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Abstract— ECO routing is a very important design capa-
bility in advanced IC, MCM and PCB designs when addi-
tional routings need to be made at the latter stage of the phys-
ical design. ECO is difficult in two aspects: first, there are a
large number of existing interconnects which become obsta-
cles in the region. A hierarchical approach is not applicable
in this situation, and we need to search a large, congested re-
gion thoroughly. Second, advances in circuit designs require
variable width and variable spacing on interconnects. Thus,
a gridless routing algorithm is needed. In this paper, we pro-
pose to use an implicit representation of a non-uniform grid
graph for gridless maze routing algorithm. A novel slit-tree
plus interval-tree data structure is developed, combined with
a cache structure, to support efficient queries into the con-
nection graph. Our experiments show that this data structure
is very small in memory usage while very fast in answering
maze expansion related queries. This make the framework
very useful in the ECO type of routing.

I. Introduction

An engineering change order (ECO) is a request to make
design changes, typically late in the design process. The
ECO support has become very important in managing large
designs because such ECO changes are almost always in-
evitable and updating the design with an incremental change
not only saves considerable effort in realizing the design but
also reduce the likelihood of introducing new errors into the
design. The ECO problem involves the ability to (i) specify
the incremental design changes, (ii) implement the design
changes and (iii) update all design databases to reflect the
changes. This paper deals with the implementation of the
design changes in detailed routing.

The difficulty of ECO routing depends on how “far” away
the problem occurs from the “original” framework on which
the routing was created. Clearly, if ECOs occur before the
layout is compacted, and if the routing environment (such as
routing tracks) is preserved, the original router that created
the layout can readily handle any additional routings, ECO
routings included, without much problem. However, the
routing problem becomes considerably more difficult when
the layout has been compacted and transferred to a differ-
ent database (such as mask layout) so that all or most of the
routing environment has been lost. Such problems can occur
in layout designs migrated from a different technology using
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mask-geometry transformations, or hard IP-blocks imported
into the current design.

The loss of original routing environment, coupled with
layout compaction, means that the routing problem may
no longer be simplified using predefined routing grids. In
addition, the effects of interconnect resistance and line-to-
line coupling are more pronounced in deep sub-micron de-
signs which make it necessary to control the interconnect
delay and signal integrity by imposing variable-width and
variable-spacing constraints on critical or sensitive nets in
high-performance designs [1]. Therefore, the ECO routing
problem requires a truly gridless detailed router that is capa-
ble of handling large designs.

The key operation in detailed routing is to seek an opti-
mal design-rule-correct path between two given points in the
routing space. This can be done using either the point-based
or the tile-based approach. In the point-based approach, the
routing area is conceptually populated with feasible points
where the center-line of a path can pass through. The fea-
sible points and their neighborhood information can be ab-
stracted as a connection graph so that the optimal path can
be found using the shortest path (Dijkstra) algorithm. In the
tile-based approach, the available routing area is partitioned
into tiles [2], and the path is searched from a tile to another.
Searching for a tile-to-tile path is usually fast [3], [4] due to
the smaller number of tiles and the use of corner-stitching
data structure. However, tiles are more complex to manage:
a tile-to-tile path needs post-processing to obtain a design-
rule-correct detailed route and there are some difficulties in
using the tile-based approach for multi-layer routing with
more complex design rules. Therefore, we use the more flex-
ible point-based routing approach for the ECO routing.

A straightforward method to realize a gridless detailed
router is to use the very dense, manufacturing grid that is
determined by the resolution of the technology or the design
database. Directly allocating memory to represent this dense
grid is often infeasible due to its large size. Previous works
in general-area, gridless point-to-point routing therefore of-
ten attack the problem by aggressively optimizing the un-
derlying connection graph [5], [6], [7]. Unfortunately, such
aggressive optimizations often result in a complex connec-
tion graph that cannot be implemented efficiently in practice
for large designs. Therefore, they are not applicable to the
ECO routing.

In this paper, we show that it is feasible to implement a
large connection graph using an implicit representation. In
Section II, we propose a regular connection graph that is
much smaller than the manufacturing grid but remains sim-



ple to represent. The graph is represented implicitly to save
memory. The implicit representation requires an efficient
data structure to perform fast query operations; that is dis-
cussed in Section III. Finally, the effectiveness of our algo-
rithms is validated with experimental results shown in Sec-
tion IV.

II. Implicit Connection Graph

A. Simplified Connection Graph

The first problem that we need to address in using the
point-to-point approach to realizing a gridless ECO-router is
how to construct a connection graph that is simpler than the
manufacturing grids and yet contains the optimal route if one
exists. Many algorithms simplify the connection graph [8],
[9], [7], [5] at the expense of very costly pre-construction
and representation. Therefore, their usefulness is limited for
large designs, as in the case of ECO routing.

We now introduce a connection graph called Non-
Uniform Grid Graph GS, based on the expansion of rectan-
gular obstacles in the routing region according to wire/via
width and spacing rules. In the routing region, the pre-
existing routings and objects are obstacles that current rout-
ing path must avoid. These obstacles can be most conve-
niently defined as a set of possibly overlapping rectangles
at different layers R = fr1;r2; : : : ;rNRg. The layout design
rules create an obstruction zone [10] around each obstacle
where the centerlines of wires and center of vias cannot be
placed. That is, the centerline of a wire of width w must be
at least dwi = (w=2+wsi) away from the edges of the ob-
stacle ri, where wsi is the wire spacing between the current
net and the obstacle ri. We let R̃ be the set of rectangles in
R that are expanded by dwi in each of the four rectilinear di-
rections, as shown in Fig. 1(a). Please note that wsi may not
be the minimum wire to wire spacing and may vary from net
to net due to aggressive optimizations in high-performance
designs. Similarly, we can create the set of rectangles ex-
panded according to via width and spacing rules, denoted as
R̃v. Our underlying routing graph is defined as follows:

Definition: Given a multi-layer routing problem with the
obstacle set R, a source s and a sink t. A Non-Uniform Grid
Graph GS is a orthogonal grid graph where its x grid loca-
tions are the vertical boundary locations of R̃ and R̃v plus the
x locations of s and t. Similarly, we can define the y grid
locations, as shown in Fig. 1(b).

GS is a strong connection graph; that is, it guarantees to
contain a shortest path from s to t if any such connection ex-
ists among the set of obstacles R, according to design rules.
It is easy to show that a strong connection graph, GC, pro-
posed by Zheng, et al. [7], using the same obstacle expan-
sion strategy, is a sub-graph of our GS, as shown in Fig. 1(c).

Compared to uniform grid graphs, where an ECO type
of routing may generate very dense grids (as shown in

Fig. 1(d)) our non-uniform grid graph is much sparser. Com-
paring to previous non-uniform graphs, although our graph
has more nodes, the gridded nature of GS makes it very easy
to come up with an implicit representation which is both
highly compressed in storage and efficient in query.

B. Implicit Representation of Connection Graph

Instead of pre-computing the graph explicitly, we use an
implicit representation of the connection graph. That is, we
compute the graph nodes on-the-fly. The computation of a
graph node, a query, consists of two steps: first, compute
the possible position of the node, and second, determine the
feasibility of the node.

Given the position of point p and a direction d, we need to
find the position of the closest neighbor to p in the direction
d quickly in order to support the implicit representation effi-
ciently. Since our connection graph consists of non-uniform
grids, we build an array XS of sorted x-coordinates of the
vertical grid-lines in GS. If the x-coordinate of the current
point corresponds to XS[i], the x-coordinate of the neighbor-
ing point is either XS[i+1] or XS[i�1], which can be found
in constant time. The preprocessing time to compute such an
array requires a O(jRj) time for linear scanning of all rect-
angles and O(jRjlogjRj) time for sorting. We need a similar
array for computing y-coordinates. So the data structures
to support implicit representation of non-uniform grid con-
nection graphs are simply two arrays with a total memory
requirement of O(jGhj+ jGvj) where jGhj and jGvj are the
number of horizontal and vertical grid-lines in GS, respec-
tively.

A point is feasible for placing a wire or via if it is not
enclosed by the applicable expanded rectangles in R̃ or R̃v.
Therefore, finding the feasibility of a point requires a point
enclosure query into the set of expanded rectangles:
Point enclosure problem: Given a set of rectangles R =

frij i = 1;2; : : : ;NRg and a point v, determine the set of
rectangles that contain v.

We will discuss our data structure to support feasibility
computation in the next section.

III. Query Data Structure

The feasibility check answers the simple question of
whether a point falls into any expanded rectangle. However,
the nature of ECO type of routing make this problem not
trivial to solve. First, the data structure needs to represent
a fairly large and congested region which contains a huge
amount of rectangular objects. Second, the rectangular ob-
jects need to be expanded according to the width and spacing
rules. However, ECO routing normally involves only a few
nets. So the preprocessing time for the query data structure
should not be long. Third, the query may be made many,
many times during the routing, so it has to be answered very
efficiently.
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Fig. 1. Connection Graph Generation: (a) obstacle rectangles R and expanded rectanglesR̃, (b) GS constructed by x and y locations of R̃,
R̃v, s and t, (c) GC constructed by boundaries and extension lines ofR̃ and R̃v, (d) uniform grids which use very dense manufacturing
grids.

The point enclosure problem is well studied in computa-
tional geometry, and it can be solved using segment trees
in O(logn + k) time and O(n logn) space [11], or solved
using priority search [12] trees in O(log2 n + k) time and
O(n) space where k is the number of rectangles that en-
close the point v. These tree-based algorithms, although
good for static data, suffer from long preprocessing time
(at least n logn) due to dynamic updates, including expan-
sion, insertion and deletion. More practical data structures
have been proposed based on organizing the objects into
one-dimensional buckets [13], [14], two-dimensional buck-
ets [15], or two-dimensional data-oriented buckets called
field blocks [16]. Extensive comparisons of the tree-based
approach versus the two-dimensional buckets approach can
be found in [15]. In preferred layer routing, the obstacles in a
given layer are dominated by long rectangles in the preferred
routing direction. This favors the one-dimensional buckets
approach, such as the “slit-tree” in [13], [14] that recursively
bisects the layer into slices in the preferred direction, and
rectangles intersecting or overlapping a common slice are
managed by a bidirectional linked list. The advantage of ap-
plying the slit-tree algorithm is that it requires linear mem-
ory space and linear preprocessing time while, in practice,
the query takes constant time. However, applying the sim-
ple one-dimensional bucketing data structure to non-uniform

grid graph query in ECO routing has three drawbacks. First,
there is still a very large number of rectangles in each slice.
Second, each rectangle is expanded many time because the
width and spacing rules may differ between wires and vias,
from layer to layer and from net to net. Last, it does not ex-
ploit the locality of maze routing queries. In the remainder
part of this section, we propose several techniques to im-
prove the basic slit-tree algorithm.

The first drawback of a simple slit-tree structure is that
it slows down when the number of objects is large in each
slice. Although by further bisection we can reduce the num-
ber of objects in each slice, the number of “small” objects
such as vias and short local wires can not be effectively re-
duced. Therefore, we propose a two-level data structure to
solve this problem. The first level is a fixed height “slit-tree”
and the second level is an auxiliary interval tree [17]. Notice
that the interval-tree has predetermined, uniformly spaced
cut-lines according to the size of the slice. The advantage
of the interval-tree is that long rectangular objects along the
preferred direction in each slice are stored at the highest level
of interval node they cut while short objects which fall in be-
tween interval lines are stored at leaf nodes. We call them
cells, as illustrated in Fig. 2. The storage space for such a
data structure is still linear, while the number of rectangles a
query needs to check can be significantly reduced by travers-
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Fig. 2. Slit + Interval Tree: The horizontal slices are cut into cells by
vertical intervals. Rectangular obstacles are stored on either cut-line
nodes or leaf cells. The empty rectangle E is generated as a result of a
query to point v.

ing the interval tree nodes top-down. Another advantage of
this data structure is that its preprocessing time is still con-
stant in practice.

The second problem is due to the expansion of rectangu-
lar objects. The algorithm requires expanding all the rectan-
gles according to wire rule and via rule before checking for
point enclosure. This is undesirable when the design rules
vary frequently from net to net, since each set of design
rule requires a new set of expanded rectangles. The result
is multiple copies of expanded rectangles (wire rule and via
rule) and frequent rebuilding of data structures (design rule
changes). To solve this problem, we propose to store un-
expanded rectangles R in the query data structure. Since the
query involves a local search around the area of the query
point, we can search for all the rectangles that are within
the largest expansion distance (max

i
dwi for wire-feasibility

or max
i

dvi for via-feasibility) to the query point and expand

these rectangles on-the-fly. By paying the price of a slightly
larger searching area, assuming the difference of width and
spacing rules are much smaller than the size of “cells,” we
are able to eliminate the need to pre-expand the rectangles,
and thus allow easy implementation of flexible design rules.

Last, existing query data structures do not exploit local-
ity of point enclosure queries due to the point-to-point ex-
pansion nature in maze routing. Each query into the data
structure, although best optimized for trade-offs between the
storage space and the speed of query, still requires multiple
levels of tree traversal and a linear scan of each object in
the cells. This is a very expensive operation because queries
need to be made repeatedly in maze routing. In our imple-
mentation, we improve the query efficiency by exploiting the
locality of the queries using the cache data structure, inde-
pendent of the query data structure. The basic operation of
maze routing is to expand node by node. So its queries have
very good locality—the queries propagate from the source
node location, and each time go to a neighboring location
not far away. We can exploit this locality using cache—a
small fixed-size vector of rectangles from recent query re-

TABLE I

ECO TEST EXAMPLES

Ex. Block Dimension Layers Pins Cells Rectangles
x�y(µm)

eco-1 1372.5�1593.3 3 3 6417 232,309
eco-2 1372.5�1593.3 3 2 6417 232,453
eco-3 1372.5�1593.3 3 5 6417 232,004
eco-4 1372.5�1608.6 3 2 6417 232,633
eco-5 1556.5�1676.8 3 2 7542 196,947
eco-6 2926.1�1676.8 3 2 13959 372,240
eco-7 2741.5�3192.8 3 2 25668 701,172

sults. We keep two caches in our implementation: an obsta-
cle cache and a “free” cache. If the query point v is not en-
closed by a rectangle, then we compute a maximal “empty”
rectangle around v, shown as E in Fig. 2. Notice that com-
puting the largest empty rectangle is a NP-hard problem,
so we use a simple heuristic: at the beginning, the empty
rectangle Re is set to be the same size of the cell(s) contain-
ing the query point. While the rectangular obstacles in the
cell(s) are checked one-by-one, at each time we compute the
maximal remaining empty rectangle with respect to the cur-
rent obstacle Rk. This involves examination of all possible
derivation (up to four) of new empty rectangle according to
relative position of Re and Rk. Such an operation takes con-
stant time. Since we need to go through the rectangles to
check for overlapping, we are able to find the empty rectan-
gle with little extra effort. If the query point p is enclosed
by an expanded rectangle, then the expanded rectangle is
added to the obstacle cache. The rectangles in either cache
are sorted according to the time they are generated and when
the cache is full, the rectangle with “oldest” time stamp is
swapped out. Our experiments show that adding in these
two caches gives us 11� reduction on average query time
for our routing examples.

IV. Experimental Results

We have implemented our implicit connection graph and
query data structures for ECO routing. A standard maze al-
gorithm is used to search for the connection on the implicit
graph. Several standard cell blocks with variable width and
variable spacing design rules are used for ECO examples:
route one random multi-terminal net. They were placed and
routed by commercial tools and compacted. Only geometry
information is passed to our router to search for the routes.
Table I shows a summary of the examples used here. The re-
sults presented in this section were collected on a 168MHz
Sun Ultra-1 workstation with 128MB of memory. We also
compare our algorithm with Iroute, a tile-based interactive
router in Magic layout systems [18], [19].

Table II shows a comparison of memory usage between
explicit representation and implicit representation. Please
note that the estimation of uniform grid uses the common



TABLE II

MEMORY USAGE OF DIFFERENT CONNECTION GRAPH (MB)

Ex. Uniform Grids Non-Uniform Grids Iroute
Explicit Implicit

eco-1 160.2 10.9 32.7
eco-2 160.2 10.9 32.7
eco-3 160.2 7.2 32.6
eco-4 161.7 10.9 32.6
eco-5 191.0 12.7 35.2
eco-6 359.4 15.9 52.6
eco-7 641.1 43.6 84.7
Ratio 14.3 1.00 3.0

TABLE III

ECO TEST RESULTS

Ex. Non-Uniform Grid Iroute
Runtime Wire/Via Runtime Wire/Via

(sec.) (sec.)
eco-1 19.1 17374/ 66 42.15 22629/89
eco-2 6.3 11332/ 42 26.58 13162/62
eco-3 34.5 34736/110 68.70 36593/103
eco-4 24.0 21760/122 57.39 24385/153
eco-5 12.3 27061/54 43.14 34543/12
eco-6 24.7 37858/70 74.29 56423/20
eco-7 38.2 35690/74 79.79 47591/20

divisor of wire/via width as the uniform grid distance. In
these set of examples, it is 0.1µm. The estimation of explicit
memory usage assumes minimum memory requirement per
grid. We use 2 bits per grid node, which is barely enough
to distinguish wire/via obstacles and empty spaces, as sug-
gested by [20]. Our results suggest that by using implicit
representation, the average memory size is reduced by 14�
among seven of our test cases.

We also compare the run-time and routing quality with
Iroute in Table III. Our experiments show that at a compara-
ble routing quality, our algorithm uses 2 to 3� less memory
and get results 2 to 4� faster than Iroute. This improvement
over Iroute is significant, as tile-based algorithms are known
for their memory and runtime efficiency because they store
and search tile (area) instead of grids.

V. Conclusions

In this paper we have shown that ECO routing is difficult
in that it needs to search large and congested routing regions
under the variable width and variable spacing design rules
imposed in advanced technologies. We proposed a non-
uniform grid graph with its implicit representation. A novel
slit-tree plus interval-tree data structure is developed, com-
bined with a cache structure, to support efficient queries into
the implicit graph. Our experiments compare our graph with
an explicit uniform grid approach and Iroute, a well-known
tile-based router for gridless routing. The results show that

not only this graph representation is very efficient in memory
usage—14� smaller than explicit representation and 2 to 3�
smaller than Iroute, but the queries into the data structure are
also very fast. The run-time of our maze routing algorithm is
2 to 4� faster than Iroute. This makes the whole framework
very suitable for the ECO type of routing.
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