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Abstract:

This paper aims to develop an implicit meshless@ph based on the radial basis
function (RBF) for numerical simulation of time éteonal diffusion equations. The
meshless RBF interpolation is firstly briefed. Thaiscrete equations for
two-dimensional time fractional diffusion equati@@DE) are obtained by using the
meshless RBF shape functions and the strong-fofntiseotime FDE. The stability
and convergence of this meshless approach aresdetuand theoretically proven.
Numerical examples with different problem domaind different nodal distributions
are studied to validate and investigate accuradyediiciency of the newly developed
meshless approach. It has proven that the preseshless formulation is very
effective for modeling and simulation of fractiorhiferential equations.

Keywords: Fractional differential equation, Time fractionaifidision equation,
Meshless method, Radial basis function, Implicthatical scheme

1 Introduction

Many problems in engineering and sciences can beritbed by fractional ordinary
differential equations (FODE) or fractional partidifferential equations (FPDE).
Recently, because of the new developments in siadti@ environment and renewable

energy, which are often governed by a series of E®?Ehe numerical modeling and
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simulation for fractional calculus are attractingone and more attentions from
research community1][2][3]. It has become a new hot topic in computational
mechanics and computational mathemajdg¢s Fractional kinetic equations, such as
fractional diffusion equation, fractional advectidiffusion equation, fractional
Fokker-Planck equation, fractional cable equatian, eare recognized as useful
approaches for the description of transport dynanmccomplex systems including
systems exhibiting Halmiltonian chaos, disorderegédimm, plasma and fluid
turbulence, underground water pollution, dynamifspmtein molecules, motions
under the influence of optical tweezers, reactiongomplex systems, and more
[5]~[9]. When the fractional differential equations dédserthe asymptotic behaviour
of continuous time random walks, their solutionsrespond to the Lévy walks. The
advantage of the fractional model for these proBlebasically lies in the
straightforward way of including external forcenter in calculating boundary value
problems. Therefore, FPDE results in a more aceuepresentation of the relative

phenomena than normal partial differential equati?DES).

Unlike the normal PDE, the differential order (rejag to time or space or both) in a
FPDE is not with an integer order, in other wond&h a fractional order (i.e., 0.5th
order, 1.5th order, and so on), which will lead aobig difficulty in numerical
simulation, because existing numerical simulatechhiques are developed for PDE
with an integer differential order. At present, ot FPDEs are solved numerically
by Finite Difference Method (FDMJ10][11], when a few of research has been
reported using Finite Element Method (FENI2][13][14]. FDM and FEM are
numerical approaches based on pre-defined mesiuss/grhich lead to inherited
issues or shortcomings including: difficulty in ling a complex domain and
irregular nodal distribution; difficulty in conduny adaptive analysis, and low
computational accuracy. Therefore, these shortogsnbecome the main barrier for
the development of a powerful simulation tool foagtical applications governed by
FPDE. The most current research in this field at#l $#mited in some
one-dimensional (1-D) or two-dimensional (2-D) bemark problems with very

simple domains (i.e., squares and rectangles) amch2t boundary conditions.

Recent years, a group of meshless (or meshfred)oaethave been developed and
successfully used in many fields of computationa@chanics[15]. Depending on

whether a numerical integration is used in develgpthe system of algebraic



equations, the meshless methods can be largelypegonto two different categories
[16]: meshless methods based on collocation technigonésneshless methods based
on the general weak-forms of ordinary (partial)fetiéntial equations (ODEs or
PDEs). The meshless methods based on collocaticmitpies, which can be
developed by using Dirac- delta-test function, havelatively long history, and they
include smooth particle hydrodynamics (SRH)], the meshless collocation methods
[18], finite point method (FPMJ)19], etc. The so-called meshless methods, using
various global weak-forms, were proposed about tyvgaars ago. This category of
meshless methods includes the element-free GalgiikiG) method[20], the
reproducing kernel particle method (RKHRAL)], and the point interpolation method
(PIM) [22][23], the meshless local Petrov-Galerkin (MLPG) metli@4, the local
radial point interpolation method (LRPIMR5][26], the boundary node method
(BNM)[27], and the boundary point interpolation method (8P)28][29].

The above discussed meshless methods have deneaddistinguished advantages
[15] including:
« They do not use a mesh (at least for field apprakion), so that the burden
of mesh generation in FDM and FEM is overcome. ldgeran adaptive

analysis is easily achievable;

« They are usually more accurate than FDM and FEMtdubke use of higher

order meshless trial functions; and

« They are capable of solving complex problems that difficult for the
conventional FDM and FEM.

In spite of the impressive progresses, there dlessime technical issues in the
development of meshless techniques, for instanctealack of theoretical study on
the computational convergence and stability; b) rédatively worse computational
efficiency; and c) the lack of commercial softwgn@ckages for meshless analysis.
Recently, some deep researches have been conduntidtie above issues have been
partially resolved [30][31]. Liu et al. proposedetliormulation elaborated with a
theoretical base on the G space theory [32]. Imgpkhe G space theory and the
weakened weak-form (W2) [33], the meshless (or shexb FEM) methods show a
number of attractive properties, e.g., conformahilsoftness, upper/lower bound,
super-convergence, ultra accuracy, and they alsok weell with triangular

background cells. Another new development in meashléechniques is the
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developments of the class of smoothed meshless oagthSmoothed Point
Interpolation Method (S-PIM) and Smoothed FEM (SvHEB4]. However, this

upper/lower bound property is obtained for the rnessh methods based on
weak-forms. Further study is still needed for thgper/lower bound property for

meshfree techniques based on the strong-form, wiéctise in this paper.

Because of these unique advantages, meshless rmetheioh to have a good potential
for the simulation of FPDE. Although the meshlessthnds have been successfully
applied to a wide range of problems, for which, beer, the governing equations are
conventional PDE with an integer differential ordeery limited work was reported
to handle fractional partial differential equatiqif$?’DE) by the meshless techniques.
Chen et al.[35] used the Kansa method for fractiaiféusion equations. Gu et al.
[36] developed a meshless formulation for non-linemomalous sub-diffusion

equation. However, this topic still calls for arsfgcant development.

The objective of this paper is to develop an inipiceshless formulation based on
the radial basis functions (RBF) for numerical dation of time fractional diffusion
equation (FDE). The discrete equations for two-disi@nal time fractional diffusion
equation are obtained by using the meshless RBmpesHanctions and the
strong-forms of time FDE. The essential boundargddmns are enforced by the
direct collocation method [37]. The stability anthgergence of the newly developed
method are proven theoretically and numericallweBa numerical examples with
different problem domains and different nodal disttions are used to validate and
investigate accuracy and efficiency of the newlyaleped meshless formulation.

Some important parameters of RBF are thoroughlgstigated.

In this paper, we will develop a meshless collarascheme using RBFs to spatially
discretize the fractional convection-diffusion etioia. We will also develop a higher

order approximation for temporal discretization.

2 Timefractional diffusion equation

The time fractional diffusion equation can be veritin the following form
07u(x, t)

ot?
together with the general boundary and initial ¢boxs

= kAu(x,t)+ f(x,t), xOQDOR?, tO(0,T) (1)



u(xt)=g(x,t), x00Q, t>0 )

u(x,0) =y (x), x0OQ @)

where A is the Laplace differential operatof) a bounded domain irR*, 0Q

the boundary ofQ, « the diffusion coefficientT is the total time to be considered,
f(x,t), g(x,t) and u,(x) are known functions.

07u(x,t)

tﬂ

In Equation (1),

is the Caputo fractional derivative of order(0<a <1)

defined as

(4)

e

2.1 Discretization of time

Define t, =kAt, k=1,2,--,n, where At=T/n is time step size. The time

fractional derivative att =t,,, can be approximated

UK b) 1 g ye0u(xn)
ot _I'(l—a)jZ::‘)J‘t; (tes =) on (5)

where the truncation erroR,,, satisfieg38]

< c(ay)”” ©)

Rea
Let b, =(] +1)"" - j**, j=0,1,2;-- n, then Equation (5) can be rewritten as

(7)

aaugf(;tkﬂ) - I'((Aztz_a') gh(_j [u(x, ti+l)_ U(X' t )}'F R

or



(8)

0u(X,t) _ (A )" Zk:b][ (x,q(_jﬂ)—u(x,t(_,-)}f Ra

ot r(2-a)iF

Substituting Equation (8) into Equation (1), we obtai

(% tn) - 20,4, ©)
= U(X’tk) _Z bj [U(X' t<—j+l) - u(x, [ )} T, f(X, L+1) + R
where g =k (&) T (2-a), w,=(At)'T(2-a) and
R < C(AY) 4o

where C is a positive constant.
Let u* =u*(x) be the numerical approximation t(x,t )and F*“* =z, f (x,t,.,),

then Equations (1) - (3) can be discretized asdh@wving scheme

k (11)
Uk+1_,UlAUk+1: uk_z q[d&l—j_ lj<‘]j|+ Fk+l, k=0,1--,n 1
i=1
ou () (12)
(13)

2.2 Stability and Convergence

In order to discuss the stability and convergenteEguations (11)-(13), let us
introduce the following inner product

(v, w) = H x) W(x) d>dy

(14)

and norm in L2

M L] [ 79| as

The Equation (11) can be rewritten as



1 (16)
Uk+l—/,llAUk+l:(1— q) uk_,_Z( t? _ l?+1) d<—j+ p ﬁ+ l—_k+1

j=1

For this difference scheme, we have the followesguit.

Lemmal If u*(x)OH;(Q),k=0,1:-,n is the solution of Equation (11), then

= H @an

k 0 -1
< H H + maxX|
Hu Hz u 2 b<‘1 a 2

O<l<n

Proof We will prove the result by mathematical induntio

Firstly, whenk=0, we have

Ul—,UlAul - UO+ = (18)

By multiplying Equation (18) byu' and integrating o, we obtain
Juf; - (o0, ) = (0, ) + (P )
ie.,
ou' au' ou au
o ) 2o 30,20 =)o )
Using Schwarz inequality, we have
|, <l +1 71, =[], + mad P
Suppose now we have proven
(19)

o], <[], + o max

O<l<n

Fll, i=12:k

1

Multiplying Equation (16) byu*"* and integrating o®, we obtain

k+12 k+1 |, k+1
Ju?, = s (A0, 1)

(-n)(o )+ S (- ) (4 0 p{ 6 w)e( )

j=



k+l

auk+1 a uI<+1 a uk+1 a uk+1
+ H ’ + '
ox  0X ady ady (20)
k-1

=) (¢ )+ 8- ) (0 pl 6, ) o # 1)

J

Using Schwarz inequality, and the inequalit§j
bl 2b1+l’ j=0111..-!n,

we have

SEUHAMUS TR LS

k+1
u

l-_k+1
2

Hence, by using Equation (19), we obtain

-1
Al [Sn-n) o

=0

1
=~

k+1
u

it

T

|_‘

<[l +| (b - ) o1 mad F

O<l<n
i=

O

[ k- } (21)

<[], + b max
O<l<n

P,

Suppose thati*(x), k=1,2:--,n is the solution of the Equation (16) with the ialit
condition u(x,0)= @’ and the boundary condition Equation (13), thenhaee the

following stability result.

Theorem 1 The fractional implicit numerical method definegt BEquation (16) is
un-conditionally stable.

Proof Denote the error
£X(x) =u*(x) - 0“(x)
It satisfies

k .
£k+1_mgk+1:(1_bl)gk+z(bj _ q+l)£k—1+ ng

and

From Lemma 1, we obtain

e, <[], k=12 n (22)
2 2



Now we carry out an error analysis for the solutadrthe time-discretized problem
(16). We denote from now by a generic constant which may not be the same at

different occurrences.

Theorem 2 Let {u(x.t,)},_, be the exact solution of Equations (1)-($(x.t,)},_,

be the time-discrete solution of Equation (16) wititial condition u®(x) = u(x, 0)

and the boundary condition Equation (13), then aseltthe following error estimates
u(x,t) = U (0| < CaH*,

whereC is a positive constant.

Proof Let &(x)=u(x,t)-u*(x), from Equations (9) and (16), we obtain

k+1 k+1 k . k+1- j k=j 23
() uoe () =8 ()-8 [ ()€ W] R,
£(x)=0, (24)
&(x),, =0. (25)
Hence, from Lemma 1, we have

, 26
e, <t mad ], < ot (o -

Becauseh.’, (At)" is bounded10], thus
(27)

€], < Car)™

3 Construction of the meshless RBF shape function

At present, a number of ways to construct meshiésgpe functions have been
proposed15]. In this paper, the radial basis function (RBRjerpolation is used to
construct the meshless shape functions for spdisgiretization, because the RBF
interpolation is stable and accurdteés]. The locally supported RBF interpolation

formulation can be written as:

a (28)
b

u(xFiR(r)ain(x)p=RTa+BTb={R B}{



where R(r) is the RBF,n is the number of nodes in the interpolation donmafin
point x, p;(X) is a monomial in the space coordinateS=[x, y], m is the
number of polynomial basis functions, and coeffitsea, and b, are interpolation
constants. The unique variable in a RBF is theadty , between the interpolation
point X and a field nodex;, and it makes the RBF interpolation easily extémd
three-dimensional problems.

There is a number of RBFs, and their charactesistianeshless methods have been
widely investigated15]. In this paper, the following locally supportediitiquadrics

(MQ) RBF is used to construct the meshless shapetion based on the local

interpolation domains, which is written as
R(x)=[*+(a.d)*]" (29)

where a, is a dimensionless coefficient, and is a parameter of the nodal
spacing. The selections of two parametersapndq) will significantly influence the
performance of MQ RBF. The effects of andq have been studied in details in
many publication$15], and it was reported thatr, =1.0 and q=1.03 lead to good

results for most problems in computational mectanihiese two parameters will be

also investigated in the following numerical stdie

It should be mentioned here that ‘locally suppord@® RBF' means MQ RBF is

employed to construct meshfree shape functionsdbasa local interpolation domain
rather than the whole problem domain. In other wpfdr an interpolation point, only
a small group of nodes, which are the closest i®ittierpolation point, are selected

and used in the RBF interpolation [39].

Coefficientsa; andb; in Equation (28) can be solved by enforcing Equra{R8) to be
satisfied at theén nodes surrounding a point. However, in Equation (28), there are
only n equations fon+m variables. To obtain unique solution, additiome¢quations

should be added, which are timeonstraint conditions, i.e.

Zn:pj(xi)ar:Br-;a:O ) F1,2, .., m (30)
i=1

Then, Equations (28) and (30) can be re-writtematrix form as follows

10



u| _[Re Bnlfal _ . (31)
orler olloles

whereu, is the vector of nodal values for the field fupnatiof the nodes in the local

interpolation domain.

R() R(D -~ R(1)
n | R R(D) - R(D)

R(r) R(r) - R(FK)

p1(X1) p1(x 2) o pl(xn) (32)
BT - p2 (Xl) pz(x 2) pz(xn)
Prm (Xl) pm(xz) o pm(x r‘)

From Equation (30), coefficients, can be solved and substitutiray back into

Equation (28), the following RBF interpolation foutation is then obtained

u) ={R B}G‘l{l:)e}:{d)(x) A(x)}{‘ge} (33)
= O(x) 0,
where the RBF shape functiod® (x) is defined by
®(x) =[@(x), B, ... &)1=({R B}G’l)l_n (34)

where ®(x) is a vector which includes 1n-elements of(R B)G™related ton

nodes in the interpolation domain. The derivativksP(x) can be obtained

ID(x) _ {O_R a_B}G_1 (35)
0X oxX 0X

’®(x) _[0°R 9°B .- (36)
x> | ax? ox?

It has been proven that the RBF shape functionsngim Equation (33) satisfy the
Kronecker delta conditiof15], which makes it easy to enforce the Dirichlet tdary
conditions in the meshless method based on thedRBpe functions.

11



4 M eshless approach

Consider the following fractional partial differéatequation as presented in Equation
(11)

p (37)
U= AU = 0= [ - P inQ

=

together with Dirichlet boundary condition

US(x) = g(X, f.), ONOQ (38)

Assume that there aréN, internal (domain) points and\, boundary points.
Hence, the followingN, equations at internal domain nodes can be obtained

K _ _ (39)
Ly AGK = z [ Uri-U '} + P*LinQ

[y

The following N, equations are satisfied o8Q

4t = g(xi , §<+1)’ i1=1,2,-- N,. (40)
Thus based on RBF interpolation, Equation (33) haxe
" (41)
0k+1(X) - Z¢iqk+l
i=1
and its derivatives can be obtained by the follgnequations
00" (x) _ Zn: D, g (42)
16)4 =' 0X
2~k+1 n 2 _ (43)
a 2( ) :Za qzl aik+1
ox =' 0x
aakﬂ( ) z 6<D Ak+1 (44)
oy  Zoy
02 k+1 n A2 (45)
2( ) za (D 0|k+l
oy = oy’

where G means the field function for the point consider@tius, 4" and its

derivatives in Equation (39) can be obtained bysstiiing x into x;, in Equations

(41) ~ (45)

12



l’jk+l _ 0k+1(x ) azl'jikﬂ _ 620k+1(xi ) aZaik+1 _ 620k+1(xi ) (46)
i i) ayz

ox* ax° ay®

5 Numerical examples

In this section, some example cases are studiddrtmnstrate the effectiveness of the
newly proposed meshless approach. In the folloviivgstigations, we will use the

modified multiquadric RBF function as follows

a 47
R(r)=(r*+(a,d.)’)

where a, and q are two shape parameters which have been thorpagldied by
Liu et al.[15]. In the first example, we investigate influencéglifferent a, and g.

In equation (47),d, is a characteristic length that is related tortbdal spacing in

the local interpolation domain of the point of irgst, which is defined in this paper as

Js
DdE—
[39]: d. S N—1

number of distributed field nodes.

, where S means the area of the fiel®@ and N means the

We solve the following time fractional advectiorffdsion equation

a (48)
? gif’t)=KAU(x,t)+ f(x,t), xOQOR?, t0(0,1)

u(xt) = e, x10Q, t0(0,1) (49)

(50)

u(x,0)=0, x0Q

2-a
where we employk =1.0, and f (x,t) :{F(Z;—a) —ZtZ}e“y.

The exact solution of Equations (48)-(50)ugx, t) = t’&“?. As a fraction order in

Equation (48), we take

a=0.85 (51)

For quantitative studies, the following error nagas are introduced

13



N

Z exact nun)2 (52)

Z (uexact Z ( LI exact_ (53)
Z (uexac Z (qe’§act)2

act num

where N denotes the number of all the grid node§?™ and u™™" are exact and

numerical solutions, respectively, for interestrpaiand u,  denotes the derivative.

5.1 A casewith arectangular problem domain

Firstly, we study a rectangular domain ©=[0,1]x[0,1], which is discretized by
N =(n +1)x(n +1) regularly distributed field nodes, as shown in.Fig with

n.=n,=40. The newly proposed meshless method is used tolaienthe time

fractional diffusion equation with this rectangupoblem domain.

Firstly the parameter ofj is investigated. Figs. 2, 3 and 4 plot the comiral
errors for differentq with n, =n =10,20,3(, respectively. From Figs. 2, 3 and 4,
it can be observed thay =1.03 leads to better results thap=0.5 and q=0.98. It
should be mentioned here that wher= 0.5, Equation (47) will become a standard

multiquadric RBF function.

In addition, the influence of differentr, in Equation (47) has also been investigated.
It has been found that althougin, =3.4 leads to better results, the computational
accuracy is not sensitive for,. Hence,q=1.03 and a, =3.4 will be used in
the following studies.

Fig. 5 plots the computational errors for differéime steps. From this figure, it can
be found, the error reduces with the decreasenwé 8teps. In other words, a small
time step leads to a more accurate result. We Isancanclude from this figure that
the present meshless method has good convergeaigle. T listed the detailed results

for computational errors, which have proven tha pgroposed meshless approach

14



achieved good computational accuracy. The convesgeatesR, of these four errors
regarding to time steps are also listed in the stabée. The convergent rate is

calculated as:

_ £(Ay)

R £(At) (54)

From Table 1, it can be seen that the convergeates are close to

et ()T s
Rf_g(Atz) (Atzj 2115 = 2.21¢, (55)

It can be concluded that the order of convergemtésne of the present method is

O(At*™) . This is in good agreement with the results bythle®retical analysis.

For comparison, this problem has also been solwedhe conventional Finite
Difference Method (FDM), in which the regular gad presented in Fig. 1 is used. It
has been found that the newly developed meshlge®agh usually leads to better
computational accuracy than FDM because the mesi&$ shape functions have
better interpolation accuracy. However, meshlesnukition needs more the
computational cost than FDM. How to improve the pamational efficiency for

meshless techniques is still an open issue[15].

The irregularly distributed nodes, as shown in Bigare also used. The computational
errors for different time steps are plotted in Fgin which the computational errors
decrease with time steps. Table 2 listed the detadsults for computational errors.
Comparing with results listed in Table 1, it canfoand that the irregular nodal
distribution leads to similar computational accyrat has proven that the proposed
meshless approach achieved good computational awcdior irregular nodes. The
convergence rate®, of these four errors regarding to time stepsase listed in
Table 2. Using irregular nodes, the present meslipgsoach has good convergence
rates which are close to those obtained by thelaegwdes. Hence, the newly
developed meshless technique is accurate and rédrusbt only the regular nodes
but also the irregular nodes. It should mentiorehbat the irregular grid will lead to a

big difficulty for the conventional FDM.

15



5.2 A casewith L-shaped problem domain

The L —-shaped problem domain, given by the following emuaand plotted in Fig.

8, is considered

Q ={(x y)|0< x, y< 1,sign( % 0.5)+ sigr( ¥ 0.55 P (56)
The regularly distributed nodes, as shown in Fjgar8 firstly used to discretize this
L-shaped problem domain. The computational errows different time steps are
plotted in Fig. 9 and listed in Table 3, which hareven that the proposed meshless
approach performs very well for this case in teahaccuracy and convergence. The

convergent rate is also in the orde©gAt* ™) .

The irregularly distributed nodes are also usedtliegs problem with arl-shaped
region, as shown in Fig. 10. The computational rerfor different time steps are
plotted in Fig. 11 and listed in Table 4. It candmcluded that the present meshless
approach also leads to good computational accusadyconvergence rates for this
L-shaped case using irregularly distributed nodebas$ proven the effectiveness of
the meshless approach for a problem with a comgtexain and irregular nodal

distribution.

5.3 A casewith acircular problem domain
Let us consider the following circular problem doma
Q={(x y)|¥+y<1. (57)

Total 1185 irregularly distributed nodes for thiscalar domain are used, as shown in
Fig. 12. The computational errors are plotted ig. Ai3. It can be found that the
developed meshless approach leads to accuratéstesul

16



5.4 A case with complex initial conditions

A rectangular domainQ =[01]x[01] is considered in this example, which

investigates specifically the phenomenon of diffasi The following initial and

boundary conditions are considered:

Xyt 0< x<0.5, O< y< 0.

X*(1-y)> 0< x< 0.5, 0.5x y< . 58

u(x.0 = () y (58)
A-x)"y> 0.5< x<1, x y< 0.

@-x)"(1-y)? 05<x<1 0Xy< ]

u(x,t)=0, x00Q, t>0 (59)

From Equation (58), we can find that this problesms homplex initial conditions with
four different segments. Therefore, there is nocesalution for this problem. The
newly developed meshless approach is used to sthNe time fractional

advection-diffusion equation as given in EquatidB)(together with Equations (58)
and (59). The numerical simulation results of tiféusion process at different time
are shown in Figs. 14, 15 and 16. From these fgyuitecan be found the newly

developed meshless technique leads to smooth abié sesults.

In summary, the above investigations have provanttie newly developed meshless
approach is robust and has good accuracy and agnes rates even using irregular
nodal distributions and/or for a complex domainshtiould mention here that the
irregularly nodal distribution and a non-rectanguyeoblem domain will lead to big

difficulty for the conventional Finite Difference éthod.

6 Conclusions

This paper aims to develop an implicit meshless@pgh based on the radial basis
function (RBF) for numerical simulation of time ¢tsgonal diffusion equations (FDE),
which is a type of fractional partial differentiajuation (FPDE). The stability and
convergence of this meshless approach are theempitreoretically and numerically.
Several numerical examples with different problemmdins are used to study

accuracy and efficiency of the newly developed resshapproach. Both regular and
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irregular nodal distributions are employed in sbsdi From above studies, the

following conclusions can be drawn:

e The shape parameters of MQ-RBF affect computatigomeiformance.

g=1.03 and a, =3.4 are recommended for simulation of FDE;

« The convergence order of this present method ragatd time iSO(At*™) ;

e The presented meshless approach is un-conditiosialbfe;

« The newly developed meshless approach is accuratecanvergent. Most
importantly, the present approach is robust foitemily distributed nodes
and complex domains, for which the conventionaiteibifference Method
(FDM) is difficult to handle.

In summary, the present meshless formulation iy wéfective for modeling and
simulation of fractional differential equations, dant has good potential in
development of a robust simulation tool for probéem engineering and science
which are governed by the various types of fractiatifferential equations. In our

future research, we will study more complicatedopems.
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Tablel: The error obtained using meshless appragch 1.0 (Regular nodal distribution on
rectangular region)

At gmax Rgmax EO RSO gx RSX gy ng

0.1 1.234e-2| --- 2.073e-3 --- 6.864e-3 --- 6.864e-3 ---
0.05 | 5.578e-3| 2.212 | 9.370e-4 | 2.212 | 3.103e-3 | 2.212 | 3.103e-3 | 2.212
0.025 | 2.520e-3| 2.213 | 4.234e-4 | 2.213 | 1.402e-3 | 2.213 | 1.402e-3 | 2.213
0.0125| 1.140e-3| 2.211 | 1.916e-4 | 2.210 | 6.345e-4 | 2.210| 6.345e-4 | 2.210
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Table2: The error obtained using meshless appragch 1.0 (Irregular nodal distribution on

rectangular region)

At

£

max

Rzmax

&o

Reo

&

X

Rex

&y

Ry
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0.1

1.225e-2

2.022e-3

6.751e-3

6.784e-3

0.05 | 5.516e-3| 2.221 | 9.014e-4| 2.243 | 3.003e-3| 2.248 | 3.016e-3| 2.249
0.025 | 2.488e-3| 2.217 | 3.946e-4| 2.284 | 1.312e-4| 2.289 | 1.317e-3| 2.290
0.0125 | 1.134e-3| 2.192 | 1.660e-4| 2.377 | 5.566e-4| 2.357 | 5.608e-4| 2.348
T e e s A
|
|
|
|
o oL
o . .0?1. : .0?2. : .0E3. ; .0?4. : .0;5. : .OEB. ; .0?7. : .OEB. : .039. - |
Figure 8: Regular distribution of points brshaped domain
Table3: The computational error obtained using nesshapproach &t 1.0 (Regular nodal
distribution onL-shaped region)
At € R max & R £, R, £, R,
0.1 | 4.351e-3| --- 1.022e-3| --- 4.856e-3| --- 4.856e-3| ---
0.05 | 1.967e-3| 2.212 | 4.619e-4| 2.213 | 2.195e-3| 2.212 | 2.195e-3| 2.212
0.025 | 8.888e-4| 2.213 | 2.088e-4| 2.212 | 9.919e-4| 2.213 | 9.919e-4| 2.213
0.0125| 4.024e-4| 2.209 | 9.451e-5| 2.209 | 4.489¢e-4| 2.210| 4.489%e-4| 2.210
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Table4: The error obtained using meshless appratt¢h=1.0(Irregular nodal distribution on
L — shaped region)

At € max R max & R £, R, £, R,
0.1 | 4.242e-3| --- | 1.010e-3| -- | 4.805e-3| - | 4.792e-3| ---
0.05 | 1.900e-3| 2.233 | 4.544e-4| 2.223 | 2.152e-3| 2.233| 2.157e-3| 2.222
0.025 | 8.266e-4| 2.299 | 1.992e-4| 2.281 | 9.354e-4| 2.301 | 9.460e-4| 2.280
0.0125| 3.606e-4| 2.292 | 8.412e-5| 2.368 | 3.887e-4| 2.406 | 4.019e-4| 2.353
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The numerical error

Figure 13: The error distribution at=1.0 (Irregular nodal distribution on circular domain)
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Figure 14: The initial condition at
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Figure 15: The numerical solution &t=0.1
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Figure 16: The numerical solution &t= 0.4
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