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Abstract. In this paper a new time-stepping method for
simulating systems of rigid bodies is given. Unlike meth-
ods which take an instantaneous point of view, our method
is based on impulse-momentum equations, and so does
not need to explicitly resolve impulsive forces. On the
other hand, our method is distinct from previous impul-
sive methods in that it does not require explicit collision
checking and it can handle simultaneous impacts. LNu-
merical results are given for one planar and one three-
dimensional example, which demonstrate the practicality
of the method, and its convergence as the step size be-
comes small.

1 Introduction

Our world can be viewed as a huge multibody system
composed of numerous multibody subsystems which in-
teract through unilateral contacts. In fact, most planned
changes to our environment could not be carried out if fric-
tional contacts could not be made and broken at will. The
act of retrieving a banana from a fruit bowl can be easily
accomplished by a human who “understands” the physics
of contact and friction. Building a bridge, transmission, or
spacecraft requires humans with such knowledge.

Ultimately, roboticists would like to build robots with
human-like understanding of contact and friction in order
to (at least partially) automate tedious and/or dangerous
manufacturing and clean-up tasks. However, to have any
chance of succeeding in this endeavor, we must first fully
understand the relevant phenomena ourselves and be able
to accurately predict system behavior. This implies an
ability to solve the equations of accurate dynamic mod-
els over time, given input functions of time. However,
the roboticist’s task goes on beyond the short-term goal
of solving the forward problem jtist mentioned. To endow
robots with a useable knowledge of multibody systems,
one must solve the inverse, or planning, problem.
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Previous work that will eventually help us develop gen-
eral algorithms for planning tasks with contact include
studies on mathematical models of multibody systems,
theories of solution existence and uniqueness for those
models. methods for simulation. algorithms for motion
planning for constrained systems, and implementations Of

planners based on these models (despite their restricted
domains) [3, 6, 9, 12. 13. 18, 22. 24]. We contend that
one of the primary reasons general algorithms have not
been developed is the difficulty in solving the general for-
ward problem. Both rigid body and compliant body meth-
ods have been developed (e.g..[2. 7. 11, 14. 15, 19]) and
each has its shortcomings. For example. constraint-based
rigid body simulators occasionally fail due to solution

nonexistence [23]. They also require switching between
impulse-momentum and force-acceleration models as con-
tacts form and break. Cluttered environments with lots of
bouncing can stall these methods. Impulse-based meth-
ods bog down when the physics of the situation suggests
many static contacts. as would occur when simulating a
house full of books, furniture, erc. Finite element methods
increase the computational burden and also suffer from so-
lution nonuniqueness when applied to contact problems
[10]. Whh all of these methods, there is additional over-
head of collision detection, which can become the bottle-
neck in cluttered environments with high-resolution geo-
metric models. .

The above concerns have motivated the method pre-
sented here, which is best classified as an impulse-based
method. The predominant influences on our approach
are the works of Mirtich [15], Moreau [17], Monteiro-
Marques [16]. However, our method avoids several of
the drawbacks of their methods. By formulating our time-
stepping method in terms of impulses, velocities, AND PO-

sitions, we derive several benefits: (1) all contact forces,
whether finite or instantaneously infinite are treated uni-
formly, as impulses accruing over. a single time step, (2)
we avoid the need to explicitly determine the times of im-
pac[s and to switch to an impulse-momentum law at those
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times, and (3) no special formulation is required to handle
multiple “simultaneous “ impacts, so that the simulation
step size is fairly insensitive to the complexity of scene.
An additional benefit that results from the particulars of
our development, is that solutions always exist for the sin-
gle contact case, and a minor modification discussed in
~3,3 guarantees solution existence for all multiple con-
tact cases. To clarify the implications of the points just
raised, our method can: (1) step rapidly through time peri-
ods in which many collision are occuring in rapid succes-
sion (e.g., a “break” shot in pocket billiards), (2) handle
situations in which contact forces are instantaneously infi-
nite without a collision (see [2] for an example).

2 Dynamic Model

Let t denote time and q(t), v(t) c $?ndenote the gener-
alized coordinate and velocity vectors of a system of rigid
bodies.1 The Newton-Euler equations of this system with
multiple unilateral contacts can be written in the following
well-known form:

A’!!(q): = k(q, v) + p, (1)

where lkf is the positive definite, symmetric inertia ma-
trix, k is the vector of Coriolis, centripedal, other external
generalized forces and smooth generalized contact forces
such as those arising from viscous and Stribeck effects.
and p is the sum of the normal and dry friction compo-
nents of the generalized contact forces. The dry friction
forces can be constrained to lie within the usual Coulomb
friction cone, but our method admits more general friction
limit surfaces [5]. We only require that for o given nor-
mal load, the friction force (and moment for distributed
contacts) is an element of a convex subset of the space of
the other contact force components. As will be seen, our
method naturally enforces the maximum work inequality
for sliding contacts. These characteristics are typical of
many useful dry friction models [8, 25].

Due to the fact that the bodies have nonzero volume,
some values of q correspond to interpenetration. The
(possibly disconnected) portion of configuration space (C-
space) corresponding to interpenetration will be denoted
as ~. Its complement C is the admissible region. whose
boundary 8C is assumed to be piecewise smooth. Under
the rigid assumption, q(t) must remain in C for all time.

In what follows, we will cast the Newton-Euler equa-
tion (l), nonpenetration constraints, and a friction law as
a linear cornplementarity probem in a discrete-time form
suitable for use in simulation. As will be seen later, the
complementarily form is intrinsic to the problem.

1For~OnveniellCC,W~ IWC assun)eda thmc-pmmcicr rcpresmt~don

of body orientation.

3 Complementarity Formulation of the
Time-Stepping Algorithm

The standard linear complementarily problem (LCP) is
stated as follows [4]. Determine vectors w and z such that
the following conditions are satisfied:

W= RZ+U
W>o Z>o w=% = o,

where R is a known square matrix, u is a known vec-
tor of compatible length, and the superscript “T” is the
transpose operator. When the matrix R satisfies certain
properties, solutions are known to exist. Under slightly
more restrictive assumptions. a solution is guaranteed to
be computable by Lemke’s algorithm; a pivoting method
similar to the simplex algorithm for linear programming.
When w is a nonlinear function of z. the other constraints
remaining the same, we have a nonlinear complementarily
problem (NCP). It is generally difficult to prove solution
existence for an NCP, and one must often resort to general
nonlinear programming algorithms to find solutions.

We begin the development of our method under the as-
sumptions of isotropic Coulomb friction, only one contact.
and a simple admissible space assumed to be represented
by a single scalar inequality:

C={qjf(q)>o}cw. (’))

In order to capitalize on the ei%cient tools of LCP the-
ory, we linearize the model: first. by replacing the friction
cone with a polyhedral approximation. and second. by ap-
proximating the nonpenetration constraint f(q) 2 0 by
the half-space: n=q > ao, where n is the gradient of ~
with respect to q. (this assumption will be relaxed in $3.4).
Note that if there is only one moving body, then, with the
proper choice of generalized coordinates and scaling of
f(q), n is the six-simensional unit wrench of the normal
component of the contact force.

Letting c. denote the magnitude of the normal contact
force and c! frictional component of the contact force. the
circular friction cone can be approximated by a polyhedral
cone f (see Figure 1):

F(q) = {cnn+ D/3 I c. > 0,/3 20, eT,6 < /%}, (~)

where e = [1,1,..., 11= G Rk with k being the number
of edges of the polyhedral approximation, @ G !Rk is a
vector of weights. The columns of D are direction vec-
tors that positively span the space of possible generalized
friction forces. Thus ifs is a vector in that subspace, then
d~s > 0 for all j implies s— = O. Note that n and ~1
a~eunit vectors for isotropic Coulomb friction modeled in
the space of the contact force. However. the lengths of the
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Figure 1: Circular friction cone and polyhedral approxi-
mation

O!jwould vary for anisotropic Coulomb friction. In ad-
dition, when these direction vectors are transformed into
C-space, they generally are no longer of unit length (%’.,
for a single moving rigid body, the unit vectors map into
unit wrenches of length 6).

We also need the following contact constraint. which is
the source of complementarily in our model:

p~f(q) = o. (4)

This constraint ensures that the contact force can only be
nonzero when contact exists. Note that we have not yet de-
fined a relationship to determine the direction of the con-
tact force during sliding. This relationship will be incorpo-
rated during the discretization below of the model (l-l).

3.1 Model Discretization

Let h denote the step size and $ the current time. for
which we have estimates the position ql = q(t~)and
velocity vl = v(t~) of the system. Our goal is to de-
rive approximations of the position qf+l and velocity v~+l
that satisfy the model and the maximum work inequality~
at the end of the next time step. Approximating ~ by
~l+l_vf—, ~ similarly,h

and substituting the rcsuhs into
equation (1) yields the following discrete-time, Newton-
Euler equations:

~ . (v~+l – J) = hnc. + hD/3 + ldi, (5)

q
1+1

– d = lNW , (6)

z’fh~~~inlunl workincquali[vwitt set the direction Ofthe friction
forceduringslidingcontact. -

where hcnand hDfl arethe impulses of the normal contact
force and frictional contact force over the the time period
from t~ to tL+l.Observe that these expressions appear to
be linear in the unknowns qlel, V1+l, cn, and ~. However,
M, n, D, and k also depend on q(t) and v(t). Since our
objective is to obtain a solution for all variables at the end
of each time step, we would like to evaluate these quanti-
ties at q1+1andV1+l,causing the discrete-time equations
to become nonlinear. However, in order to preserve lin-
earity, these quantities will be evaluated at q = qf + hvf
and v = V1. Later, in 53.4 we will present a method for
solving the nonlinear problem.

To complete the time-stepping equations, the discrete-
time Newton-Euler equation must be combined with the
following system of inequalities. Their purpose is to pro-
duce the correct friction force and nonpenetration behavior
with the aid of a new scalar unknown A (explained below):

T ‘+-1> ao,nq c“ >0, (7)
T [-!-1 >0.,\e+D v _ 6>0, (8)

,LLCn– eTJ? ~ 0, Azo: (9)

with the complementarily conditions:

(nTq’+’ - Qo)Cn =

. (Ae + DTV[+’)T3 =

~ (PC. - eT3)A =

o. (lo)

o, (11)

o. (12)

Separation: Separation is indicated by nTql+l >
C1’o. In this case, equations (7) and (10) imply
that c“ = O. Substituting into the left inequality
in (9) implies that.8 = O, thereby satisfying equa-
tions (S.9. 11,12). These conclusions are independent
ofv’+l since there is no contact. Also, Amay take on
any positive value satisfying the left inequality in (8)
and has no meaningful physical interpretation.

Sliding: For sliding, V{=l is of nonzero length and
in the span of the columns of D. Since the vec-
tors (ij positively span the space cont~ning Vf+l ) the

vector DTvl~l contains at least one strictly nega-
tive element. In order to satisfy the left inequality
in (S), ~ must be strictly positive. Moreover, we have,
A ~ A= = max~{-cl~}v~+l >0. (If A > A“, then
equation (12) implies that the left inequality in (9)
must be strictly satisfied (i.e., PC” = eT@).) There-
fore. the sum of the elements of /3must be PC.. Equa-
tion (11) with inequality (8) implies that typically
only one element of/3 will be nonzero, and this one
will be the one which maximizes power dissipation.
In nongenetic cases where more than one element of
O is nonzero, those elements must still sum to Pen.
which constrains the friction force to the facet of the
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linearized friction cone formed by the corresponding
dj vectors.3

Rolling: In this case, v~+l = O,so the left inequality
in (8) ii equivalent to A z O.

Case 1: Choosing A = O reduces our system of in-
equalities to the left one in (9) and @ ~ O. This in-
equality system simply allows the contact impulse to
range over the interior and surface of the linearized
fdction cone.

Case 2: Choosing A > 0 implies that /3 = O and
PC. = O. This is a nongenetic sort of rolling that oc-
curs by chance in the absence of a frictional impulse.

Several aspects of the discrete-time dynamic equations
(5-12) should also be noted.

1.

2.

3.

3.2

It is a mixed linear complementarily system as de-
scribed in Cottle, Pang and Stone[4, pp. 29-30]. By
solving for Vt+l and q~rl in terms of the other quan-
tities, a “pure” LCP can be obtained.

The average normal contact force c., :Ind therefore ~.
can only be nonzero when there is contact at at the
end of the interval, (i.e., n~q[+l = so). Thus there
is no need to explicitly “turn on” and “turn off” the
contact forces in this method.

It was shownin[21] that solutions to this LCP always
exist and can be found by Lemke’s algorithm.

Multiple contacts

Multiple contacts can be easily incorporated into this
framework. The additional data needed to form the LCP
for a problem with N contacts for a given time step fol-
low, The vector n,i~), is the normal vector for the jt” con-

(j) thetact, transformed to generalized coordinates: and cto
corresponding scalar for locating the boundary of the’jth
half-plane. The matrix ”ll(j). is formed from the \’ectors
spanning the friction force space at the -jt’Lcontact, trans-
formed to generalized coordinates. The scalar p(j) z O,is
the coefficient of friction for the jt” contact.

There are also new variables for each contact: C#) (the
average normal force for the jt” contact over the time
step), @~) (the coefficients for the frictional impulse for

“th contact), and ~(~). Wth these data and variables.the J
the formulation of the time-stepping method for N con-
tacts is given by:

.\’
M. (W~+l_.v[) = ~(n(j)c~:) +&@j))+l,k(13]

j=l

3&.IOngx IIICsetor fric[ion forces defined by tk WW13 ~J is

convex, then the elements of ~ that arc nonzero cormpond 10a vencx.
edge, or facet on that surface.

f?
1-+1

– d = ~J+ll (14)

with nonpenetration and friction cone constraints for j =
1,..., N contacts:

~(d=q~+l ~ csg), c:) ~ o, (15)

~(~)~(j) + ~WTVJ+l > 0, ~(~) ~ O, (16)
~(j)c~) _ ~(j)T@) ~ 0, A(j) ~ o, (17)

with the complementarily conditions for j = 1,. ... N:

[ 1~(j)Tq~+l_~o(~)c!) = O, (18)

[ 1 @)~(~)#) + ~(j)~vt+l T . = 0, (19)
L 1

[

~(~) Cf+) _ ,
1

~(j)~j(~) ~(j) = 0, . (20)

where e(j) is the column vector of ones of the appropri-
ate length. It was shown in [21] that solutions to the
multiple contact LCP exist and that Lemke’s algorithm
(modified to avoid cycling) will find a solution if the
following conditions are satisfied. The normal vectors
n(~),j=l,..., N must be linearly independent, and the
only vector in both the span of the n(j) and the columns
of~(j), j=l ,. .-, N is the zero vector.

3.3 Guaranteeing Solution Existence

It has been found by Anitescu and Potra [1] that a sim-
ple modification to the above formulation guarantees so-
lution existence and that Lemke’s algorithm will find one.
The modification is simply to replace the linearized non-
penetration constraint ( the left inequality in equation (7))
with the following tangential velocity constraint:

~Tvl+l > ()-

The primary drawback of using this inequality in place of
the original one is that penetration can accrue as the con-
figuration of the system moves along a concave portion
of the boundary j(q) in configuration space. This can be
handled by simple projection methods, but care must be
taken to avoid losing energy in the process.

3.4 A Nonlinear Version

One problem with the method as it is given, is that for
real problems the admissible regions are not half-spaces,
but are more general sets, usually with smooth boundaries.
Thus the vector n, and ao, and the matrices D, depend
crucially on the geometry of the problem, and vary from
point to point. One particular consequence of this is the
failure of the methods (5-12) and (13-20). This can hap-
pen where. due to the variation in n(q) and CYo(q), while
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~1-1-lmay be admissible for the linearization based at q~,

this does not mean that it would be admissible for the
linearization at q~+l. Because admissibility for q1+2 for
the linearization at q1+1is required, sufficient impulse to

achieve this is applied at the step computing ql+z. This
reaction impulse for such a step can be far in excess of
that for the real system, and has been observed to cause
unphysical loss of contact.

To circumvent this problem, a nonlinear method should
be employed. In particular: the complementarily condi-
tion:

T ~+1–a’o~ o,nq c“ ~ 0, (nTqf+L —(.i~)C,,= o

should be replaced by the following nonlinear complemen-
tarily condition:

f(ql+l) 20, c“ ~ o, f(qr+l)c,, = o,

and n, D, M, and k in equations (5) should be evaluated
at $+1

Fortunately, a fixed point iteration scheme can be used
effectively to solve these nonlinear complementanty

= q + hv ) Then LCP”(l!~l
lems, as follows. At the first stage, an estimate for Q‘1 is

1computed (such as ~~+1 ‘ .
is solved using D = D(~[-l) and n = TZ(ij’71). The

‘1+1 for the next it-resulting estimate for q~+l is used :1sq

eration. Provided the LCP has unique solutions and the
solution operator is locally Lipschitz, then for sufficiently
small h, the method is convergent. In practice the iteration
converges very quickly.

4 Numerical implementation and results

The numerical method has been developed based on an
implementation of Lemke’s algorithm for solving LCP’S.
The version of Lemke’s algorithm used is based on an ex-
plicit tableau, together \vith lexicographic degeneracy res-
olution. Rather than explicitly include all potentially ac-
tive contact constraints. ~t (q) < 0, with i ranging over
all possible pairs of interpenetrating geometric features.
only those that were active at the previous step, plus those
violated at q[ + id, are initially assumed to be active.
Once the solution of the LCP has been found, the con-
straints are checked at the ne\v value q‘+1 for feasibility.
If any other constraints are found to be violated. they are
added to the set of potentially active constraints. All of the
methods have been implemented in C using the Meschach
library[20] to provide the linear algebra and basic data
structures,

4.1 Example 1: I?alling Rod

Consider a rod spinning in planar motion \vhile falling
onto a horizontal tabletop. The rod in F@tre 2 is modeled

as a two-dimensional object with straight parallel sides and
semi-circular ends. The generalized co-ordinate vector for
the rod is q = [z, y, f3]T,where (z, y) are the co-ordinates
of the center of mass (y vertical), and Ois the angle of the
rod relative to the tabletop. The other physical properties
of the rod are as follows: length (excluding the ends) 1 =
0.5m; mass m = lkg; half-width of rod (which is also the
radius of the ends) T = 0.05im; moment of inertia J =
0.002kg-m2; coefficient of friction between the rod and
the table is p = 0.6.

Using the above data. the mass matrix M(q) is
diag(m, m, J). The two constraint functions (one for each
end) are j+(q) = y + (1/2) sin 8 ~ T. The corresponding
normal vectors are n+(q) = [0, 1, +(1/2) cos 8]=, and
the four friction vectors me ~i = (xL o, +(1/2) sin 6]T.

The initial angle of the rod is 30° to the horizontal, with
zero initial translational veloci~, but wi~ an initial rota-
tional velocity of 4 rad s– 1. Gravitation is the only exter-
nal force applied to the rod. Wh.h these initial conditions
and physical properties. the state of the system after the
first impact is such that acceleration-based time-stepping
methods would fail due to solution nonexistence. How-
ever, our method has no difficulty with this situation (see
Figure ~).

The simulated motion of the rod agrees with physical
intuition (assuming zero coet%cient of restitution). The
rod begins by spinning and falling, and then collides with
the table at time t x 0.383. After the impact, the tip of
the rod slides right, stops. and begins sliding left before
Rdap-down.” After full contact at time t x 0.54S, the
rod then remains horizontal and slides left for a short time
(0.02 seconds). The rod is then at rest for the remainder
of the integration. Note that fairly fine step sizes need to
be used to properly resolve all the details of the behavior.
Step sizes near l/25th of a second are not sufficient.

To demonstrate convergence of the algorithm, graphs of
the numerical results for different values of step size h are
shown in Figures 3,4 and 5. Note the absence of numerical
chattering in the solutions. However. there is a spike in the
angulm velocity for the first contact. This is because of

the position-based time-stepping used: after the first step
in which contact is made, ~(q) = O:on the following step,
the velocity is made tangential to the contact surface. with
‘LWf(q) = o. ““””

4.2 Example 2: Colliding Spheres

Next consider a set of three slightly separated balls in a
line on the table, and another ball in the air thrown towards
three balls. The ball in the air first hits the table at t = 0.42
seconds, and begins to roll. It then collides obliquely with
the first ball in the line at t = 0.59 seconds (see Figures 7
and 8).



,

,-,
1, A8-

7- —h=O.W25

6 - 1’ ------ h= O.0@5

1’5- n1 .............-h= O.01

. 1 t
, )

34 -
1 i , I
t: I ‘, -------- h= O.02

~ 1
1!

, ,.
, I

3 - : ,: ------ h= O.04
1 ,1

2 -
i
:

1
I
I

1 - I
1

0-

-1 ~
I

o 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
@me

Figure ~: Angulm velocity of rod for various h values

Figure2: Falling and spinning rod, h = 0.0025 (simulated
time in seconds appears at one end of the rod).

Hm?mtd VdCQtY Pdle% fdk!lf SWUIIW d

02, I
Vcflkal veloav prof6e%fdfingspmnmgrod

“~

1;

,
I

‘1
‘t

‘i
\

J“ — h = 0.0Q25
i.

,!i.
‘\ i. I

, \# ------ h= O.C05
\
,/.. .,,

, ..,. . . h= O.01

--------- h= O.02

------ h= O.04

-J
o 0.1 02 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1

0

q

I
1

-02 t
9

-0.4
)

-0.6

~
# -0.8

.:

>

-1 -“

-12 ,;

-1.4 L&

1 ,’
-1.6 !---J

\

— h = 0.0025

------ h= O.W5

. h =0.01

------ h= O.02

--------- h= O.04

4.81
I

o 0.1 02 0.3 0.4 05 0.6 0.7 0.8 0.9 1
me

ttme

Figure 5: Horizontal velocity if rod for various h values

Figure 3: Vertical velocity of rod for various h values

.,



. , 4

how
,wmmury hulls

/)11/1 1.s1 M(I 3rd

I I I

Figure 6: Impulses at collision of balls

The specific data for this problem is as follows: all balls
are lkg in mass, have a radius of O.lm, with moments of
inertia 4 x 10-3 = (2/5)mr2; the coefficients of friction
for all contacts is 0.4. The initial positions of the balls
(given as z, v, z triples, withs ‘beingthe upward nsrmal of
the tabletop) m-e[0, O,1.0]. [1.O,0.1], [1.2+ 10-”,0, 0.1]
and [1.4 + 2 x 10–5, O,O.l~,and the initial velocities are
[1.5, 0.1, O]for the first ball and zero for the others. Note
the gaps of 10-5 between the stationary balls.

Eight friction direction vectors are used to approximate
isotropic Coulomb friction at each contact. All vectors di
have unit length and are equally spaced around a circle
tangential to the contact normal.

The gaps between the balls was chosen to ensure that
multiple collisions bccurred in the time-step of the initial
collision, and to show thtit the cascade of frictional im-
pu,lses transmitted through the line of balls matches ones
intuition (see F@tre 6). A frictional impulse applied at the
first impact point lifts the thrown ball a small distance (not
shown), due to the frictional impulse applied to it by the
first stationary ball (indicated by a vertical arrow on the
right side of the thrown ball). The corresponding down-
ward impulse on the first stationary ball induces a vertical
reaction impulse by the tabletop to prevent interpenetra-
tion. The frictional impulse from the thrown ball gener-
ates back-spin in the first stationary ball, and thus the ta-
ble applies a frictional impulse resisting that rotation. Still
during the same time step. contact is made with the sec-
ond stationary ball, which applies an additional frictional
impulse against the rotation of the first stationary ball. C(C.
Physically reasonable impulses propogate through to the
end of the line of ball, all in the same time step. Note that
the horizontal momentum of the thrown ball ultimately
causes all the balls to move roughly to the right. but in
different directions due to the oblique collision. The tra-
jectories of the balls are shown in plan and elevation views
in Figures 7 and 8, respectively.

Table 1 gives error estimates and variation estimates
for the numerically genera[ed solutions for step sizes IL =

0,0025 to h = 0.02 using the solution for h = 0.00125
as “exact”. It also shows the variations of the numerically
computed velocities, V(V”). for different values of h. The

o
—_——

Figure 7: E1evation view of balls

figure 8: Plan view of balls

error measures used are &l l@(t) – v(t) IIdt for the ve-
locities, and the supremum norm for the position errors.
The co-norm is the norm used on W’ (here n = ‘24).The
size of the LCP’S solved for this problem were sometimes
as large as 70 x 70 for 7 contacts. This is because there
are eight direction vectors for each frictional forces, one
variable for each normal force. and a A variable for each
contact. It should be noted that the largest errors in the
velocities were in the angular velocity components rather
then the translation velocities: the angular velocity errors
were about an order of magnitude larger. Table 1 shows
that the errors are roughly of order h for small values of h.

5 Summary

The impulse-based simulation method presented here
for systems of rigid bodies with friction has several unique
features. Unlike force-based formulations, the method al-

Step size h Vel. error Pos. error Vel. variation
tj.()~ 0.5050 ().~505 19.4046
0.01 0.3523 0.2015 19.1728
0.005 0.1657 0.0838 19.1702
0.0025 0.0700 0.0298 19.0862
0.00125 !–l –-1 19.0690 1

Table 1: Errors and variations for numerical solutions of
four balls problems
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ways has a solution computable by Lemke’s algorithm.
Further, it is unnecessary to resolve the specific times of
impact. Rather, one only needs to maintain a set of active
constraints - those in danger of being violated by penetra-
tion,

As given in this paper, the coefficient of restitution is
effectively zero. However. if one cares to explicit Iy deter-

mine collision times, one could use the velocities at those
times and a Newton-type restitution hypothesis [o resolve
the collision. If one prefers Poisson’s hypothesis, one can
solve an additional complementarily problem for each col-
lision formulated in [1], to obtain the post-collision system
state,

●
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