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Abstract 

This paper addresses the problem of binary decision diagram (BDD) mini­

mization in the presence of don't care sets. Specifically, given an incompletely 

specified function g and a fixed ordering of the variables, we propose an ex­

act algorithm for selecting f such that f is a cover for g and the binary 

decision diagram for f is of minimum size. We proved that this problem is 

NP-complete. Here we show that the BDD minimization problem can be for­
mulated as a binate covering problem and solved using implicit enumeration 

techniques similar to the ones used in the reduction of incompletely specified 

finite state machines. 

Keywords: Logic Synthesis, Binary Decision Diagrams, Finite State 

Machines. 

1 INTRODUCTION 

A completely specified Boolean function f is a cover for an incompletely spec­

ified function g if the value of f agrees with the value of g for all the points 

in the input space where g is specified. This paper describes an exact algo­

rithm for selecting f such that f is a cover for g and the binary decision 

diagram (BDD) for f has a minimum number of nodes (complemented edges 

are not considered here). For a given ordering of the variables, the BDD for 

f is unique (Bryant 1986) and the problem has a well defined solution. This 

problem was proved NP-complete (Oliveira, Carloni, Villa & Vincentelli 1996) 

using Takenaga & Yajima's (1993) result that the problem of identification of 

the minimum BDD consistent with a set of minterms is NP-complete. 

We show that this minimization problem can be solved by selecting a mini-
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mum sized cover for a graph that satisfies some additional closure conditions. 

In particular, we show that the minimum sized binary decision diagram com­

patible with the specification can be found by solving a covering problem that 

is very similar to the covering problem obtained using exact algorithms for 

the reduction of incompletely specified finite state machines (ISFSM) (Kam, 

Villa, Brayton & Vincentelli 1994). This similarity makes it possible to use 

implicit enumeration techniques developed for the purpose of ISFSM reduc­

tion (Kam et al. 1994) to solve efficiently the BDD minimization problem. The 

representation with ROBDDs (Brace, Rudell & Bryant 1990) of the charac­

teristic function of the sets of compatibles and prime compatibles allows the 

generation of very large sets that cannot be enumerated explicitly. 

The transformation presented in this paper and the algorithms developed 

for the solution are important for a variety of reasons. In applications of 

inductive learning that use BDDs as the representation scheme (Oliveira & 

Vincentelli 1996), the accuracy of the inferred hypotheses is strongly depen­

dent on the complexity of the result. The selection of the minimum BDD 

consistent with an incompletely specified function is important also in logic 

synthesis applications that use BDDs to derive gate-level implementations 

from a BDD, like timed Shannon circuits, DCVS trees and multiplexer based 

FPGAs. 

Several heuristic algorithms have been proposed for this problem. The re­

strict (Coudert, Berthet & Madre 1989) and the constrain operators are two 

heuristics commonly used to assign the don't cares of a BDD. A compre­

hensive study of heuristic BDD minimization has been presented by Shiple, 

Hojati, Vincentelli & Brayton (1994). 

An exact algorithm (Ranjan, Shiple & Hojati 1993) based on the enumer­

ation of the different covers that can be obtained by all possible assignments 

of the don't care points has also been proposed. A pruning technique reduces 

the enumeration process thanks to a result that changing the value of a func­

tion I of n variables on a minterm m cannot change the size of the BDD for 

I by more than n nodes. Although this pruning is performed implicitly, this 

method is exponential on the number of don't care points, and therefore is 

not applicable to problems of non-trivial size. 

2 DEFINITIONS 

We use the standard notation for BDDs. A BDD is a rooted, directed, acyclic 

graph where each node is labeled with the name of one variable. A BDD 

is called reduced if no two nodes exist that branch exactly in the same way 

and no redundant nodes exist. A BDD is ordered if there is an ordering of 

the variables such that, for all possible paths in the graph, the variables are 

always tested in that order. 

The level of a node ni, .C(ni) is the index of the variable tested at that node 

under the specific ordering used. The level of a function h, .C(h), is defined as 
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the level of a BDD node that implements h. Ifni is a node in the BDD and 

m a minterm, ni(m) will be used to denote both the value of function ni for 

minterm m and the terminal node that m reaches when starting at ni. 

A 3 Terminal BDD (3TBDD) is defined in the same way as a BDD in 

all respects except that it has three terminal nodes : nz, n 0 and n.,, that 

correspond to the zero, one and undefined terminal nodes. A 3TBDD F 

corresponds to the incompletely specified function f that has all minterms in 

/off, /on and /de terminate in nz, no and n.,, respectively. 

3 THE COMPATIBILITY GRAPH 

Previous algorithms (Ranjan et al. 1993) for this problem used directly the 

BDD representation of !on and /off· The exact approach described in this pa­

per uses the 3TBDD F that corresponds to the incompletely specified function 

f. F is assumed to be complete. If necessary, F is made complete by adding 

extra nodes that have the then and else edges pointing to the same node. In 

general, the resulting 3TBDD is no longer reduced. Moreover, we suppose that 

the 3TBDD does not use complemented edges. The definition of the algorithm 

is based on the lemmas and definitions that follow. Due to space limitations, 

proofs for all the lemmas are omitted here and can be found in Oliveira et al. 

(1996). 

Definition 1 Two nodes ni and ni in F are compatible {ni "' ni) iff no 

minterm m exists that satisfies ni(m) = nz 1\ nj(m) = n 0 or ni(m) = no 1\ 

nj(m) = nz. 

This definition implies that no and nz are not compatible between them 

and that n., is compatible with any node in a 3TBDD. 

Definition 2 Two nodes ni and ni in F are common support compatible 

(ni ~ nj) iff there exists a completely specified function h such that 

h"' ni and h "'ni and .C(h) 2: max(.C(ni),.C(ni)). 

The definition implies that nz ¢no and n., ~ ni, for any node ni. 

It is important, at this point, to understand the relationship between these 

two concepts. First, note that the completely specified function h referred in 

Definition 2 does not necessarily correspond to any node in F. In fact, in 

most cases, h will not correspond to any node in F, since most nodes in F 

correspond to incompletely specified functions. 

The relationship between compatibility and common support compatibility 

( CSC) is given by the following lemma: 

Lemma 1 Ifni ~ ni then ni "' ni. 
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The reverse implication of lemma 1 is not true, in general. Two nodes may 

be compatible but not CSC, as shown by the example presented by Oliveira 

et al. (1996). However, when two nodes belong to the same level, common 

support compatibility and compatibility are equivalent: 

The motivation for the definition of common support compatibility can now 

be made clear. Assume that two nodes belong to different levels and are com­

patible. In principle, they could be replaced by a new node that implements a 

function compatible with the functions of each node. In general, this function 

may depend on variables that are not on the support of the node at the higher 

level. Assume this node is ni. Later, when we try to build the reduced BDD, 

edges that are incident into ni will need to go upwards, against the variable 

ordering of the BDD. On the other hand, if both nodes are common support 

compatible, then they can be replaced by a node that implements the com­

pletely specified function h referred to in Definition 2. Because this function 

only depends on the variables common to the supports of both nodes, this 

problem will not arise. 

The concept of common-support compatibility can be extended to sets of 

nodes in the natural way: 

Definition 3 The nodes in the set Si = { n1, n2, ... , n 8 } are common support 

compatible iff there exists a completely specified function h such that (h ,....., 

ni)i=l, ... ,s and .C.(h) ~ .C.max(si)· 

Definition 4 A set of nodes that are common support compatible is called a 

compatible set or, simply, a compatible. 

The definition of a compatible implies that any two nodes that belong to a 

compatible are pairwise common support compatible. The reverse implication 

is not true, but the next lemma holds. 

Lemma 3 Let Si be a set of nodes belonging to the same level. Then, Si is a 

compatible iff all nodes in Si are pairwise common support compatible. 

Definition 5 The compatibility graph, G = (V, E), is an undirected graph 

that contains the information about which nodes in F can be merged. Except 

for the terminal node nx, each node in F will correspond to one node in V 

with the same index. The level of a node in G is the same as the level of 

the corresponding node in F. Similarly, g'flse and g!hen are the nodes that 

correspond to nilse and n~hen. 
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Graph G is built in such a way that if nodes n; and nj are common support 

compatible then there exists an edge between 9i and gj. An edge may have 

labels. A label is a set of nodes that expresses the following requirement: if 

nodes g; and 9j are to be merged, then the nodes in the label also need to be 

merged. There are three types of labels: e, t and I labels. The following two 

lemmas justify the algorithm by which graph G is built: 

Lemma 5 If .C(n;) < .C(nj) thenni:::;:: nj => (nilse:::;:: njl\n~hen:::;:: njl\n'flse:::;:: 

n~hen). 

The previous two lemmas justify the following algorithm to build the com­

patibility graph. 

Algorithm 1 

1. Initialize G with a complete graph except for edge (gz,9o) that is removed. 

2. If .C(g;) = .C(gj) then the edge between g; and gj has two labels: an e label 

with {gilse, gjlse} and a t label with {gfhen, gjhen}. {By Lemma 4.) 

3. If .C(gi) < .C(gj) edge (gi,gj) has an l label with {gilse,gfhen,gj}· (By 

Lemma 5.) 

4. For all pairs of nodes (g;, gj) check if the edge between nodes g; and gj has 

a label that contains {ga, gb} and there is no edge between ga and gb. If so, 

remove the edge between g; and gj. Repeat this step until no more changes 

take place. 

Figure 1 shows an example of the 3TBDD F obtained from f defined by the 

following sets: !on= {011, 111}, !off= {010, 110, 101} and the corresponding 

compatibility graph. 

The existence of an edge in the incompatibility graph is related with com­

mon support compatibility and with compatibility between pairs of nodes in 

the following way: 

It is important to note that the reverse implications are not true. In particu­

lar, the existence of an edge between two nodes in G does not imply that they 

are common support compatible, as it is possible to have an edge between two 

nodes in G that are not CSC. 
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Figure 1 The 3TBDD F and the compatibility graph G. Nodes g5 and g, 

are not shown in the compatibility graph, since they are common support 

compatible with every node in the graph. 

4 CLOSED CLIQUE COVERS 

A clique of graph G is a completely connected subgraph of G. To any set s 

of nodes that is a clique of G there are associated class sets. If the nodes in s 

are to be merged into one, the nodes in its class sets are also required to be in 

the same set. Let s; = {g; 1 , g;2 ... g;w} be a set of nodes that form a clique in 

G. The following are the definitions of the e, t and l classes of s;. Notice that 

for concision we may blur the distinction between the nodes g's of G and the 

corresponding nodes n's of F. Strictly speaking, cliques are defined on sets of 

g's and compatibles on sets of n's. 

Definition 6 Thee (t) class of s;, Ce(s;) is the set of nodes that are in some 

e {t) label of an edge between a node gi and gk ins; with .C(nk) = .C(nj) = 

.Cmax(s;) · 

Definition 7 The l class of s;, C1(s;) is the set of nodes that are in some l 

label of an edge between a node gi and gk ins; with .C(gj) =/:- .C(gk) 

Lemma 7 If a sets; of nodes are a clique of G and C1(s;) ~ s;, then s; is a 

compatible set. 

Note that a clique of G that does not satisfy the condition in Lemma 7 

is not necessarily a compatible set. The algorithm that selects the minimum 

BDD compatible with the original function works by selecting nodes of G that 

can be merged into one node in the final BDD. If a set s of nodes in G is to 

be merged into one, the set s has to be a compatible set. Therefore, it has 

to be a clique of G satisfying Definition 7. The objective is to find a set of 

cliques such that every node in G is covered by at least one clique. However, 

to obtain a valid solution, some extra conditions need to be imposed. 
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Definition 8 A set S = { s1, s2 ... sn} of sets of nodes in G is called a closed 

clique cover for G if the following conditions are satisfied: 

1. S covers G: Vgi E G3sj E S : gi E Sj. 

2. All Sk are cliques ofG: Vgi,gi E Sk : (gi,gj) E edges(G). 

3. S is closed with respect to the e and t labels: 

Vsi E S3sj E S : Ce(si) ~ Sj 1\ Vsi E S3sj E S : Ct(si) ~ Sj. 

4- All sets inS are closed with respect to the l labels: Vsi E S : Cz(si) ~ Si· 

5 GENERATION OF A MINIMUM BDD 

From a closed clique cover for G, a reduced BDD R is obtained by the following 

algorithm: 

Algorithm 2 

1. For each Si inS, create a BDD node in R, ri, at level Lmax(si)· 

2. Let the nodes in R that correspond to sets Si containing nodes that corre­

spond to terminal nodes in F be the new corresponding terminal nodes of 

R. 
3. Let the else edge of the node ri go to the node rj that corresponds to a set 

Sj such that Ce (si) ~ Sj. 

4. Let the then edge of the node ri go to the node ri that corresponds to a set 

Sj such that Ct(si) ~ Sj. 

Lemma 8 R is an Ordered BDD compatible with F. 

Now, the main result follows. Let B be the set of all BDDs that represent 

functions compatible with the incompletely specified function f. Then: 

Theorem 1 The BDD induced by a minimum closed cover for G is the BDD 

in B with minimum number of nodes. 

As an example, S = {{go,gl,g2},{g4},{g3,g5,gz},{go}} is a closed cover 

for the example depicted in Figure 1 and induces the BDD R shown on the 

right side of Figure 2. 

The definition of a closed cover is very similar to the standard definition of 

a closed cover used in the minimization of FSMs. If the graph of a 3TBDD 

is viewed as the state transition graph of an FSM, the algorithms developed 

for the minimization of FSMs can be used with some modifications. The two 

important differences to consider are: 
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Figure 2 The 3TBDD F, the compatibility graph G and a solution R. Node 

95 was arbitrarily included in compatible {93, 9z, 95}. 

1. The definition of the e and t classes and the closure requirement in point 

3 of Definition 8 are different from the definitions used in standard FSM 

minimization. In BDD minimization, only nodes at the highest level in some 

compatible define the e and t classes, while in standard FSM minimization 

all nodes in a compatible set are involved in the definition of these classes. 

2. The requirement in point 4 of Definition 8 means that some sets of nodes 

that satisfy the definition of a compatible set in the FSM case do not satisfy 

the conditions for BDD minimization. 

These two changes can be incorporated into existing algorithms for FSM 

minimization. In particular, the closure conditions with respect to the e and 

t labels are similar to the closure conditions imposed in standard FSM mini­

mization. The restriction imposed by condition 4 in Definition 8 simply elim­

inates some cliques of the compatibility graph from consideration and can be 

implemented by a filtering step. The transformation from BDD minimization 

to FSM reduction and its correctness are shown in Oliveira et al. (1996). 

6 IMPLICIT COMPUTATION OF A MINIMUM CLOSED 

COVER 

We will use the unified implicit framework proposed in (Kam et al. 1994). 

Implicit techniques are based on the idea of operating on discrete sets by 

their characteristic functions represented by BDDs (Bryant 1986). 

To perform state minimization, one needs to represent and manipulate effi­

ciently sets of sets of states. With n states, each subset of states is represented 

in positional-set form, using a set of n Boolean variables, x = x 1x2 ••• xn. 

The presence of a state s,. in the set is denoted by the fact that variable x,. 
takes the value 1 in the positional set, whereas x,. takes the value 0 if state 

s,. is not a member of the set. For example, if n = 6, the set with a single 
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state 84 is represented by 000100 while the set of states 828385 is represented 

by 011010. 

A set of sets of states 8 is represented in positional notation by a charac­

teristic function xs : Bn -+ B as: xs(x) = 1 if and only if the set of states 

represented by the positional set xis in the set 8. A BDD representing xs(x) 

will contain minterms, each corresponding to a state set in 8. As an example, 

Tuplen,k(x) denotes all positional sets x with exactly k states in them (i.e. 

lxl = k). For instance, the set of singleton states is Tuplen,l(x). An alternative 

notation for Tuplen,k(x) is Tuplek(x). 

Any relation R between pairs of sets 81 and 82 can be represented by 

its characteristic function n : Bn X Bm -+ B where n(x,y) = 1 if and 

only if Xs1 (x) = 1, Xs2 (y) = 1 and the element Of 81 represented by X is in 

relation R with the element of 82 represented by y. A similar definition holds 

for relations defined over more than two sets. For example, we represent the 

state transition graph (STG) of an FSM by the characteristic functions of two 

relations: 1) the output relation A, where input i, present state p and output 

o are in A(i,p, o) if there is an edge from p with input/output label ifo, and 

2) the next state relation /, where where input i, present state p and next 

state n are in relation T(i,p, n) if there is an edge from p to n with input 

label i. 

It has been shown in Section 5 that given a BDD minimization problem it 

is possible to generate a companion FSM whose closed covers of compatibles 

correspond to closed clique covers of the BDD, if: a) FSM compatibles that 

do not satisfy the L-closure are discarded, and b) FSM compatible closure is 

replaced by E-closure and T -closure. Our starting point is the fully implicit 

algorithm for exact state minimization reported by Kam et al. (1994), to 

which we refer for a complete description of the implicit computations. In the 

sequel we discuss the modifications needed to generate closed clique covers of 

the BDD. 

Consider the set of compatibles C(c), where C(c) = 1 iff cis the positional 

set representing a compatible of the companion FSM. When minimizing an 

FSM obtained from an instance of BDD minimization one must delete from 

C(c) the compatibles c that are not closed with respect to their l-class. The 

l-class, C1(c), of a compatible cis the set of nodes that are in some l-label of 

an edge between nodes Yi and Yk inc with C(gi) < £(gk)· If £(gi) < £(gk) 
then edge (gj,gk) has the l-label {gjlse,g}hen,gk}· 

In standard FSM minimization one requires closure with respect to implied 

sets. Given a compatible c an implied set under input i is the set of next states 

from the states in c under i. Instead in the case of BDD minimization one 

must compute the implied sets only from the states in c of highest level. This 

requires a change in the computation of the relation of the implied classes 

:F(c, i, n). 
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The new computation for :F(c, i, n) is described by the following equation: 

:F(c, i, n) = 3p {3c' [C(c) · M ax..Level(c,.c') · (c' 2 p)] · T(i,p, n)} 

Subsets of states c and d are in relation Max ..Level ( c, d), iff d is the subset 

of c that contains the states of c of maximum level, i.e. the states having the 

largest distance from r in the STG of the FSM. 

7 RESULTS 

Starting from the program ISM for implicit state minimization (Kam et al. 

1994) we developed IMAGEM, a new program based on the theory described 

in this paper for exact BDD minimization. To evaluate experimentally the 

algorithms presented in this paper, we assembled two sets of problems: the 

first set derives directly from a machine learning application and the second 

set was obtained from a logic synthesis benchmark. In all the problems, the 

original ordering specified for the variables was the ordering used. 

For the first set of problems, 12 completely specified Boolean functions 

fi were used as the starting point. For each of these functions, a randomly 

selected set of minterms was designated as the care set, resulting in a set of 

incompletely specified Boolean functions Yi· The objective was to verify if the 

algorithm was able to identify a BDD no larger than the BDD for /i, which 

represents a known upper bound on the solution. The second set of problems 

was obtained by selecting a subset of the examples that are distributed with 

Espresso (Brayton, Hachtel, McMullen & Vincentelli 1984), a well known two­

level minimizer. We included here the functions that are the first output from 

each of the PLAs that are included in the industry subset of the Espresso 

benchmark suite, after eliminating all the functions that have a null don't 

care set. 

Table 1 summarizes the results obtained from running these sets of exam­

ples. The last entry in the table is the example presented in this paper to 

illustrate the theory. 

The first four columns report the original number of states, the number 

of compatibles, the number of compatibles after filtering (i.e. the ones which 

are closed with respect to their l-class) and the number of primes. The next 

two columns report the exact result obtained and the result obtained by the 

restrict operator (Coudert et al. 1989). The last column contains the time 

spent by IMAGEM to find the solution: all run times are reported in CPU 

seconds on a DEC Alpha (300 Mhz) with 2Gb of memory. For all experiments, 

"timeout" has been set at 21600 seconds of CPU time and "spaceout" at 2Gb 

of memory. 
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example orig. com pat. filtered prime red. restrict Imagem 
states comp. comp. states Cpu time 

dnfa 64 2.4e+12 1332186 89 14 16 517.29 
dnfb 36 4.8e+08 2987 94 6 12 11.85 

dnfc 40 2.2e+08 2613 102 10 15 12.94 

dnfd 93 l.le+20 9.5e+08 23 timeout 

dnfe 63 2.1e+13 141179 509 6 12 217.29 

dnff 62 2.1e+11 92027 357 15 22 151.8 

xor3 9 179 14 7 6 6 0.1 

xor4 17 14975 118 13 6 6 0.43 

xor5 24 608255 267 36 9 10 1.37 

xor6 40 3.3e+08 1329 170 13 20 13.98 

xor7 57 2.7e+ll 3076 640 15 31 88.16 

xor8 94 1.5e+17 164929 21830 17 45 9041.11 

alu1 95 l.Oe+21 841993 1204 6 6 7409.97 

br1 74 2.9e+18 799173 329 6 11 1313.91 

br2 51 5.9e+14 53687 78 3 8 14.59 
clpl 50 1.4e+13 7559 39 3 13 12.39 

dc2 46 8.2e+l0 8831 98 8 12 57.66 

exp 54 2.6e+ll 10638 25 3 3 31.34 

exps 71 1.8e+10 3810 125 43 44 44.79 

inO 151 2.6e+25 1.6e+06 1323 42 44 18201.76 

in3 173 5.0e+39 587880 12 9 14 1755.21 

inc 35 l.le+07 364 26 12 13 3.84 

intb 189 4.8e+46 3.8e+14 69 spaceout 
markl 71 7.4e+l8. 8049 35 4 5 41 
newapla 52 1.2e+12 · 3252 33 10 11 41.5 

newapla1 57 8.7e+l4 8733 63 6 6 141.66 
newapla2 19 93311 137 6 5 5 0.49 
new byte 16 20735 127 9 5 5 0.41 

newcond 165 3.8e+31 7.4e+12 54 spaceout 

newcpla2 39 3.3e+08 477 68 10 21 5.72 

newcwp 16 10367 106 10 6 11 0.39 

newtpla 94 1.2e+23 411525 148 7 23 469.14 

newtpla1 39 .6.9e+09 1441 31 4 5 4.45 

newtpla2 26 3.1e+06 158 9 9 9 0.9 

newxcplal 39 4.4e+09' 1473 35 5 10 5.13 

p82 16 15551 102 10 7 7 0.4 

prom1 65 5.1e+09 382 77 50 50 30.04 

prom2 33 2.1e+08 446 38 12 12 3.33 

sex 28 1.6e+07 419 16 5 5 1.62 
spla 155 1.6e+39 1.4e+l2 8 spaceout 
sqn 41 l.Oe+07 173 43 19 19 9.13 

t4 68 5.1e+14 31775 157 9 11 89.98 
vg2 150 3.6e+36 4.0e+07 14 timeout 

wim 14 4319 82 8 6 6 0.26 

ex. paper 10 575 32 8 4 4 0.17 

Table 1 Results obtained in the sets of problems studied. 
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8 CONCLUSIONS 

This paper addresses the problem of binary decision diagram (BDD) mini­

mization in the presence of don't care sets. We show that the minimum-sized 

binary decision diagram compatible with the specification can be found by 

solving a problem that is very similar to the problem of reducing an ISFSM. 

The approach described is the only known exact algorithm for this problem 

not based on the enumeration of the assignments to the points in the don't 

care set. We show that this minimization problem can be formulated as a 

binate covering problem and solved using implicit enumeration techniques. 

We have implemented this algorithm and performed experiments. by means 

of which exact solutions for an interesting benchmark set were computed. 
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