
26

An implicit formulation for
exact BDD minimization of
incompletely specified functions

Arlindo L. Oliveira

Cadence European Laboratories / IST-INESC

R. Alves Redol 9, 1000 Lisboa, Portugal, aml@inesc.pt

Luca P. Carloni, Tiziano Villa and Alberto Sangiovanni- Vincentelli

Department of EECS, University of California at Berkeley

Berkeley, CA 94120, USA, {lcarloni,villa,alberto}@eecs.berkeley.edu

Abstract

This paper addresses the problem of binary decision diagram (BDD) mini­

mization in the presence of don't care sets. Specifically, given an incompletely

specified function g and a fixed ordering of the variables, we propose an ex­

act algorithm for selecting f such that f is a cover for g and the binary

decision diagram for f is of minimum size. We proved that this problem is

NP-complete. Here we show that the BDD minimization problem can be for­
mulated as a binate covering problem and solved using implicit enumeration

techniques similar to the ones used in the reduction of incompletely specified

finite state machines.

Keywords: Logic Synthesis, Binary Decision Diagrams, Finite State

Machines.

1 INTRODUCTION

A completely specified Boolean function f is a cover for an incompletely spec­

ified function g if the value of f agrees with the value of g for all the points

in the input space where g is specified. This paper describes an exact algo­

rithm for selecting f such that f is a cover for g and the binary decision

diagram (BDD) for f has a minimum number of nodes (complemented edges

are not considered here). For a given ordering of the variables, the BDD for

f is unique (Bryant 1986) and the problem has a well defined solution. This

problem was proved NP-complete (Oliveira, Carloni, Villa & Vincentelli 1996)

using Takenaga & Yajima's (1993) result that the problem of identification of

the minimum BDD consistent with a set of minterms is NP-complete.

We show that this minimization problem can be solved by selecting a mini-

VLSI: lntegmted Systems on Silicon R. Reis & L. Claesen (Eds.)

OIFIP 1997 Published by Chapman & Hall

316 Part Eight Synthesis and Technology Mapping

mum sized cover for a graph that satisfies some additional closure conditions.

In particular, we show that the minimum sized binary decision diagram com­

patible with the specification can be found by solving a covering problem that

is very similar to the covering problem obtained using exact algorithms for

the reduction of incompletely specified finite state machines (ISFSM) (Kam,

Villa, Brayton & Vincentelli 1994). This similarity makes it possible to use

implicit enumeration techniques developed for the purpose of ISFSM reduc­

tion (Kam et al. 1994) to solve efficiently the BDD minimization problem. The

representation with ROBDDs (Brace, Rudell & Bryant 1990) of the charac­

teristic function of the sets of compatibles and prime compatibles allows the

generation of very large sets that cannot be enumerated explicitly.

The transformation presented in this paper and the algorithms developed

for the solution are important for a variety of reasons. In applications of

inductive learning that use BDDs as the representation scheme (Oliveira &

Vincentelli 1996), the accuracy of the inferred hypotheses is strongly depen­

dent on the complexity of the result. The selection of the minimum BDD

consistent with an incompletely specified function is important also in logic

synthesis applications that use BDDs to derive gate-level implementations

from a BDD, like timed Shannon circuits, DCVS trees and multiplexer based

FPGAs.

Several heuristic algorithms have been proposed for this problem. The re­

strict (Coudert, Berthet & Madre 1989) and the constrain operators are two

heuristics commonly used to assign the don't cares of a BDD. A compre­

hensive study of heuristic BDD minimization has been presented by Shiple,

Hojati, Vincentelli & Brayton (1994).

An exact algorithm (Ranjan, Shiple & Hojati 1993) based on the enumer­

ation of the different covers that can be obtained by all possible assignments

of the don't care points has also been proposed. A pruning technique reduces

the enumeration process thanks to a result that changing the value of a func­

tion I of n variables on a minterm m cannot change the size of the BDD for

I by more than n nodes. Although this pruning is performed implicitly, this

method is exponential on the number of don't care points, and therefore is

not applicable to problems of non-trivial size.

2 DEFINITIONS

We use the standard notation for BDDs. A BDD is a rooted, directed, acyclic

graph where each node is labeled with the name of one variable. A BDD

is called reduced if no two nodes exist that branch exactly in the same way

and no redundant nodes exist. A BDD is ordered if there is an ordering of

the variables such that, for all possible paths in the graph, the variables are

always tested in that order.

The level of a node ni, .C(ni) is the index of the variable tested at that node

under the specific ordering used. The level of a function h, .C(h), is defined as

Exact BDD minimization of incompletely specified functions 317

the level of a BDD node that implements h. Ifni is a node in the BDD and

m a minterm, ni(m) will be used to denote both the value of function ni for

minterm m and the terminal node that m reaches when starting at ni.

A 3 Terminal BDD (3TBDD) is defined in the same way as a BDD in

all respects except that it has three terminal nodes : nz, n 0 and n.,, that

correspond to the zero, one and undefined terminal nodes. A 3TBDD F

corresponds to the incompletely specified function f that has all minterms in

/off, /on and /de terminate in nz, no and n.,, respectively.

3 THE COMPATIBILITY GRAPH

Previous algorithms (Ranjan et al. 1993) for this problem used directly the

BDD representation of !on and /off· The exact approach described in this pa­

per uses the 3TBDD F that corresponds to the incompletely specified function

f. F is assumed to be complete. If necessary, F is made complete by adding

extra nodes that have the then and else edges pointing to the same node. In

general, the resulting 3TBDD is no longer reduced. Moreover, we suppose that

the 3TBDD does not use complemented edges. The definition of the algorithm

is based on the lemmas and definitions that follow. Due to space limitations,

proofs for all the lemmas are omitted here and can be found in Oliveira et al.

(1996).

Definition 1 Two nodes ni and ni in F are compatible {ni "' ni) iff no

minterm m exists that satisfies ni(m) = nz 1\ nj(m) = n 0 or ni(m) = no 1\

nj(m) = nz.

This definition implies that no and nz are not compatible between them

and that n., is compatible with any node in a 3TBDD.

Definition 2 Two nodes ni and ni in F are common support compatible

(ni ~ nj) iff there exists a completely specified function h such that

h"' ni and h "'ni and .C(h) 2: max(.C(ni),.C(ni)).

The definition implies that nz ¢no and n., ~ ni, for any node ni.

It is important, at this point, to understand the relationship between these

two concepts. First, note that the completely specified function h referred in

Definition 2 does not necessarily correspond to any node in F. In fact, in

most cases, h will not correspond to any node in F, since most nodes in F

correspond to incompletely specified functions.

The relationship between compatibility and common support compatibility

(CSC) is given by the following lemma:

Lemma 1 Ifni ~ ni then ni "' ni.

318 Part Eight Synthesis and Technology Mapping

The reverse implication of lemma 1 is not true, in general. Two nodes may

be compatible but not CSC, as shown by the example presented by Oliveira

et al. (1996). However, when two nodes belong to the same level, common

support compatibility and compatibility are equivalent:

The motivation for the definition of common support compatibility can now

be made clear. Assume that two nodes belong to different levels and are com­

patible. In principle, they could be replaced by a new node that implements a

function compatible with the functions of each node. In general, this function

may depend on variables that are not on the support of the node at the higher

level. Assume this node is ni. Later, when we try to build the reduced BDD,

edges that are incident into ni will need to go upwards, against the variable

ordering of the BDD. On the other hand, if both nodes are common support

compatible, then they can be replaced by a node that implements the com­

pletely specified function h referred to in Definition 2. Because this function

only depends on the variables common to the supports of both nodes, this

problem will not arise.

The concept of common-support compatibility can be extended to sets of

nodes in the natural way:

Definition 3 The nodes in the set Si = { n1, n2, ... , n 8 } are common support

compatible iff there exists a completely specified function h such that (h ,.....,

ni)i=l, ... ,s and .C.(h) ~ .C.max(si)·

Definition 4 A set of nodes that are common support compatible is called a

compatible set or, simply, a compatible.

The definition of a compatible implies that any two nodes that belong to a

compatible are pairwise common support compatible. The reverse implication

is not true, but the next lemma holds.

Lemma 3 Let Si be a set of nodes belonging to the same level. Then, Si is a

compatible iff all nodes in Si are pairwise common support compatible.

Definition 5 The compatibility graph, G = (V, E), is an undirected graph

that contains the information about which nodes in F can be merged. Except

for the terminal node nx, each node in F will correspond to one node in V

with the same index. The level of a node in G is the same as the level of

the corresponding node in F. Similarly, g'flse and g!hen are the nodes that

correspond to nilse and n~hen.

Exact BDD minimization of incompletely specified functions 319

Graph G is built in such a way that if nodes n; and nj are common support

compatible then there exists an edge between 9i and gj. An edge may have

labels. A label is a set of nodes that expresses the following requirement: if

nodes g; and 9j are to be merged, then the nodes in the label also need to be

merged. There are three types of labels: e, t and I labels. The following two

lemmas justify the algorithm by which graph G is built:

Lemma 5 If .C(n;) < .C(nj) thenni:::;:: nj => (nilse:::;:: njl\n~hen:::;:: njl\n'flse:::;::

n~hen).

The previous two lemmas justify the following algorithm to build the com­

patibility graph.

Algorithm 1

1. Initialize G with a complete graph except for edge (gz,9o) that is removed.

2. If .C(g;) = .C(gj) then the edge between g; and gj has two labels: an e label

with {gilse, gjlse} and a t label with {gfhen, gjhen}. {By Lemma 4.)

3. If .C(gi) < .C(gj) edge (gi,gj) has an l label with {gilse,gfhen,gj}· (By

Lemma 5.)

4. For all pairs of nodes (g;, gj) check if the edge between nodes g; and gj has

a label that contains {ga, gb} and there is no edge between ga and gb. If so,

remove the edge between g; and gj. Repeat this step until no more changes

take place.

Figure 1 shows an example of the 3TBDD F obtained from f defined by the

following sets: !on= {011, 111}, !off= {010, 110, 101} and the corresponding

compatibility graph.

The existence of an edge in the incompatibility graph is related with com­

mon support compatibility and with compatibility between pairs of nodes in

the following way:

It is important to note that the reverse implications are not true. In particu­

lar, the existence of an edge between two nodes in G does not imply that they

are common support compatible, as it is possible to have an edge between two

nodes in G that are not CSC.

320 Part Eight Synthesis and Technology Mapping

l:(g I'g t
e:-.::.!.£.-'1'---.. g2

Figure 1 The 3TBDD F and the compatibility graph G. Nodes g5 and g,

are not shown in the compatibility graph, since they are common support

compatible with every node in the graph.

4 CLOSED CLIQUE COVERS

A clique of graph G is a completely connected subgraph of G. To any set s

of nodes that is a clique of G there are associated class sets. If the nodes in s

are to be merged into one, the nodes in its class sets are also required to be in

the same set. Let s; = {g; 1 , g;2 ... g;w} be a set of nodes that form a clique in

G. The following are the definitions of the e, t and l classes of s;. Notice that

for concision we may blur the distinction between the nodes g's of G and the

corresponding nodes n's of F. Strictly speaking, cliques are defined on sets of

g's and compatibles on sets of n's.

Definition 6 Thee (t) class of s;, Ce(s;) is the set of nodes that are in some

e {t) label of an edge between a node gi and gk ins; with .C(nk) = .C(nj) =

.Cmax(s;) ·

Definition 7 The l class of s;, C1(s;) is the set of nodes that are in some l

label of an edge between a node gi and gk ins; with .C(gj) =/:- .C(gk)

Lemma 7 If a sets; of nodes are a clique of G and C1(s;) ~ s;, then s; is a

compatible set.

Note that a clique of G that does not satisfy the condition in Lemma 7

is not necessarily a compatible set. The algorithm that selects the minimum

BDD compatible with the original function works by selecting nodes of G that

can be merged into one node in the final BDD. If a set s of nodes in G is to

be merged into one, the set s has to be a compatible set. Therefore, it has

to be a clique of G satisfying Definition 7. The objective is to find a set of

cliques such that every node in G is covered by at least one clique. However,

to obtain a valid solution, some extra conditions need to be imposed.

Exact BDD minimization of incompletely specified functions 321

Definition 8 A set S = { s1, s2 ... sn} of sets of nodes in G is called a closed

clique cover for G if the following conditions are satisfied:

1. S covers G: Vgi E G3sj E S : gi E Sj.

2. All Sk are cliques ofG: Vgi,gi E Sk : (gi,gj) E edges(G).

3. S is closed with respect to the e and t labels:

Vsi E S3sj E S : Ce(si) ~ Sj 1\ Vsi E S3sj E S : Ct(si) ~ Sj.

4- All sets inS are closed with respect to the l labels: Vsi E S : Cz(si) ~ Si·

5 GENERATION OF A MINIMUM BDD

From a closed clique cover for G, a reduced BDD R is obtained by the following

algorithm:

Algorithm 2

1. For each Si inS, create a BDD node in R, ri, at level Lmax(si)·

2. Let the nodes in R that correspond to sets Si containing nodes that corre­

spond to terminal nodes in F be the new corresponding terminal nodes of

R.
3. Let the else edge of the node ri go to the node rj that corresponds to a set

Sj such that Ce (si) ~ Sj.

4. Let the then edge of the node ri go to the node ri that corresponds to a set

Sj such that Ct(si) ~ Sj.

Lemma 8 R is an Ordered BDD compatible with F.

Now, the main result follows. Let B be the set of all BDDs that represent

functions compatible with the incompletely specified function f. Then:

Theorem 1 The BDD induced by a minimum closed cover for G is the BDD

in B with minimum number of nodes.

As an example, S = {{go,gl,g2},{g4},{g3,g5,gz},{go}} is a closed cover

for the example depicted in Figure 1 and induces the BDD R shown on the

right side of Figure 2.

The definition of a closed cover is very similar to the standard definition of

a closed cover used in the minimization of FSMs. If the graph of a 3TBDD

is viewed as the state transition graph of an FSM, the algorithms developed

for the minimization of FSMs can be used with some modifications. The two

important differences to consider are:

322 Part Eight Synthesis and Technology Mapping

Xz

~I
r z r o

Figure 2 The 3TBDD F, the compatibility graph G and a solution R. Node

95 was arbitrarily included in compatible {93, 9z, 95}.

1. The definition of the e and t classes and the closure requirement in point

3 of Definition 8 are different from the definitions used in standard FSM

minimization. In BDD minimization, only nodes at the highest level in some

compatible define the e and t classes, while in standard FSM minimization

all nodes in a compatible set are involved in the definition of these classes.

2. The requirement in point 4 of Definition 8 means that some sets of nodes

that satisfy the definition of a compatible set in the FSM case do not satisfy

the conditions for BDD minimization.

These two changes can be incorporated into existing algorithms for FSM

minimization. In particular, the closure conditions with respect to the e and

t labels are similar to the closure conditions imposed in standard FSM mini­

mization. The restriction imposed by condition 4 in Definition 8 simply elim­

inates some cliques of the compatibility graph from consideration and can be

implemented by a filtering step. The transformation from BDD minimization

to FSM reduction and its correctness are shown in Oliveira et al. (1996).

6 IMPLICIT COMPUTATION OF A MINIMUM CLOSED

COVER

We will use the unified implicit framework proposed in (Kam et al. 1994).

Implicit techniques are based on the idea of operating on discrete sets by

their characteristic functions represented by BDDs (Bryant 1986).

To perform state minimization, one needs to represent and manipulate effi­

ciently sets of sets of states. With n states, each subset of states is represented

in positional-set form, using a set of n Boolean variables, x = x 1x2 ••• xn.

The presence of a state s,. in the set is denoted by the fact that variable x,.
takes the value 1 in the positional set, whereas x,. takes the value 0 if state

s,. is not a member of the set. For example, if n = 6, the set with a single

Exact BDD minimization of incompletely specified functions 323

state 84 is represented by 000100 while the set of states 828385 is represented

by 011010.

A set of sets of states 8 is represented in positional notation by a charac­

teristic function xs : Bn -+ B as: xs(x) = 1 if and only if the set of states

represented by the positional set xis in the set 8. A BDD representing xs(x)

will contain minterms, each corresponding to a state set in 8. As an example,

Tuplen,k(x) denotes all positional sets x with exactly k states in them (i.e.

lxl = k). For instance, the set of singleton states is Tuplen,l(x). An alternative

notation for Tuplen,k(x) is Tuplek(x).

Any relation R between pairs of sets 81 and 82 can be represented by

its characteristic function n : Bn X Bm -+ B where n(x,y) = 1 if and

only if Xs1 (x) = 1, Xs2 (y) = 1 and the element Of 81 represented by X is in

relation R with the element of 82 represented by y. A similar definition holds

for relations defined over more than two sets. For example, we represent the

state transition graph (STG) of an FSM by the characteristic functions of two

relations: 1) the output relation A, where input i, present state p and output

o are in A(i,p, o) if there is an edge from p with input/output label ifo, and

2) the next state relation /, where where input i, present state p and next

state n are in relation T(i,p, n) if there is an edge from p to n with input

label i.

It has been shown in Section 5 that given a BDD minimization problem it

is possible to generate a companion FSM whose closed covers of compatibles

correspond to closed clique covers of the BDD, if: a) FSM compatibles that

do not satisfy the L-closure are discarded, and b) FSM compatible closure is

replaced by E-closure and T -closure. Our starting point is the fully implicit

algorithm for exact state minimization reported by Kam et al. (1994), to

which we refer for a complete description of the implicit computations. In the

sequel we discuss the modifications needed to generate closed clique covers of

the BDD.

Consider the set of compatibles C(c), where C(c) = 1 iff cis the positional

set representing a compatible of the companion FSM. When minimizing an

FSM obtained from an instance of BDD minimization one must delete from

C(c) the compatibles c that are not closed with respect to their l-class. The

l-class, C1(c), of a compatible cis the set of nodes that are in some l-label of

an edge between nodes Yi and Yk inc with C(gi) < £(gk)· If £(gi) < £(gk)
then edge (gj,gk) has the l-label {gjlse,g}hen,gk}·

In standard FSM minimization one requires closure with respect to implied

sets. Given a compatible c an implied set under input i is the set of next states

from the states in c under i. Instead in the case of BDD minimization one

must compute the implied sets only from the states in c of highest level. This

requires a change in the computation of the relation of the implied classes

:F(c, i, n).

324 Part Eight Synthesis and Technology Mapping

The new computation for :F(c, i, n) is described by the following equation:

:F(c, i, n) = 3p {3c' [C(c) · M ax..Level(c,.c') · (c' 2 p)] · T(i,p, n)}

Subsets of states c and d are in relation Max ..Level (c, d), iff d is the subset

of c that contains the states of c of maximum level, i.e. the states having the

largest distance from r in the STG of the FSM.

7 RESULTS

Starting from the program ISM for implicit state minimization (Kam et al.

1994) we developed IMAGEM, a new program based on the theory described

in this paper for exact BDD minimization. To evaluate experimentally the

algorithms presented in this paper, we assembled two sets of problems: the

first set derives directly from a machine learning application and the second

set was obtained from a logic synthesis benchmark. In all the problems, the

original ordering specified for the variables was the ordering used.

For the first set of problems, 12 completely specified Boolean functions

fi were used as the starting point. For each of these functions, a randomly

selected set of minterms was designated as the care set, resulting in a set of

incompletely specified Boolean functions Yi· The objective was to verify if the

algorithm was able to identify a BDD no larger than the BDD for /i, which

represents a known upper bound on the solution. The second set of problems

was obtained by selecting a subset of the examples that are distributed with

Espresso (Brayton, Hachtel, McMullen & Vincentelli 1984), a well known two­

level minimizer. We included here the functions that are the first output from

each of the PLAs that are included in the industry subset of the Espresso

benchmark suite, after eliminating all the functions that have a null don't

care set.

Table 1 summarizes the results obtained from running these sets of exam­

ples. The last entry in the table is the example presented in this paper to

illustrate the theory.

The first four columns report the original number of states, the number

of compatibles, the number of compatibles after filtering (i.e. the ones which

are closed with respect to their l-class) and the number of primes. The next

two columns report the exact result obtained and the result obtained by the

restrict operator (Coudert et al. 1989). The last column contains the time

spent by IMAGEM to find the solution: all run times are reported in CPU

seconds on a DEC Alpha (300 Mhz) with 2Gb of memory. For all experiments,

"timeout" has been set at 21600 seconds of CPU time and "spaceout" at 2Gb

of memory.

Exact BDD minimization of incompletely specified functions 325

example orig. com pat. filtered prime red. restrict Imagem
states comp. comp. states Cpu time

dnfa 64 2.4e+12 1332186 89 14 16 517.29
dnfb 36 4.8e+08 2987 94 6 12 11.85

dnfc 40 2.2e+08 2613 102 10 15 12.94

dnfd 93 l.le+20 9.5e+08 23 timeout

dnfe 63 2.1e+13 141179 509 6 12 217.29

dnff 62 2.1e+11 92027 357 15 22 151.8

xor3 9 179 14 7 6 6 0.1

xor4 17 14975 118 13 6 6 0.43

xor5 24 608255 267 36 9 10 1.37

xor6 40 3.3e+08 1329 170 13 20 13.98

xor7 57 2.7e+ll 3076 640 15 31 88.16

xor8 94 1.5e+17 164929 21830 17 45 9041.11

alu1 95 l.Oe+21 841993 1204 6 6 7409.97

br1 74 2.9e+18 799173 329 6 11 1313.91

br2 51 5.9e+14 53687 78 3 8 14.59
clpl 50 1.4e+13 7559 39 3 13 12.39

dc2 46 8.2e+l0 8831 98 8 12 57.66

exp 54 2.6e+ll 10638 25 3 3 31.34

exps 71 1.8e+10 3810 125 43 44 44.79

inO 151 2.6e+25 1.6e+06 1323 42 44 18201.76

in3 173 5.0e+39 587880 12 9 14 1755.21

inc 35 l.le+07 364 26 12 13 3.84

intb 189 4.8e+46 3.8e+14 69 spaceout
markl 71 7.4e+l8. 8049 35 4 5 41
newapla 52 1.2e+12 · 3252 33 10 11 41.5

newapla1 57 8.7e+l4 8733 63 6 6 141.66
newapla2 19 93311 137 6 5 5 0.49
new byte 16 20735 127 9 5 5 0.41

newcond 165 3.8e+31 7.4e+12 54 spaceout

newcpla2 39 3.3e+08 477 68 10 21 5.72

newcwp 16 10367 106 10 6 11 0.39

newtpla 94 1.2e+23 411525 148 7 23 469.14

newtpla1 39 .6.9e+09 1441 31 4 5 4.45

newtpla2 26 3.1e+06 158 9 9 9 0.9

newxcplal 39 4.4e+09' 1473 35 5 10 5.13

p82 16 15551 102 10 7 7 0.4

prom1 65 5.1e+09 382 77 50 50 30.04

prom2 33 2.1e+08 446 38 12 12 3.33

sex 28 1.6e+07 419 16 5 5 1.62
spla 155 1.6e+39 1.4e+l2 8 spaceout
sqn 41 l.Oe+07 173 43 19 19 9.13

t4 68 5.1e+14 31775 157 9 11 89.98
vg2 150 3.6e+36 4.0e+07 14 timeout

wim 14 4319 82 8 6 6 0.26

ex. paper 10 575 32 8 4 4 0.17

Table 1 Results obtained in the sets of problems studied.

326 Part Eight Synthesis and Technology Mapping

8 CONCLUSIONS

This paper addresses the problem of binary decision diagram (BDD) mini­

mization in the presence of don't care sets. We show that the minimum-sized

binary decision diagram compatible with the specification can be found by

solving a problem that is very similar to the problem of reducing an ISFSM.

The approach described is the only known exact algorithm for this problem

not based on the enumeration of the assignments to the points in the don't

care set. We show that this minimization problem can be formulated as a

binate covering problem and solved using implicit enumeration techniques.

We have implemented this algorithm and performed experiments. by means

of which exact solutions for an interesting benchmark set were computed.

REFERENCES

Brace, K., Rudell, R. & Bryant, R. (1990). Efficient implementation of a

BDD package, The Proceedings of the Design Automation Conference,

pp. 4Q-45.

Brayton, R., Hachtel, G., McMullen, C. & Vincentelli, A. S. (1984). Logic

Minimization Algorithms for VLSI Synthesis, Kluwer Academic Pub­

lishers.

Bryant, R. (1986). Graph based algorithm for Boolean function manipulation,
IEEE 1hmsactions on Computers, pp. C-35(8):667-691.

Coudert, 0., Berthet, C. & Madre, J. C. (1989). Verification of synchronous

sequential machines based on symbolic execution, Proceedings of the

Workshop on Automatic Verification Methods for Finite State Systems,

vol. 407 of Lecture Notes in Computer Science pp. 365-373.

Kam, T., Villa, T., Brayton, R. & Vincentelli, A. S. (1994). A fully implicit

algorithm for exact state minimization, The Proceedings of the Design

Automation Conference, pp. 684-690.

Oliveira, A. L., Carloni, L., Villa, T. & Vincentelli, A. S. (1996). Exact

minimization of boolean decision diagrams using implicit techniques,

Technica_l Report M96/16, UCB/ERL.

Oliveira, A. L. & Vincentelli, A. S. (1996}. Using the minimum descrip­

tion length principle to infer reduced ordered decision graphs, Machine

Learning Journal25: 23-50.

Ranjan, R., Shiple, T. & Hojati, R. (1993}. Exact minimization of BDDs

using don't cares. EE290ls Project Report.

Shiple, T., Hojati, R., Vincentelli, A. S. & Brayton, R. (1994). Heuristic

minimization of BDDs using don't cares, The Proceedings of the Design

Automation Conference, pp. 225-231.

Takenaga, Y. & Yajima, S. (1993}. NP-completeness of minimum binary de­

cision diagram identification, Technical Report COMP 92-99, Institute

of Electronics, Information and Communication Engineers (of Japan).

