, if a VAX
process dies without deallocating the GPM FASTBUS port). Adding this
mul tiple user capability does complicate thte RPC implementation.

Implementation Overheads

Memory resources: Memory is not a particular problem 1in the
implementation for the GPM. Of course the space associated with each
environment is unavailable for other uses until the environment is
released (FB_RELEASE ENVIRONMENT). The present size of an environment
resident in the GPM is 190 bytes. At worst space is vasted for each
environment if there is unused status history memory (64 bytes at
present, intended for future support of a supplemental status
history), and unused sequential buffers (16 bytes for each unused
huffer, at present a maximum of 4 buffers).

For the VAX resident routines, each environment that is created,
results in the creation of an environment on the GPM, thus
environments for VAX users actually reside on the GPM.

Performance: For the full unrestricted implementation of the
standard routines, the average execution time of a typical simple
transaction routine (FB _READ DAT), that is a primary address cycle,
folloved by a secnndary address cycle, followed by a data cycle, was
measured to be 198 microseconds, of which 36 microseconds 1is the
duration of AS/AK. & "full" implementation means full checking of
input parameter validity, and support of all options (operational
parameters).

For a more restricted implementation, that is a minimum of
parameter checking and options (no cycle suppression allowed, etc.).
the execution timo for FB READ DAT was measured to Le
126 microseconds, of which 22 microseconds is the duration of AS/AK.
The normal and "quick" versions ot the routines are maintained in
separate librarios,

I'f one codes the transactions in MACRO, that is not using the
standard rvoutines at all, and only checking for FASTBUS error

conditions, one can proabably achieve an execution time for the same
equivalent transaction ot approximately 20 microseconds, ot which 6
microscconds s the duration of AS/AK.

Implementation Effort: The implementation effort was not
carefully monitored. However, the estimated implementation time for
the GPM resident routines was approximately 2 to 3 full time months.
The implementation of the equivalent routines on the VAX, was less
than one month, much of which was devoted to wunderstanding the
idiosyncracies of the remote procedure call software.

Summary

The minimum of implementation 1level details in the standard
document is helpful from the point of view of the implementor (and the
subsequent user also). The standard for the most part is defined at a
fairly abstract and functional lesel. This gives the implementor more
freedom then would otherwise be available, and results in quite
portable routines. The explicit provisior in the standard for
implementation dependent features in operational parameters, error
returns, and some routine calls, makes it quite easy to adapt the
standard to particular hardware or to a particular application
environment.

Some of mandatory features can Seem unecessary. The default
environment, and the mandatory requirement that primitive routines and
interrupt related routines supported by the hardvare must be
implemented are examples. But a goal of the standard routines is to
increase uniformity of implementations, and therefore portability, and
these mandatory features help in achieving that goal.

The error reporting defined in the standard document can be
difficult to understand, because of its potential coinplexity. But in
our low level implementation of error reporting there were no
problems.

In the case of the GPM, some performance improvement could be
obtained by supporting delayed execution mode. This is especially
true in its use as a host interface. We have not looked at these
aspects in detail however. Because of our particular application and
the resultant simplicity of the implementation we have chosen not to
implement delayed execution mode. It may be useful to do so at some
time in the future.

Finally, our initial experience with implementing and using the
new standard routines for FASTBUS is definitely a positive one.

References

[1] H. Muller, "Online Fastbus processor for LEP," Proceedings
ol Conference on Computing in High FEnergy Physics,
Amsterdam, Netherlands, 198)5.

17} Specitications for Standard Routines tor FASTBUS, FASTBUS

Software Working Group, FSDGOSS, April 1983.

3] Cathevine van Ingen, "Fxpericence with an lmplementation of
thoe Roevised Standard Routines for FASTBUOS"Y, 1EEE

(4]

(51

(6]

(71

18]

91

Transactions on Nuclear Science, Vol. NS-32, No. 4, August

1983.

FASTBUS Standard Poutines, U. S. NIM Committee, March,
1987.

Creative Electronics Systems, Case Postale 122, 1213
Petit-Lancy, Switzerland.

Dr. B. Struck, Hauptstrasse 95, D-2000 Tangstedt, Federal
Republic of Germany.

M. A. Oothoudt et al, "The MEGA Data Acquisition System",
Proceedings of Fifth Conference on Real-Time Computer
éggijcations in Nuclear, Particle and Plasma Physics, San
Francisco, California, May 1987.

H. v. Eicken, MONICA a Symbolic Debugging Monitor for the
M 68000, (User manual in preparation), DD-Division, CERN,
Geneva, Switzerland, 1986.

J. D. Blake, Use of Microprocessor Cross Software under
VAX VMS, CERN internal report, CERN/DD/SVW-LM/T9, Geneva,
Switzerland.

[10] T. J. Berners-Lee and A. Pastore, RPC User Manual, CERN

DDb-Division, OC-Group internal report, Geneva, Switzerland,
March 31, 1987.

