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Abstract: 

This paper aims to develop an implicit meshless approach based on the radial basis 

function (RBF) for numerical simulation of time fractional diffusion equations. The 

meshless RBF interpolation is firstly briefed. The discrete equations for 

two-dimensional time fractional diffusion equation (FDE) are obtained by using the 

meshless RBF shape functions and the strong-forms of the time FDE. The stability 

and convergence of this meshless approach are discussed and theoretically proven. 

Numerical examples with different problem domains and different nodal distributions 

are studied to validate and investigate accuracy and efficiency of the newly developed 

meshless approach. It has proven that the present meshless formulation is very 

effective for modeling and simulation of fractional differential equations. 

Keywords: Fractional differential equation, Time fractional diffusion equation, 
Meshless method, Radial basis function, Implicit numerical scheme 

 

1 Introduction 

Many problems in engineering and sciences can be described by fractional ordinary 

differential equations (FODE) or fractional partial differential equations (FPDE). 

Recently, because of the new developments in sustainable environment and renewable 

energy, which are often governed by a series of FPDEs, the numerical modeling and 
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simulation for fractional calculus are attracting more and more attentions from 

research community [1][2][3]. It has become a new hot topic in computational 

mechanics and computational mathematics [4]. Fractional kinetic equations, such as 

fractional diffusion equation, fractional advection-diffusion equation, fractional 

Fokker-Planck equation, fractional cable equation etc., are recognized as useful 

approaches for the description of transport dynamics in complex systems including 

systems exhibiting Halmiltonian chaos, disordered medium, plasma and fluid 

turbulence, underground water pollution, dynamics of protein molecules, motions 

under the influence of optical tweezers, reactions in complex systems, and more 

[5]~[9]. When the fractional differential equations describe the asymptotic behaviour 

of continuous time random walks, their solutions correspond to the Lévy walks. The 

advantage of the fractional model for these problems basically lies in the 

straightforward way of including external force terms in calculating boundary value 

problems. Therefore, FPDE results in a more accurate representation of the relative 

phenomena than normal partial differential equations (PDEs).  

Unlike the normal PDE, the differential order (regarding to time or space or both) in a 

FPDE is not with an integer order, in other words, with a fractional order (i.e., 0.5th 

order, 1.5th order, and so on), which will lead to a big difficulty in numerical 

simulation, because existing numerical simulation techniques are developed for PDE 

with an integer differential order. At present, most of FPDEs are solved numerically 

by Finite Difference Method (FDM) [10][11], when a few of research has been 

reported using Finite Element Method (FEM) [12][13][14]. FDM and FEM are 

numerical approaches based on pre-defined meshes/grids, which lead to inherited 

issues or shortcomings including: difficulty in handling a complex domain and 

irregular nodal distribution; difficulty in conducting adaptive analysis, and low 

computational accuracy. Therefore, these shortcomings become the main barrier for 

the development of a powerful simulation tool for practical applications governed by 

FPDE. The most current research in this field are still limited in some 

one-dimensional (1-D) or two-dimensional (2-D) benchmark problems with very 

simple domains (i.e., squares and rectangles) and Dirichlet boundary conditions.  

Recent years, a group of meshless (or meshfree) methods have been developed and 

successfully used in many fields of computational mechanics [15]. Depending on 

whether a numerical integration is used in developing the system of algebraic 
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equations, the meshless methods can be largely grouped into two different categories 

[16]: meshless methods based on collocation techniques and meshless methods based 

on the general weak-forms of ordinary (partial) differential equations (ODEs or 

PDEs). The meshless methods based on collocation techniques, which can be 

developed by using Dirac- delta-test function, have a relatively long history, and they 

include smooth particle hydrodynamics (SPH) [17], the meshless collocation methods 

[18], finite point method (FPM) [19], etc. The so-called meshless methods, using 

various global weak-forms, were proposed about twenty years ago. This category of 

meshless methods includes the element-free Galerkin (EFG) method [20], the 

reproducing kernel particle method (RKPM)[21], and the point interpolation method 

(PIM) [22][23], the meshless local Petrov-Galerkin (MLPG) method [24], the local 

radial point interpolation method (LRPIM) [25][26], the boundary node method 

(BNM)[27], and the boundary point interpolation method (BPIM) [28][29].  

The above discussed meshless methods have demonstrated distinguished advantages 

[15] including: 

• They do not use a mesh (at least for field approximation), so that the burden 

of mesh generation in FDM and FEM is overcome. Hence, an adaptive 

analysis is easily achievable;  

• They are usually more accurate than FDM and FEM due to the use of higher 

order meshless trial functions; and 

• They are capable of solving complex problems that are difficult for the 

conventional FDM and FEM. 

In spite of the impressive progresses, there are still some technical issues in the 

development of meshless techniques, for instance, a) the lack of theoretical study on 

the computational convergence and stability; b) the relatively worse computational 

efficiency; and c) the lack of commercial software packages for meshless analysis. 

Recently, some deep researches have been conducted and the above issues have been 

partially resolved [30][31]. Liu et al. proposed the formulation elaborated with a 

theoretical base on the G space theory [32]. Invoking the G space theory and the 

weakened weak-form (W2) [33], the meshless (or smoothed FEM) methods show a 

number of attractive properties, e.g., conformability, softness, upper/lower bound, 

super-convergence, ultra accuracy, and they also work well with triangular 

background cells. Another new development in meshless techniques is the 
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developments of the class of smoothed meshless methods, Smoothed Point 

Interpolation Method (S-PIM) and Smoothed FEM (S-FEM)[34]. However, this 

upper/lower bound property is obtained for the meshless methods based on 

weak-forms. Further study is still needed for the upper/lower bound property for 

meshfree techniques based on the strong-form, which we use in this paper.  

Because of these unique advantages, meshless methods seem to have a good potential 

for the simulation of FPDE. Although the meshless methods have been successfully 

applied to a wide range of problems, for which, however, the governing equations are 

conventional PDE with an integer differential order, very limited work was reported 

to handle fractional partial differential equations (FPDE) by the meshless techniques. 

Chen et al.[35] used the Kansa method for fractional diffusion equations. Gu et al. 

[36] developed a meshless formulation for non-linear anomalous sub-diffusion 

equation. However, this topic still calls for a significant development. 

The objective of this paper is to develop an implicit meshless formulation based on 

the radial basis functions (RBF) for numerical simulation of time fractional diffusion 

equation (FDE). The discrete equations for two-dimensional time fractional diffusion 

equation are obtained by using the meshless RBF shape functions and the 

strong-forms of time FDE. The essential boundary conditions are enforced by the 

direct collocation method [37]. The stability and convergence of the newly developed 

method are proven theoretically and numerically. Several numerical examples with 

different problem domains and different nodal distributions are used to validate and 

investigate accuracy and efficiency of the newly developed meshless formulation. 

Some important parameters of RBF are thoroughly investigated.  

In this paper, we will develop a meshless collocation scheme using RBFs to spatially 

discretize the fractional convection-diffusion equation. We will also develop a higher 

order approximation for temporal discretization. 

2 Time fractional diffusion equation 

The time fractional diffusion equation can be written in the following form 

2( , )
( , ) ( , ), , (0, )

u t
u t f t t T

t

α

α κ∂ = ∆ + ∈Ω ⊂ ∈
∂

x
x x x R  (1) 

together with the general boundary and initial conditions 
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( ) ( ), , , , 0u t g t t= ∈∂Ω >x x x  
(2) 

( ) ( )0,0 ,u u= ∈Ωx x x  
(3) 

where ∆  is the Laplace differential operator, Ω  a bounded domain in 2R ,  ∂Ω  

the boundary of Ω , κ  the diffusion coefficient, T is the total time to be considered, 

( ) ( ), , ,f t g tx x  and ( )0u x  are known functions. 

In Equation (1), 
( ),u t

t

α

α

∂
∂

x
 is the Caputo fractional derivative of order α ( 0 1α< < ) 

defined as 

( )
( ) ( ) ( )

0

, ,1
d

1

tu t u
t

t

α
α

α

η
η η

α η
−∂ ∂

= −
∂ Γ − ∂∫

x x
 

(4) 

2.1 Discretization of time 

Define kt k t= ∆ , 1,2, ,k n= ⋯ , where /t T n∆ =  is time step size. The time 

fractional derivative at 1kt t +=  can be approximated 

( )
( ) ( ) ( )11

1
0

, ,1
d

1
j

j

k tk
kt

j

u t u
t

t

α
α

α

η
η η

α η
+ −+

+
=

∂ ∂
= −

∂ Γ − ∂∑∫
x x

 

                      ( )
( ) ( ) ( )11

1 1
0

, ,1
d

1
j

j

k tj j

k kt
j

u t u t
t R

t

αη η
α

+ −+
+ +

=

−
= − +

Γ − ∆∑ ∫
x x

ɶ  

 

(5) 

where the truncation error 1kR +
ɶ  satisfies [38] 

( )2

1kR C t
α−

+ ≤ ∆ɶ  
(6) 

Let ( )1 11jb j j
α α− −= + − , 0,1,2, ,j n= ⋯ , then Equation (5) can be rewritten as 

( ) ( )
( ) ( ) ( )1

1 1
0

,
, ,

2

k
k

k j j j k
j

u t t
b u t u t R

t

αα

α α

−
+

− + +
=

∂ ∆
 = − + ∂ Γ − ∑

x
x x ɶ  

(7) 

or 
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( ) ( )
( ) ( ) ( )1

1 1
0

,
, ,

2

k
k

j k j k j k
j

u t t
b u t u t R

t

αα

α α

−
+

− + − +
=

∂ ∆
 = − + ∂ Γ − ∑

x
x x ɶ  

(8) 

Substituting Equation (8) into Equation (1), we obtain 

( ) ( )

( ) ( ) ( ) ( )
1 1 1

1 2 1 1
1

, ,

, , , ,

k k

k

k j k j k j k k
j

u t u t

u t b u t u t f t R

µ

µ

+ +

− + − + +
=

− ∆

 = − − + + ∑

x x

x x x x
 

(9) 

where ( ) ( )1 2t
αµ κ α= ∆ Γ − , ( ) ( )2 2t

αµ α= ∆ Γ −  and 

( )2

1kR C t+ ≤ ∆ɶ  
(10) 

where Cɶ  is a positive constant. 

Let ( )k ku u= x  be the numerical approximation to ( ), ku tx and ( )1
2 1,k

kF f tµ+
+= x , 

then Equations (1) - (3) can be discretized as the following scheme 

1 1 1 1
1

1

, 0,1, , 1
k

k k k k j k j k
j

j

u u u b u u F k nµ+ + + − − +

=

 − ∆ = − − + = − ∑ ⋯  
(11) 

( )0
0u u= x  

(12) 

( ), , 0,1, ,k
ku g t k n

∂Ω
= =x ⋯  

(13) 

2.2 Stability and Convergence 

In order to discuss the stability and convergence of Equations (11)-(13), let us 

introduce the following inner product 

( ) ( ) ( ), d dv w v w x y
Ω

= ∫∫ x x  
(14) 

and norm in 2L  

( ) ( )
1/2

1/ 2 2

2
, d dv v v v x y

Ω

 
= =    

 
∫∫ x  

 

(15) 

The Equation (11) can be rewritten as 
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( ) ( )
1

1 1 0 1
1 1 1

1

1
k

k k k k j k
j j k

j

u u b u b b u b u Fµ
−

+ + − +
+

=

− ∆ = − + − + +∑  
(16) 

For this difference scheme, we have the following result. 

Lemma 1  If ( ) ( )2
0 , 0,1, ,ku H k n∈ Ω =x ⋯  is the solution of Equation (11), then 

0 1
12 2 20
maxk l

k
l n

u u b F−
− ≤ ≤

≤ +  (17) 

Proof  We will prove the result by mathematical induction. 

Firstly, when k=0, we have 

1 1 0 1
1u u u Fµ− ∆ = +  

(18) 

By multiplying Equation (18) by 1u  and integrating on Ω, we obtain 

( ) ( ) ( )21 1 1 0 1 1 1
12

, , ,u u u u u F uµ− ∆ = +  
 

i.e., 

( ) ( )
1 1 1 1

21 0 1 1 1
12

, , , ,
u u u u

u u u F u
x x y y

µ
    ∂ ∂ ∂ ∂+ + = +    ∂ ∂ ∂ ∂    

 

 

Using Schwarz inequality, we have 

1 0 1 0 1
02 2 2 2 20

max l

l n
u u F u b F−

≤ ≤
≤ + ≤ +  

 

Suppose now we have proven 

0 1
02 2 20

maxj l

l n
u u b F−

≤ ≤
≤ + , 1,2, ,j k= ⋯  

(19) 

Multiplying Equation (16) by 1ku +  and integrating on Ω, we obtain 

( )
( ) ( ) ( )( ) ( ) ( )

21 1 1
12

1
1 1 0 1 1 1

1 1
1

,

1 , , , ,

k k k

k
k k k j k k k k

j j k
j

u u u

b u u b b u u b u u F u

µ+ + +

−
+ − + + + +

+
=

− ∆

= − + − + +∑
, 

i.e., 
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( ) ( ) ( )( ) ( ) ( )

1 1 1 1
21

12

1
1 1 0 1 1 1

1 1
1

, ,

1 , , , ,

k k k k
k

k
k k k j k k k k

j j k
j

u u u u
u

x x y y

b u u b b u u b u u F u

µ
+ + + +

+

−
+ − + + + +

+
=

    ∂ ∂ ∂ ∂+ +    ∂ ∂ ∂ ∂    

= − + − + +∑
 

 

(20) 

Using Schwarz inequality, and the inequality [10]  

1, 0,1, ,j jb b j n+≥ = ⋯ ,  

we have 

1
1 0 1

1 12 2 2 2 2
1

(1 ) ( )
k

k k k j k
j j k

j

u b u b b u b u F
−

+ − +
+

=

≤ − + − + +∑  

Hence, by using Equation (19), we obtain 

( )
1

1 0 1
1 12 2 20

0

1 max
k

k l
j j k j

l n
j

u u b b b F
−

+ −
+ − − ≤ ≤=

 
≤ + − + 

 
∑  

    ( )
1

0 1
12 20

0

1 max
k

l
j j k

l n
j

u b b b F
−

−
+ ≤ ≤=

 
≤ + − + 

 
∑  

0 1

2 20
max l

k
l n

u b F−

≤ ≤
≤ + . 

 

 

(21) 

Suppose that ( )ku xɶ , 1,2, ,k n= ⋯  is the solution of the Equation (16) with the initial 

condition 0( ,0)u u=x ɶ  and the boundary condition Equation (13), then we have the 

following stability result. 

Theorem 1 The fractional implicit numerical method defined by Equation (16) is 

un-conditionally stable. 

Proof Denote the error 

( ) ( ) ( )k k ku uε = −x x xɶ  

It satisfies 

( )1 1 0
1 1

1

(1 )
k

k k k k j
j j k

j

b b b bε µ ε ε ε ε+ + −
+

=

− ∆ = − + − +∑  

and 

1 0kε +

∂Ω
=  

 From Lemma 1, we obtain 

0

2 2
, 1,2, ,k k nε ε≤ = ⋯  (22) 
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Now we carry out an error analysis for the solution of the time-discretized problem 

(16). We denote from now by c a generic constant which may not be the same at 

different occurrences. 

Theorem 2 Let { } 0
( ,t )

n

k k
u

=
x  be the exact solution of Equations (1)-(3), { } 0

( ,t )
n

k k
u

=
x  

be the time-discrete solution of Equation (16) with initial condition 0( ) ( ,0)u u=x x  

and the boundary condition Equation (13), then we have the following error estimates 

2( , ) ( ) ( )k
ku t u C t α−− ≤ ∆x x ， 

where C is a positive constant. 

Proof  Let ( ) ( ) ( ),k k
ku t uξ = −x x x , from Equations (9) and (16), we obtain 

( ) ( ) ( ) ( ) ( )1 1 1
1 1

1

k
k k k k j k j

j k
j

b Rξ µ ξ ξ ξ ξ+ + + − −
+

=

 − ∆ = − − + ∑x x x x x  
(23) 

( )0 0ξ =x , 
(24) 

( )0 0ξ
∂Ω

=x . (25) 

Hence, from Lemma 1, we have 

( )21 1
1 12 20
maxk l

k k
l n

b R Cb tξ − −
− −≤ ≤

≤ ≤ ∆  
(26) 

Because ( )1
1kb t

α−
− ∆  is bounded [10], thus 

( )2

2

k C t
αξ −≤ ∆ɶ  

(27) 

3 Construction of the meshless RBF shape function 

At present, a number of ways to construct meshless shape functions have been 

proposed [15]. In this paper, the radial basis function (RBF) interpolation is used to 

construct the meshless shape functions for spatial discretization, because the RBF 

interpolation is stable and accurate [15]. The locally supported RBF interpolation 

formulation can be written as: 

{ }
1 1

( ) ( ) ( )
n m

T T
i i j j

i j

u R r a p b
= =

 
= + = + =  

 
∑ ∑

a
x x R a B b R B

b
 

(28) 
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where ( )iR r  is the RBF, n is the number of nodes in the interpolation domain of 

point x , ( )jp x  is a monomial in the space coordinates [ , ]T x y=x , m  is the 

number of polynomial basis functions, and coefficients ja  and jb are interpolation 

constants. The unique variable in a RBF is the distance,r , between the interpolation 

point x  and a field node ix , and it makes the RBF interpolation easily extend to 

three-dimensional problems.  

There is a number of RBFs, and their characteristics in meshless methods have been 

widely investigated [15]. In this paper, the following locally supported multiquadrics 

(MQ) RBF is used to construct the meshless shape function based on the local 

interpolation domains, which is written as 

2 2( ) [ ( ) ] q
i i c iR r dα= +x  (29) 

where cα  is a dimensionless coefficient, and id  is a parameter of the nodal 

spacing. The selections of two parameters (cα andq ) will significantly influence the 

performance of MQ RBF.  The effects of αc and q have been studied in details in 

many publications [15], and it was reported that 1.0cα =  and 1.03q =  lead to good 

results for most problems in computational mechanics. These two parameters will be 

also investigated in the following numerical studies.  

It should be mentioned here that ‘locally supported MQ RBF’ means MQ RBF is 

employed to construct meshfree shape functions based on a local interpolation domain 

rather than the whole problem domain. In other words, for an interpolation point, only 

a small group of nodes, which are the closest to this interpolation point, are selected 

and used in the RBF interpolation [39]. 

Coefficients ai and bi in Equation (28) can be solved by enforcing Equation (28) to be 

satisfied at the n nodes surrounding a point x . However, in Equation (28), there are 

only n equations for n+m variables. To obtain unique solution, additional m equations 

should be added, which are the m constraint conditions, i.e.  

       T

1

( ) 0
n

j i i m
i

p a
=

= =∑ x B a  ,       j=1, 2,  ...,  m (30) 

Then, Equations (28) and (30) can be re-written in matrix form as follows 
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0
0T

me

m

    
= =    

    

R Bu a
Ga

B 00 b
 

(31) 

where ue is the vector of nodal values for the field function of the nodes in the local 

interpolation domain.   

1 1 2 1 1

1 2 2 2 2
0

1 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

n

n

n n n n

R r R r R r

R r R r R r

R r R r R r

 
 
 =
 
 
  

R

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯

 

 

1 1 1 2 1

2 1 2 2 2T

1 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

n

n
m

m m m n

p p p

p p p

p p p

 
 
 =
 
 
  

x x x

x x x
B

x x x

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

    

(32) 

From Equation (30), coefficients 0a  can be solved and substituting 0a  back into 

Equation (28), the following RBF interpolation formulation is then obtained 

{ } { }1( ) ( ) ( )

( )

e e

e

u −    
= =   

   

= ⋅

u u
x R B G Φ x Λ x

0 0

Φ x u

 

(33) 

where the RBF shape function ( )Φ x  is defined by 

{ }( )1
1 2

1
( ) [ ( ), ( ),......, ( )]n

n
φ φ φ −

−
= =Φ x x x x R B G  (34) 

where ( )Φ x  is a vector which includes 1 ~ n elements of ( ) 1−R B G related to n 

nodes in the interpolation domain. The derivatives of ( )Φ x  can be obtained 

1( ) −∂ ∂ ∂ =  ∂ ∂ ∂ 

Φ x R B
G

x x x
      

(35) 

2 2 2
1

2 2 2

( ) − ∂ ∂ ∂=  ∂ ∂ ∂ 

Φ x R B
G

x x x
   

(36) 

It has been proven that the RBF shape functions given in Equation (33) satisfy the 

Kronecker delta condition [15], which makes it easy to enforce the Dirichlet boundary 

conditions in the meshless method based on the RBF shape functions. 
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4 Meshless approach 

Consider the following fractional partial differential equation as presented in Equation 

(11) 

1 1 1 1
1

1

, in
k

k k k k j k j k
j

j

u u u b u u Fµ+ + + − − +

=

 − ∆ = − − + Ω ∑  
(37) 

together with Dirichlet boundary condition 

1
1( ) ( , ), onk

ku g t+
+= ∂Ωx x  

(38) 

Assume that there are dN  internal (domain) points and bN  boundary points. 

Hence, the following dN  equations at internal domain nodes can be obtained 

1 1 1 1
1

1

ˆ ˆ ˆ ˆ ˆ , in
k

k k k k j k j k
j

j

u u u b u u Fµ+ + + − − +

=

 − ∆ = − − + Ω ∑  
(39) 

The following bN  equations are satisfied on ∂Ω  

( )1
1ˆ ,k

i i ku g t+
+= x , 1,2, , bi N= ⋯ .  

(40) 

Thus based on RBF interpolation, Equation (33), we have 

( )1 1

1

ˆ ˆ
n

k k
i i

i

u u+ +

=
= Φ∑x  

(41) 

and its derivatives can be obtained by the following equations 

( )1
1

1

ˆ
ˆ

k n
ki
i

i

u
u

x x

+
+

=

∂ ∂Φ=
∂ ∂∑

x
 

(42) 

( )2 1 2
1

2 2
1

ˆ
ˆ

k n
ki
i

i

u
u

x x

+
+

=

∂ ∂ Φ=
∂ ∂∑

x
 

(43) 

( )1
1

1

ˆ
ˆ

k n
ki
i

i

u
u

y y

+
+

=

∂ ∂Φ=
∂ ∂∑

x
 

(44) 

( )2 1 2
1

2 2
1

ˆ
ˆ

k n
ki
i

i

u
u

y y

+
+

=

∂ ∂ Φ=
∂ ∂∑

x
 

(45) 

where û  means the field function for the point considered. Thus, 1ˆk
iu +  and its 

derivatives in Equation (39) can be obtained by substituting x  into ix  in Equations 

(41) ~ (45) 
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( )1 1ˆ ˆk k
i iu u+ += x , 

( )2 12 1

2 2

ˆˆ kk
ii

uu

x x

++ ∂∂ =
∂ ∂

x
, 

( )2 12 1

2 2

ˆˆ kk
ii

uu

y y

++ ∂∂ =
∂ ∂

x
 

(46) 

5 Numerical examples 

In this section, some example cases are studied to demonstrate the effectiveness of the 

newly proposed meshless approach. In the following investigations, we will use the 

modified multiquadric RBF function as follows 

( ) ( )( )22
q

i i c cR r r dα= +  
(47) 

where cα  and q  are two shape parameters which have been thoroughly studied by 

Liu et al. [15]. In the first example, we investigate influences of different cα  and q .  

In equation (47), cd  is a characteristic length that is related to the nodal spacing in 

the local interpolation domain of the point of interest, which is defined in this paper as 

[39]:  
* 1

c

S
d

S N
=

−
, where S  means the area of the field Ω  and N  means the 

number of distributed field nodes. 

We solve the following time fractional advection-diffusion equation 

2( , )
( , ) ( , ), , (0,1)

u t
u t f t t

t

α

α κ∂ = ∆ + ∈Ω ⊂ ∈
∂

x
x x x R  

(48) 

( ) 2, , , (0,1)x yu t t e t+= ∈∂Ω ∈x x  
(49) 

( ),0 0,u = ∈Ωx x  
(50) 

where we employ 1.0κ = , and ( ) ( )
2

22
, 2

3
x yt

f t t e
α

α

−
+ 

= − Γ − 
x . 

The exact solution of Equations (48)-(50) is ( ) 2, x yu t t e +=x . As a fraction order in 

Equation (48), we take  

0.85α =  (51) 

For quantitative studies, the following error notations are introduced 
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2

1
max 0

2

1

( )
max , ,

( )

N
exact num
i i

exact num i
i i Ni exact

i
i

u u
u u

u
ε ε =

=

−
= − =

∑

∑
 

 

(52) 

2 2
, , , ,

1 1

2 2
, ,

1 1

( ) ( )
,

( ) ( )

N N
exact num exact num
i x i x i y i y

i i
x yN N

exact exact
i x i y

i i

u u u u

u u
ε ε= =

= =

− −
= =
∑ ∑

∑ ∑
 

 

(53) 

where N  denotes the number of all the grid nodes; exact
iu  and num

iu  are exact and 

numerical solutions, respectively, for interest point i; and ,iu  denotes the derivative. 

5.1 A case with a rectangular problem domain 

Firstly, we study a rectangular domain of [0,1] [0,1]Ω = × , which is discretized by  

( 1) ( 1)x yN n n= + × +  regularly distributed field nodes, as shown in Fig. 1 with 

40x yn n= = . The newly proposed meshless method is used to simulate the time 

fractional diffusion equation with this rectangular problem domain.  

Firstly the parameter of q  is investigated. Figs. 2, 3 and 4 plot the computational 

errors for different q  with 10,20,30x yn n= = , respectively. From Figs. 2, 3 and 4, 

it can be observed that 1.03q =  leads to better results than 0.5q =  and 0.98q = . It 

should be mentioned here that when 0.5q = , Equation (47) will become a standard 

multiquadric RBF function.  

In addition, the influence of different cα  in Equation (47) has also been investigated. 

It has been found that although 3.4cα =  leads to better results, the computational 

accuracy is not sensitive for cα .  Hence, 1.03q =  and 3.4cα =  will be used in 

the following studies. 

Fig. 5 plots the computational errors for different time steps. From this figure, it can 

be found, the error reduces with the decrease of time steps. In other words, a small 

time step leads to a more accurate result. We can also conclude from this figure that 

the present meshless method has good convergence. Table 1 listed the detailed results 

for computational errors, which have proven that the proposed meshless approach 
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achieved good computational accuracy. The convergence rates, R, of these four errors 

regarding to time steps are also listed in the same table. The convergent rate is 

calculated as: 

1

2

( )

( )

t
R

tε
ε
ε

∆=
∆

 
 

(54) 

From Table 1, it can be seen that the convergence rates are close to  

2

1.151 1

2 2

( )
2 2.219

( )

t t
R

t t

α

ε
ε
ε

−
 ∆ ∆= = = ≈ ∆ ∆ 

. 

 

(55) 

It can be concluded that the order of convergences in time of the present method is 

2( )O t α−∆ . This is in good agreement with the results by the theoretical analysis. 

For comparison, this problem has also been solved by the conventional Finite 

Difference Method (FDM), in which the regular grid as presented in Fig. 1 is used. It 

has been found that the newly developed meshless approach usually leads to better 

computational accuracy than FDM because the meshless RBF shape functions have 

better interpolation accuracy. However, meshless simulation needs more the 

computational cost than FDM. How to improve the computational efficiency for 

meshless techniques is still an open issue[15].  

The irregularly distributed nodes, as shown in Fig. 6, are also used. The computational 

errors for different time steps are plotted in Fig. 7, in which the computational errors 

decrease with time steps. Table 2 listed the detailed results for computational errors. 

Comparing with results listed in Table 1, it can be found that the irregular nodal 

distribution leads to similar computational accuracy. It has proven that the proposed 

meshless approach achieved good computational accuracy for irregular nodes. The 

convergence rates, R, of these four errors regarding to time steps are also listed in 

Table 2. Using irregular nodes, the present meshless approach has good convergence 

rates which are close to those obtained by the regular nodes. Hence, the newly 

developed meshless technique is accurate and robust for not only the regular nodes 

but also the irregular nodes. It should mention here that the irregular grid will lead to a 

big difficulty for the conventional FDM. 
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5.2 A case with L-shaped problem domain 

The −L shaped problem domain, given by the following equation and plotted in Fig. 

8, is considered 

{ }( , ) 0 , 1, ( 0.5) ( 0.5) 0x y x y sign x sign yΩ = ≤ ≤ − + − ≤  
(56) 

The regularly distributed nodes, as shown in Fig. 8, are firstly used to discretize this 

L-shaped problem domain. The computational errors for different time steps are 

plotted in Fig. 9 and listed in Table 3, which have proven that the proposed meshless 

approach performs very well for this case in terms of accuracy and convergence. The 

convergent rate is also in the order of 2( )O t α−∆ . 

 

The irregularly distributed nodes are also used for this problem with an L-shaped 

region, as shown in Fig. 10. The computational errors for different time steps are 

plotted in Fig. 11 and listed in Table 4. It can be concluded that the present meshless 

approach also leads to good computational accuracy and convergence rates for this 

L-shaped case using irregularly distributed nodes. It has proven the effectiveness of 

the meshless approach for a problem with a complex domain and irregular nodal 

distribution.  

 

5.3 A case with a circular problem domain 

Let us consider the following circular problem domain  

{ }2 2( , ) 1x y x yΩ = + ≤ . (57) 

Total 1185 irregularly distributed nodes for this circular domain are used, as shown in 

Fig. 12. The computational errors are plotted in Fig. 13. It can be found that the 

developed meshless approach leads to accurate results.  
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5.4 A case with complex initial conditions 

A rectangular domain ]1,0[]1,0[ ×=Ω  is considered in this example, which 

investigates specifically the phenomenon of diffusion. The following initial and 

boundary conditions are considered: 

1 2

1 2

1 2

1.5 1.5 0 0.5, 0 0.5

(1 ) 0 0.5, 0.5 1
( 0

(1 ) 0.5 1, 0 0.5

(1 ) (1 ) 0.5 1, 0.5 1

r r

r r

r r

x y x y

x y x y
u

x y x y

x y x y

 < ≤ < <
 − < < < <= 

− < ≤ < <
 − − < < < <

x，）  

 

(58) 

( , ) 0, , 0u t t= ∈∂Ω >x x  
(59) 

From Equation (58), we can find that this problem has complex initial conditions with 

four different segments. Therefore, there is no exact solution for this problem. The 

newly developed meshless approach is used to solve this time fractional 

advection-diffusion equation as given in Equation (48) together with Equations (58) 

and (59). The numerical simulation results of the diffusion process at different time 

are shown in Figs. 14, 15 and 16. From these figures, it can be found the newly 

developed meshless technique leads to smooth and stable results.  

 

In summary, the above investigations have proven that the newly developed meshless 

approach is robust and has good accuracy and convergence rates even using irregular 

nodal distributions and/or for a complex domain. It should mention here that the 

irregularly nodal distribution and a non-rectangular problem domain will lead to big 

difficulty for the conventional Finite Difference Method.  

6 Conclusions 

This paper aims to develop an implicit meshless approach based on the radial basis 

function (RBF) for numerical simulation of time fractional diffusion equations (FDE), 

which is a type of fractional partial differential equation (FPDE). The stability and 

convergence of this meshless approach are then proven theoretically and numerically. 

Several numerical examples with different problem domains are used to study 

accuracy and efficiency of the newly developed meshless approach. Both regular and 
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irregular nodal distributions are employed in studies. From above studies, the 

following conclusions can be drawn:  

• The shape parameters of MQ-RBF affect computational performance. 

1.03q =  and 3.4cα =  are recommended for simulation of FDE; 

• The convergence order of this present method regarding to time is 2( )O t α−∆ ; 

• The presented meshless approach is un-conditionally stable;  

• The newly developed meshless approach is accurate and convergent. Most 

importantly, the present approach is robust for arbitrarily distributed nodes 

and complex domains, for which the conventional Finite Difference Method 

(FDM) is difficult to handle.  

In summary, the present meshless formulation is very effective for modeling and 

simulation of fractional differential equations, and it has good potential in 

development of a robust simulation tool for problems in engineering and science 

which are governed by the various types of fractional differential equations. In our 

future research, we will study more complicated problems.  
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Figure 1: Regular distribution of points on rectangular domain 

. 

 

Figure 2: Influence of parameter q  with 10x yn n= =  
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Figure 3: Influence of parameter q  with 20x yn n= =  

 

Figure 4: Influence of parameter q  with 30x yn n= =  
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Figure 5: Errors as a function of the time step t∆ (Regular nodal distribution on 
rectangular region) 

 

 

 

Table1: The error obtained using meshless approach at t = 1.0 (Regular nodal distribution on 
rectangular region) 

t∆  
maxε  maxRε  

0ε  0Rε   
xε  xRε  

yε  yRε  

0.1 

0.05 

0.025 

0.0125 

1.234e-2 

5.578e-3 

2.520e-3 

1.140e-3 

--- 

2.212 

2.213 

2.211 

2.073e-3 

9.370e-4 

4.234e-4 

1.916e-4 

--- 

2.212 

2.213 

2.210 

6.864e-3 

3.103e-3 

1.402e-3 

6.345e-4 

--- 

2.212 

2.213 

2.210 

6.864e-3 

3.103e-3 

1.402e-3 

6.345e-4 

--- 

2.212 

2.213 

2.210 
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Figure 6: Irregular distribution of points on rectangular domain 

 

Figure 7: Errors as a function of the time step t∆ (Irregular nodal distribution on rectangular region) 

 

Table2: The error obtained using meshless approach at t = 1.0 (Irregular nodal distribution on 
rectangular region) 

t∆  
maxε  maxRε  

0ε  0Rε   
xε  xRε  

yε  yRε  
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0.1 

0.05 

0.025 

0.0125 

1.225e-2 

5.516e-3 

2.488e-3 

1.134e-3 

--- 

2.221 

2.217 

2.192 

2.022e-3 

9.014e-4 

3.946e-4 

1.660e-4 

--- 

2.243 

2.284 

2.377 

6.751e-3 

3.003e-3 

1.312e-4 

5.566e-4 

--- 

2.248 

2.289 

2.357 

6.784e-3 

3.016e-3 

1.317e-3 

5.608e-4 

--- 

2.249 

2.290 

2.348 
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Figure 8: Regular distribution of points on L-shaped domain 

 

Table3: The computational error obtained using meshless approach at t = 1.0 (Regular nodal 
distribution on L-shaped region) 

t∆  
maxε  maxRε  

0ε  0Rε  
xε  xRε  

yε  yRε  

0.1 

0.05 

0.025 

0.0125 

4.351e-3 

1.967e-3 

8.888e-4 

4.024e-4 

--- 

2.212 

2.213 

2.209 

1.022e-3 

4.619e-4 

2.088e-4 

9.451e-5 

--- 

2.213 

2.212 

2.209 

4.856e-3 

2.195e-3 

9.919e-4 

4.489e-4 

--- 

2.212 

2.213 

2.210 

4.856e-3 

2.195e-3 

9.919e-4 

4.489e-4 

--- 

2.212 

2.213 

2.210 
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Figure 9: Errors as a function of the time step t∆  (Regular nodal distribution on L-shaped region) 
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Figure 10: Irregular distribution of points on L-shaped domain 
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Figure 11: Errors as a function of the time step t∆ (Irregular nodal distribution on L-shaped region) 

 

Table4: The error obtained using meshless approach at 1.0t = (Irregular nodal distribution on 
L − shaped region) 

t∆  
maxε  maxRε  

0ε  0Rε  
xε  xRε  

yε  yRε  

0.1 

0.05 

0.025 

0.0125 

4.242e-3 

1.900e-3 

8.266e-4 

3.606e-4 

--- 

2.233 

2.299 

2.292 

1.010e-3 

4.544e-4 

1.992e-4 

8.412e-5 

--- 

2.223 

2.281 

2.368 

4.805e-3 

2.152e-3 

9.354e-4 

3.887e-4 

--- 

2.233 

2.301 

2.406 

4.792e-3 

2.157e-3 

9.460e-4 

4.019e-4 

--- 

2.222 

2.280 

2.353 
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Figure 12. Scattered distribution of points on circular domain 

 

Figure 13: The error distribution at 1.0t =  (Irregular nodal distribution on circular domain)  
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Figure 14: The initial condition at 0=t   

 

 

Figure 15: The numerical solution at 0.1t =   
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Figure 16: The numerical solution at 0.4t =   

 


