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ABSTRACT

The exponential operator splitting approach can be used to transform the two sub-

steps based complex-envelope (CE) alternating-direction-implicit (ADI) FDTD algorithm

into a four sub-steps based CE four-stages (4S) ADI-FDTD. In two dimensions the CE-4S-

ADI-FDTD is more accurate than the CE-ADI-FDTD, but requires double the computation

time due to the fixed time consumption in each sub-step.

Here, the existing 2D CE-4S-ADI-FDTD scheme is extended to three spatial di-

mensions. By incorporating the fundamental scheme into the 3D CE-4S-ADI-FDTD, the

proposed 3D-4S-FADI-FDTD method is the result. In the fundamental scheme six auxiliary

variables are defined, by which the number of terms and operations in the implicit equations

is reduced. The computation time in each sub-step is reduced, and consequently the total

computational time. The near perfectly matched layers (NPML) and the total field/scattered

field schemes are incorporated into the 3D CE-4S-FADI-FDTD for modeling the problem

with a boundless domain, and with a plane wave source respectively.

Three corresponding reference methods are developed. The CE explicit FDTDmethod

is used to solve the problem with a point source and perfect electric conductor (PEC) bound-

aries. The problem with a point source and absorbing boundary conditions (ABC) is solved

by the 3D free-space Green’s function in the frequency domain, and then transformed to the

time domain using the inverse fast Fourier transform (IFFT). For the problem with a plane

wave and ABC, the frequency-domain solution is obtained using the volume integral equa-

tions and method of moments (VIE-MOM), and is then transformed into the time-domain

solution using the IFFT. Comparison of the numerical results demonstrates the accuracy

and computational effectiveness of the 3D CE-4S-FADI-FDTD algorithm.
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8.2 Comparison of |Ẽz| according to the CE based FDTD and |Ez| based on the

classical FDTD at the observation point. . . . . . . . . . . . . . . . . . . . . 88
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CHAPTER 1

INTRODUCTION

The finite-difference time-domain (FDTD) method of Yee (1966) has been used widely

in computational electromagnetics because it is simple to implement and capable of treating

complex models over a wide range of frequency. The method is based on Maxwell’s time-

domain equations integrated with appropriate boundary conditions, well defined material

media and specified source excitations. By discretizing the electric and magnetic fields in

space and time, Maxwell’s differential equations become difference equations, which can

be solved by applying the leap-frog technique. The computation period is divided into a

number of time steps; at each time step, the field components at the next time instant can

be obtained from the field components at the current time instant. Accuracy and stability

of this conventional explicit method of this sort depends on the time step being sufficiently

short.

According to the Courant-Friedrichs-Lewy (CFL) condition, the maximum size of the

time step depends on the spatial step. In the time-marching procedure the time step must

be small enough for the amplification factor not to exceed one, so that the magnitude of the

field components do not grow exponentially. This is a necessary condition for stability of the

algorithm.

The choice of a small time step to achieve stability implies high computational time

and cost, because more steps are needed to simulate a given time interval. A number of

implicit FDTD algorithms have been developed to mitigate the problem. With a time step

of arbitrary size these implicit methods condense the amplification factor and force it to be

equal to or less than one. As a result, the necessary condition for stability is satisfied for any
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size of time step. In the implicit methods, matrix solutions are needed at each time step, and

these cost more time than the updating involved in the explicit method with the same size of

time step. A small number of time steps is therefore required for the implicit methods to be

more computationally effective. In other words, the time step needs to be several times larger

than the Courant condition. Unfortunately, a large time step leads to large errors, especially

in problems with a bandpass-limited (BPL) source, because of inadequate sampling. With

a larger time step, the implicit methods run faster but less accurately. Consequently the

implicit method has greater computational effectiveness than the explicit methods but at

the cost of accuracy.

The complex-envelope (CE) FDTD algorithm was proposed by Pursel and Goggans

(1999) and, for a BPL problem, greatly increased the maximum possible size of the time step

∆t. According to the sampling theorem, the sampling frequency fs must be at least 2fmax,

where fmax is the maximum frequency of the signal and is a function of the center-frequency

f0 and the bandwidth B. In the time domain, the time step ∆t is dependent on fmax, so

that ∆t is reduced as fmax increases. For the problem with a narrowband source, the time

step must therefore be small for accuracy. Upon applying the CE, however, f0 is shifted

to zero, which results in a significant decrease in fmax. Specifically, fmax is proportional to

B, which is small for a narrow-band signal. As a result the allowable size of ∆t is greatly

increased without much loss of accuracy. Incorporation of the implicit method into the

CE algorithm gives the so-called CE implicit method, in which a large time step can be

used. Not all implicit methods are compatible with the CE, however. The CE alternating-

direction-implicit FDTD (CE-ADI-FDTD) Ma and Chen (2005) is a popular CE implicit

method.

Absorbing boundary conditions (ABC) are also required for any FDTD method.

Specifically, absorbing walls are considered in order to truncate the computational domain,

such that outwardly traveling waves are absorbed after impinging on the boundaries. Con-

sequently the computational domain is considered boundless. There are two categories of
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ABC: analytical ABC and the perfectly matched layers (PML). With analytical ABC, the

boundary points are manipulated based on the wave equation. The field at the boundary

points at previous time instants are needed to cancel out the incident wave at the current

time instant, by which means the boundaries are considered reflectionless. With PML, in

contrast, several layers of absorbing materials are defined at the boundaries in which fic-

titious conductivities are introduced. As incident waves travel into the PML region, the

magnitude of the waves decays such that waves reflected into the computational domain are

almost zero in amplitude.

The research presented in this dissertation aims to formulate a new three-dimensional

(3-D) CE implicit method with appropriate absorbing boundary conditions. In this devel-

oped method, the four-stages (4S) technique Ramadan (2009) is used to decompose the

computational procedure of the 3D CE-ADI-FDTD in Ma and Chen (2005) into four sub-

steps at each time step. Although the computational time needed at each time step is

increased, the computational accuracy is significantly increased. By choosing a large time

step, the total computation time is greatly reduced at the expense of some accuracy; but the

accuracy still remains high because of the improvement from the 4S technique. After incor-

porating the fundamental scheme of Tan (2008) into the 3D CE-ADI-FDTD, the number of

multiplications/divisions (M/D) and additions/subtractions (A/S) in the implicit equations

is greatly reduced, and the computation time required for each time step decreases accord-

ingly. The result is that, with a large time step, the proposed 3D CE four-stage ADI-FDTD

using the fundamental scheme CE-4S-FADI-FDTD outperforms the 3D CE-ADI-FDTD in

accuracy and computational cost. In addition, the 3D CE-4S-FADI-FDTD is incorporated

into the nearly perfectly matched layers formalism of Cummer (2003). The numerical results

demonstrate that no observable reflected waves exist in the computational domain with a

Courant number beyond the stability restriction.

The dissertation is organized as follows. In Chapter 2 the classical FDTD algorithm

is discussed using a 3D cavity example with a point source. Three popular unconditionally

3



stable implicit methods are reviewed. The ADI-FDTD solution and the FDTD solution

are compared. In Chapter 3, the CE versions of the three implicit methods are presented,

two of which are my own unsuccessful attempts. The 3D CE-ADI-FDTD formulation is

then presented. Chapter 4 considers two types of analytical ABC and three types of PML.

Chapter 5 sets out the total field/scattered field (TF/SF) scheme for modeling the plane-

wave excitation source using the FDTD algorithm. In Chapter 6, the proposed CE-4S-FADI-

FDTD method is formulated based on different types of boundary condition and excitation

sources. Chapter 7 introduces three reference methods which correspond to the examples in

chapter 6. Chapter 8 compares the numerical results based on the proposed methods and

reference methods. Conclusions are set out and proposed further development is summarized

in Chapter 9.
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CHAPTER 2

FDTD

Maxwell’s equations are a set of partial differential equations that describe the prop-

agation of electromagnetic waves. The time-domain Maxwell’s equations with electric and

magnetic current sources are:

∇× ~H = ǫ
∂ ~E

∂t
+ ~J, (2.1)

∇× ~E = −µ
∂ ~H

∂t
− ~M, (2.2)

where ~E is the electric field intensity vector in volts per meter, ~H is the magnetic field inten-

sity vector in amperes per meter, ǫ is the permittivity of the medium, µ is the permeability

of the medium, ~J is the electric current intensity in amperes per square meter, and ~M is the

magnetic current in volts per square meter. The two equations can be decomposed into six

component equations in Cartesian coordinates, as follows:

∂

∂t
Hx = − 1

µ

∂

∂y
Ez +

1

µ

∂

∂z
Ey −

1

µ
Mx (2.3)

∂

∂t
Hy =

1

µ

∂

∂x
Ez −

1

µ

∂

∂z
Ex −

1

µ
My (2.4)

∂

∂t
Hz = − 1

µ

∂

∂x
Ey +

1

µ

∂

∂y
Ex −

1

µ
Mz (2.5)

∂

∂t
Ex =

1

ǫ

∂

∂y
Hz −

1

ǫ

∂

∂z
Hy −

1

ǫ
Jx (2.6)
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∂

∂t
Ey = −1

ǫ

∂

∂x
Hz +

1

ǫ

∂

∂z
Hx −

1

ǫ
Jy (2.7)

∂

∂t
Ez =

1

ǫ

∂

∂x
Hy −

1

ǫ

∂

∂y
Hx −

1

ǫ
Jz (2.8)

x

z
HxEx

Cell (i, j, k) 

Ex|i, j, k 

Ey|i, j, k 

Ez|i, j, k 

Hx|i, j, k 

Hy|i, j, k 

Hz|i, j, k

Ey

Ez

Hy

Hz

y

Cell Index

i, j, k

i+1, j, k

i, j, k+1 i, j+1, k+1

i, j+1, k

i+1, j+1, k

i+1, j, k+1

Figure 2.1. Yee Grid

2.1 Explicit FDTD

In the classical FDTD algorithm due to Yee (1966), the 3D space is modeled by

discrete cells, and the fields in each cell are labeled by spatial indices. The magnetic fields

and electric fields are discretized in the time domain by labeling at different time instants.

By employing the second-order central difference approximation, the time-domain Maxwell’s
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equations are discretized as

Hx|
n+ 1

2
i,j,k −Hx|

n− 1
2

i,j,k

∆t
= − 1

µ∆y
(Ez|ni,j+1,k−Ez|ni,j,k)+

1

µ∆z
(Ey|ni,j,k+1−Ey|ni,j,k)−

1

µ
Mx|ni,j,k, (2.9)

Hy|
n+ 1

2
i,j,k −Hy|

n− 1
2

i,j,k

∆t
=

1

µ∆x
(Ez|ni+1,j,k−Ez|ni,j,k)−

1

µ∆z
(Ex|ni,j,k+1−Ex|ni,j,k)−

1

µ
My|ni,j,k, (2.10)

Hz|
n+ 1

2
i,j,k −Hz|

n− 1
2

i,j,k

∆t
= − 1

µ∆x
(Ey|ni+1,j,k−Ey|ni,j,k)+

1

µ∆y
(Ex|ni,j+1,k−Ex|ni,j,k)−

1

µ
Mz|ni,j,k, (2.11)

Ex|n+1
i,j,k − Ex|ni,j,k

∆t
=

1

ǫ∆y
(Hz|

n+ 1
2

i,j,k −Hz|
n+ 1

2
i,j−1,k)−

1

ǫ∆z
(Hy|

n+ 1
2

i,j,k −Hy|
n+ 1

2
i,j,k−1)−

1

ǫ
Jx|

n+ 1
2

i,j,k , (2.12)

Ey|n+1
i,j,k − Ey|ni,j,k

∆t
= − 1

ǫ∆x
(Hz|

n+ 1
2

i,j,k −Hz|
n+ 1

2
i−1,j,k)+

1

ǫ∆z
(Hx|

n+ 1
2

i,j,k −Hx|
n+ 1

2
i,j,k−1)−

1

ǫ
Jy|

n+ 1
2

i,j,k , (2.13)

Ez|n+1
i,j,k − Ez|ni,j,k

∆t
=

1

ǫ∆x
(Hy|

n+ 1
2

i,j,k −Hy|
n+ 1

2
i−1,j,k)−

1

ǫ∆y
(Hx|

n+ 1
2

i,j,k −Hx|
n+ 1

2
i,j−1,k)−

1

ǫ
Jz|

n+ 1
2

i,j,k , (2.14)

where the superscript n represents the time instant and the subscripts (i, j, k) represent the

spatial position. In these equations, the unknown field in each cell at the next time instant

can be represented by the known fields at the current and previous time instant. All fields

can therefore be updated explicitly. For example, in (2.9), the fields are centered at time
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instant n, and Hx|
n+ 1

2
i,j,k at the future time instant (n + 1

2
) is the only unknown, and can

therefore be calculated explicitly. Similarly, (2.11) is solved explicitly. Next, Ey|n+1
i,j,k can be

determined by substituting Hx|
n+ 1

2
i,j,k and Hz|

n+ 1
2

i,j,k into (2.13). At each time step, all other fields

can be calculated by the same procedure: the magnetic fields are calculated first, by which

the electric fields are updated thereafter. A 3D cavity example is given in Figure 2.2. The

cavity size is 45 × 45 × 45 cells, and the z-directed point source Jz is located at (23,23,23),

which is the center of the cube. The observation point (13, 23, 23) is 10 cells distant from

the source on the negative x axis. The source plane is at z = 23.

x

y

z

The z-directed point source

The observation point

The source plane

Figure 2.2. 3D cavity example truncated with PEC walls.

The source function is
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Jz(t) = exp

[

−
(

t− t0
σ

)2
]

×
(

t− t0
σ

)

, (2.15)

where the time step ∆t = 4.8113× 10−10 second, the spatial step ∆x = ∆y = ∆z = 0.2498

meter, t0 = 2.7009 × 10−7 second and σ = 3.1831 × 10−8 second. The distribution of Ez

with CFLN= 1 on the source plane at four different time instants is shown in Figure 2.3.

In (a), the source is just starting to excite, and the fields in cells far from the source are

therefore almost zero. In (b), the field in the source cell is dominant due to the exponential

term in the source function. In (c), the field in the source cell decays, since the simulation

time exceeds the delay of the Gaussian peak. The fields in other cells become visible. In

(d), the simulation time is double the Gaussian delay, so that the impact of the source is

negligible and the distribution of Ez on the source plane can be observed.

In FDTD, the distribution of fields in the entire domain is computed at each time

instant, and the overall computation time is therefore reduced as the number of time steps

decreases. The upper limit of the time step size is also bounded for stability according to

the CFL condition. This stability requirement is

CFLN = c0∆t

√

1

∆x2
+

1

∆y2
+

1

∆z2
≤ 1, (2.16)

where c0 is the speed of light. If CFLN > 1, the amplification factor of the algorithm exceeds

1 in magnitude, causing exponential growth of the solution. The algorithm then becomes

unstable immediately after activating the source. In Figure 2.4, Ez at the observation point is

shown based on different values of CFLN. For CFLN= 1, the result is stable, but for CFLN=

3 we see that Ez grows exponentially and the FDTD algorithm fails due to instability.

Therefore, after setting up the spatial grid, the size of the time step must be bounded for

stability; there is a least number of time steps for the FDTD solution. The computation

time needed at each time step is also fixed, and there is therefore a minimum value of the

overall computation time for the classical FDTD solution.
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(a) t = 0.2t0 (b) t = 1.0t0

(c) t = 1.2t0 (d) t = 2.0t0

Figure 2.3. The distribution of Ez on the source plane for the 3D cavity example.
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Figure 2.4. The electric field Ez at the observation point based on the FDTD solution.
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2.2 Implicit FDTD

In the classical FDTD algorithm the electric fields and magnetic fields are known at

differing adjacent time instants, and all the unknown fields in each cell can be represented

by the known fields in adjacent cells. Then, at each time step, using the leap-frog technique,

the magnetic fields in each cell are calculated first and are then used to update the electric

fields. Hence all the fields are calculated explicitly at each time step, and the solution can

be obtained after the requisite number of time steps. Of course the size of the time step is

restricted after setting the spatial step according to the CFL condition to ensure stability;

the FDTD solution requires a minimum number of time steps. If the CFLN exceeds one,

the amplification factor of the FDTD algorithm also exceeds one, leading to an unstable

solution.

In recent decades a number of implicit FDTD methods have been developed to elim-

inate the CFL condition. At each time step of the implicit algorithm, the electric and

magnetic fields are known at the same time instant. By substitution, one of these fields can

be obtained by matrix solution, and the other can be updated algebraically and explicitly.

In most of the implicit FDTD methods, the amplification factors are forced to be equal to

or less than one. Consequently, these implicit methods are stable for any CFLN. In the

following sections, five popular implicit FDTD methods are discussed.

2.3 FDTD using Crank-Nicolson scheme

2.3.1 2D CNDG

In Sun and Trueman (2003), a 2D Crank-Nicolson FDTD algorithm was developed.

During the discretization procedure the electric fields and magnetic fields are first specified

at the same time instant, and the fields at the intermediate time instant are thereafter

approximated by the average of the fields at the next future time instant and the immediately

preceding time instant.

In the TEz case, the electric fields Ex and Ey are expressed in terms of Hz. After
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discretization by substituting Ex and Ey back into Hz, a new equation for Hz is obtained in

which the terms of Hz at the next future time instant can be grouped. Through the Douglas-

Gunn (DG) algorithm the coefficients of Hz form two tridiagonal matrices, and Hz at the

future time instant can then be obtained by matrix solution. A similar procedure yields

the result in the two dimensional TMz case. The Crank-Nicolson-Douglas-Gunn (CNDG)

algorithm is among the most accurate for the two-dimensional case, but there is no clear

way to extend it to the three-dimensional case.

2.3.2 3D CNDS and CNCSU

Application of the 3D Crank-Nicolson scheme yields six equations for the electric

fields and magnetic fields. For example, Ex is represented by Hx and Hy; Ey is represented

by Hx and Hz; Hz is represented by Ex and Ey. Substitution of Ex and Ey into Hz yields

an equation which includes three unknowns: Hx, Hy and Hz. The coefficients of all the

unknowns therefore form a dense matrix, causing the Douglas-Gunn algorithm to fail. Matrix

solution becomes impractical in this case, because it is extremely time-consuming.

In Sun and Trueman (2006), two 3D Crank-Nicolson-type algorithms have been pro-

posed. The Crank-Nicolson direct-splitting (CNDS) method deals with the difference oper-

ators in matrix form. The matrix is divided into two matrices, each consisting of half of the

original operators. After application of the Crank-Nicolson scheme and some manipulation,

each electric field can be obtained by a two-step procedure at each time instant. At the first

step, an intermediate field is calculated from the fields at the past time instant, and this

can be used to determine the field at the future time instant at the second step. In both

steps the coefficient matrices are products of two tridiagonal matrices, rather than dense

matrices, and matrix solution is once again realistic. After that, the magnetic fields are

computed explicitly. The amplification factor is unity, and the CNDS algorithm is there-

fore unconditionally stable, although the numerical dispersion tends to be larger than in

the conventional Crank-Nicolson scheme. To reduce the anisotropy, another algorithm was
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proposed, as follows.

The Crank-Nicolson-cycle sweep-uniform (CNCSU) method was developed by Sun

and Trueman (2006). The algorithm is similar to the CNDS method, but the matrix of

difference operators is split in a different way. Specifically, the electric fields are updated

implicitly and the magnetic fields are then calculated explicitly. By choosing the Courant

number appropriately, the CNCSU method turns out to be as accurate in terms of isotropy

as the conventional Crank-Nicolson scheme. It is not necessarily stable, however. When the

CFLN exceeds a certain value, the method tends to be unstable. The allowable maximum

CFLN for accuracy is smaller than that for stability, so that, as the CFLN increases, the

result becomes inaccurate before it becomes unstable. Therefore the CNCSU method is

considered unconditionally stable.

2.4 Split-Step FDTD

In Lee and Fornberg (2003) a split-step technique has been proposed to solve the

three-dimensional Maxwell’s equations. The matrix of difference operators is split into two

sub-matrices, a positive operator matrix A and a negative operator matrix B. The split-

step technique involves two distinct calculations, written as ∂u/∂t = Au and ∂u/∂t = Bu,

where u = [Ex, Ey, Ez, Hx, Hy, Hz]
T . The entire procedure can be divided into several steps;

at each step, one of these two calculations is implemented. In the first, involving A, each

electric field is coupled with a magnetic field to set up a pair of equations, so that three

pairs of equations are involved in total. For each pair, application of the Crank-Nicolson

algorithm and substitution of the equation for the magnetic field into the other equation

yields an equation in which the coefficients of the electric field at the future time instant are

governed by a tridiagonal matrix. The electric field can be obtained by matrix solution, and

the magnetic field is then computed explicitly.

Based on the requirements of accuracy and simulation time, the number of steps is

chosen within a certain range. A larger number of steps leads to more accurate results but
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suffers from longer simulation times. As a balance between the two requirements, most of

the following research focuses on the four-step and six-step methods. In Kong and Chu

(2010a), both methods are discussed. The four-step and six-step methods both outper-

form the conventional alternating-direction-implicit FDTD, with shorter simulation time

and greater accuracy.

2.5 Alternating-Direction-Implicit FDTD

The Alternating-Direction-Implicit FDTD algorithm is one of the most popular im-

plicit FDTD methods, and was first proposed by Takefumi Namiki. In Namiki (1999), the

2D ADI-FDTD formulation was derived. At each time step the calculation consists of two

sub-steps. An intermediate field is defined for each electric and magnetic field component. In

the 2D TEZ example, the intermediate magnetic field is solved implicitly using the interme-

diate electric fields. The coefficient matrix of the unknowns is tridiagonal, and the implicit

equations can therefore be solved without much expenditure of computer time. After that,

the intermediate magnetic fields are updated explicitly. Similarly, in the second sub-step,

the fields at the future time instant can be obtained from the intermediate fields and the

fields at the previous time instant. The amplification factor of the ADI-FDTD is equal to

one, confirming its unconditional stability. The numerical experiment demonstrates that

the ADI-FDTD with large CFLN is much more computationally effective than the explicit

FDTD.

In Namiki (2000) the 3D ADI-FDTD formulation is presented. As in the 2D-ADI,

two sub-steps are required at each time step. In the first sub-step, an intermediate field is

defined for each of the electric and magnetic fields. By substituting the magnetic fields into

the electric field equation, the intermediate electric field can be determined implicitly. The

intermediate magnetic field is then updated. In the second sub-step, the fields at the future

time instant is calculated by substituting in the intermediate fields. The 3D ADI-FDTD

preserves unconditional stability and also outperforms the conventional explicit FDTD in
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terms of computational time. In fact, if the spatial step size is much smaller than the

wavelength, a much larger time step is possible without unacceptable numerical errors.

With U = [Ex Ey Ez Hx Hy Hz]
T and S = [− 1

µ
Mx − 1

µ
My − 1

µ
Mz − 1

ǫ
Jx − 1

ǫ
Jy − 1

ǫ
Jz]

T ,

Maxwell’s equations can be represented as

∂

∂t
U = MU + S. (2.17)

The two matrices representing operators A and B are defined as

A =
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µ

∂
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µ

∂
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0
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µ

∂
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0 0 0 − 1
µ

∂
∂y

0 0

0 0 −1
ǫ

∂
∂y

0 0 0

−1
ǫ

∂
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0 0 0 0 0

0 −1
ǫ

∂
∂x

0 0 0 0

































.

Then the ADI-FDTD algorithm is represented by

(

I − ∆t

2
A

)

U |n+ 1
2 =

(

I +
∆t

2
B

)

U |n, (2.18)

(

I − ∆t

2
B

)

U |n+1 =

(

I +
∆t

2
A

)

U |n+ 1
2 . (2.19)
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Here the ADI-FDTD algorithm is used to solve the 3D cavity problem. The cavity is

discretized with the same spatial steps and the excitation source is specified with the same

parameters. Figure 2.5 shows Ez at the same observation point for different values of CFLN.

With CFLN= 1, the ADI-FDTD clearly yields an accurate result that is in good agreement

with the FDTD solution. With CFLN= 3, the result based on the ADI-FDTD method is

still stable, although at the cost of accuracy.

As the amplification factor of the overall procedure is equal to one with any time

step, the ADI-FDTD is unconditionally stable. According to the sampling theorem, the

time step is related to the maximum frequency of the source. A large time step can lead

to inaccurate results because of undersampling, especially in situations where the source is

a high-frequency one. Figure 2.6 shows Ez calculated at the same observation point for the

same cavity example as in Section 2.1. The source function is a modulated Gaussian, of the

form

Jz(t) = exp

[

−
(

t− t0
σ

)2
]

× cos (2πf0t) , (2.20)

where the center frequency f0 = 100 MHz. For CFLN= 3, large errors are visible due

to undersampling, especially after the reflected wave from the PEC boundaries is involved.

Because of the high carrier frequency, the field changes rapidly and the phase error quickly

accumulates until, after 240 ns, the ADI-FDTD solution becomes inaccurate.
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Figure 2.5. Ez at the observation point calculated by the 3D classical FDTD and ADI-FDTD
methods for different values of CFLN.
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Figure 2.6. Ez at the observation point calculated by the ADI-FDTD and FDTD methods
with a band-pass limited point source
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CHAPTER 3

COMPLEX-ENVELOPE IMPLICIT FDTD

According to the Nyquist-Shannon sampling theorem, the maximum time step is

constrained by the maximum frequency of the signal. Hence for an implicit FDTD algorithm

excited by a bandpass-limited (BPL) source, the time step must still be sufficiently small to

provide accuracy. In this case the benefit of choosing an implicit FDTD algorithm diminishes

as the carrier frequency of the source increases. With a BPL source, as the time step exceeds

a threshold value the implicit algorithm is stable but not accurate.

To overcome this disadvantage in the case of a bandpass-limited source, the complex-

envelope (CE) FDTD technique was proposed in Pursel and Goggans (1999). After applying

the CE, the carrier frequency of the signal is shifted to zero, so that the BPL source is

transformed to a complex lowpass-limited (LPL) signal such that the maximum frequency

is half the bandwidth. With a narrow-band signal, the maximum frequency is reduced more

with the complex envelope. A set of modified Maxwell’s equations is developed paying

due regard to the differential operator with respect to time; the field components are all

multiplied by an exponential function ejω0t due to the CE, which adds a further term in each

equation, stemming from the differential operator. With this additional term, the modified

Maxwell’s equation can be solved in two ways, either by using complex field components or

real field components.

To solve the modified Maxwell’s equations using complex field components it is nec-

essary to discretize all of the complex field components in time directly. This necessitates

representation of the additional term at the intermediate time instant, and this is unknown

and difficult to calculate. The knowns in the equation are all at the preceding time instant,
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whereas all of the unknowns are at the future time instant. The additional term can there-

fore be represented by the average of the corresponding term at the past time instant and

that at the future time instant. Then the unknown terms at the future time are grouped

together while the terms at the past time instant are placed on the right hand side of the

equation.

The alternative is to solve the modified Maxwell’s equation using real field com-

ponents. The complex field components are written explicitly in terms of their real and

imaginary parts. Then the original equations are decomposed into two sets of equations by

taking their real and imaginary parts. The two sets of equations are discretized at different

time instants so that the leap-frog technique can be used. Further details are discussed with

some implicit methods, as follows.

3.1 Complex-Envelope Representation

A real band-pass limited signal with bandwidth B can be represented as

x(t) = A(t) cos [2πf0t+ φ(t)] , (3.1)

where f0 is the center frequency, A(t) is the amplitude and φ(t) is the phase. Equation (3.1)

can be rewritten as

x(t) = ℜ
{

A(t) exp [jφ(t)] exp [j2πf0t]
}

. (3.2)

The complex-envelope representation of x(t) is

x̃(t) = A(t) exp [jφ(t)] = xp(t) + jxq(t), (3.3)

where xp(t) and xq(t) are the in-phase and quadrature portions of x(t). Both of xp(t) and

xq(t) are low-pass limited with bandwidth B/2. Substitution of (3.3) into (3.2) yields

x(t) = ℜ
{

x̃(t) exp [j2πf0t]
}

, (3.4)
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or

x(t) = ℜ
{

[xp(t) + jxq(t)][cos(2πf0t) + j sin(2πf0t)]
}

. (3.5)

In Haykin (1983) and Pursel and Goggans (1999) the bandpass-limited signal x(t) can be

expressed as

x(t) = xp(t) cos(2πf0t)− xq(t) sin(2πf0t). (3.6)

The bandwidth of center frequency of x(t) can be expressed as

B = fmax − fmin (3.7)

and

f0 =
fmax + fmin

2
, (3.8)

where fmax and fmin are the maximum and minimum frequencies in x(t).

To understand the relation between the Fourier transform of x(t) and the Fourier

transform of x̃(t), it is useful to introduce the pre-envelope, x+(t), and the Hilbert transform,

x̂(t), of x(t). They are related by the expression

x+(t) = x(t) + jx̂(t). (3.9)

Consider now the Hilbert Transform pairs

H{a(t) cos(2πf0t)} = a(t) sin(2πf0t) (3.10)

and

H{a(t) sin(2πf0t)} = −a(t) cos(2πf0t), (3.11)
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where H{} is the Hilbert Transform operation. Substitution of (3.6) into (3.9) yields

x+(t) =
{

xp(t) cos(2πf0t)− xq(t) sin(2πf0t)
}

+ jH
{

xp(t) cos(2πf0t)− xq(t) sin(2πf0t)
}

=
{

xp(t) cos(2πfot)− xq(t) sin(2πf0t)
}

+ j
{

xp(t) sin(2πfot) + xq(t) cos(2πf0t)
}

=
{

xp(t) + jxq(t)
}{

cos(2πf0t) + j sin(2πf0t)
}

= x̃(t)ej2πf0t. (3.12)

The standard engineering definition of Fourier Transform is used, such that

X(f) =

∞
∫

−∞

x(t)e−j2πftdt (3.13)

and

x(t) =

∞
∫

−∞

X(f)ej2πftdt. (3.14)

The Fourier transform of the complex envelope signal is then obtained as

X̃(f) = F{x̃(t)}

= F{x+(t)e
−j2πf0t}

= F
{

x(t)e−j2πf0t + jx̂(t)e−j2πf0t
}

= X(f + f0) + jF

{[

x(t)⊗ 1

πt

]

e−j2πf0t

}

= X(f + f0) + j{X(f + f0) · [−jsgn(f + f0)]}

= X(f + f0) + {X(f + f0) · sgn(f + f0)}, (3.15)
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where

sgn(f) =































1, if f > 0;

0, if f = 0;

−1, if f < 0.

(3.16)

From (3.15) and (3.16), the relation between X(f) and X̃(f) can be written as

X̃(f) =















2X(f + f0) if f + f0 > 0

0 if f + f0 ≤ 0.

(3.17)

Thus, in the frequency domain, X̃(f) is the positive part of X(f) with double magnitude

after shifting down to the baseband with a center frequency of zero. This process is illus-

trated in Figure 3.1 and Figure 3.2.
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Figure 3.1. The frequency spectrum of a real bandpass-limited signal X(f).
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Figure 3.2. The frequency spectrum of the complex envelope of the real bandpass-limited
signal X̃(f).

3.2 Complex-Envelope Crank-Nicolson FDTD

The coefficients of the unknowns in the CN-FDTD formulation follows the pattern

1 + DA + DB, where DA and DB respectively denote the second derivatives with respect
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to space along orthogonal directions. The implicit computation is difficult to performed,

because the coefficient matrix is a dense matrix rather than tridiagonal. In high dimensional

FDTD, therefore, a CN scheme is always used with the Douglas-Gunn (DG) algorithm, in

Sun and Trueman (2003). Specifically, the DG algorithm has the differential operator term

DADB on the left hand side of the equation such that the coefficient of the unknown field

component at the future time instant is changed to 1 +DA +DB +DADB, which is equal

to (1 +DA)(1 +DB). An identical DADB term acting on the same field component at the

past time instant must correspondingly be added to the right hand side of the equation.

In computation, 1 + DA and 1 + DB are represented by tridiagonal matrices, so that the

unknown field component can readily be obtained by matrix solution.

After applying CE and discretizing the complex field component, however, the co-

efficients of the unknown fields no longer follow the pattern 1 + DA + DB, and the DG

algorithm cannot therefore be readily applied. It follows that CE CN FDTD computation

must be performed using real field components.

3.2.1 2D CE-CN-FDTD

A two-dimensional complex-envelope FDTD formulation using alternating in-phase

and quadrature field variables was proposed by Goggans and Liu (2015). The complex

field components are decomposed into an in-phase part (the real part) and a quadrature

part (the imaginary part). Collection of the real terms yields one set of equations, and

correspondingly with the imaginary terms. At each time step during computation, in the

first set of equations the unknowns are at the future time instant, whereas the unknowns

in the second set of equations are at the 1/2 time instant before. The unknowns in the

second set of equations are therefore calculated first, and can then be used to obtain the

unknowns in the first set of equations. At the next time step, the unknowns in the first set of

equations from the previous time step can be used to calculate the unknowns in the second

set of equations. The in-phase part and quadrature part of the complex field components
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can thereby be obtained at each successive time increment as time marches forward. The

algorithm maintains high computational effectiveness and accuracy.

3.2.2 3D CE-CN-FDTD

The alternating in-phase and quadrature method has been used in 3D CNDS and

CNCSU according to Sun and Trueman (2006). The additional term from the CE in each

equation is known and serves as part of the source, and the rest of the equation preserves

the same equation structure as in conventional CNDS and CNCSU. At each time step, the

quadrature parts of the fields are calculated first, and then substituted into the other set of

equations. The in-phase part of the fields are then calculated. The final numerical results

show instability with a Courant number larger than one. If the Courant number is less than

or equal to one, the result is stable but not particularly accurate, suggesting incompatibility

between CNDS/CNCSU and CE.

3.3 Complex-Envelope Four-Stage Split-Step FDTD

An unconditionally-stable three-dimensional four-stage split-step FDTD method was

presented in Kong and Chu (2009). Numerical results show that the simulation time is

reduced by 30% relative to the conventional ADI-FDTD method, while the accuracy is

maintained at the same level. This is therefore a candidate for application of the CE algo-

rithm.

The complex-envelope four-stage split-step (CE-4S-SS) FDTD is expressed via six

modified Maxwell’s equations, which can be solved in matrix form ∂U/∂t + jω0U = MU ,

where U = [ExEyEzHxHyHz]
T and M is the matrix of differential operators. M is divided

into two sub-matrices A and B such that M = A + B, where A consists of all positive

differential operators and B contains all negative differential operators. At each time step

the calculation is decomposed into four procedures, which are performed in the following

order. In the first procedure, the intermediate field components at time instant n+ 1/4 are

calculated according to ∂U/∂t+jω0U = AU . In the second procedure, the intermediate field
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components at time instant n+2/4 are calculated according to ∂U/∂t+ jω0U = BU . In the

third procedure, the intermediate field components at time instant n + 3/4 are calculated

according to ∂U/∂t + jω0U = AU , and in the final procedure the field components at time

instant n+1 are calculated according to ∂U/∂t+ jω0U = BU . The equations can be solved

by using real field components or by using imaginary field components as introduced above.

Numerical results reveal that the solution using real field components is unstable.

With CFLN≤ 1 the result is stable; but, as the CFLN increases and exceeds one, the results

become unstable and exhibit exponential growth of numerical instabilities.

The solution using complex field components, in contrast, yields stable results with

arbitrary Courant number, although as CFLN increases, the accuracy of the results degrades

rapidly, so that little simulation time is saved.

In summary, no matter how the modified equations are solved, the solution in 3D

involving the CE-4S-SS FDTD turns out to be either inaccurate or unstable, and the method

is therefore of limited practical use.

3.4 Complex-Envelope Alternating-Direction-Implicit FDTD

The complex-envelope Alternating-Direction-Implicit FDTD (CE-ADI-FDTD) scheme

was developed by Ma and Chen (2005). By adapting the CE to the conventional ADI FDTD

a set of modified Maxwell’s equations arises, which can be solve using complex field compo-

nents. These CE Maxwell’s equations are written as

∇× H̃ = ǫ
∂Ẽ

∂t
+ jω0ǫẼ+ J̃, (3.18)

∇× Ẽ = −µ
∂H̃

∂t
− jω0µH̃− M̃. (3.19)

The calculation is divided into two steps. In the first step the fields at the intermediate

time instant Un+1/2are calculated by:
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In the second step the fields at the future time instant are calculated by:
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Ẽz|n+

1
2 +

∆t

2ǫ

∂

∂x
H̃y|n+

1
2 − ∆t

2ǫ
J̃z|n+

3
4 , (3.28)

4 + jω0∆t

4
H̃x|n+1 +

∆t

2µ

∂

∂y
Ẽz|n+1 =

4− jω0∆t

4
H̃x|n+

1
2 +

∆t

2µ

∂

∂z
Ẽy|n+

1
2 − ∆t

2µ
M̃x|n+

3
4 , (3.29)

4 + jω0∆t

4
H̃y|n+1 +

∆t

2µ

∂

∂z
Ẽx|n+1 =

4− jω0∆t

4
H̃y|n+

1
2 +

∆t

2µ

∂

∂x
Ẽz|n+

1
2 − ∆t

2µ
M̃y|n+

3
4 , (3.30)

4 + jω0∆t

4
H̃z|n+1 +

∆t

2µ

∂

∂x
Ẽy|n+1 =

4− jω0∆t

4
H̃z|n+

1
2 +

∆t

2µ

∂

∂y
Ẽx|n+

1
2 − ∆t

2µ
M̃z|n+

3
4 . (3.31)

In each step the equations are decomposed into three pairs of equations. Both of

equations in each pair contain the same two unknowns, namely the electric field in one

direction and the magnetic field components in another direction. Hence, in each pair, there

are two unknowns and two equations. In the first step, for instance, the discretized equations

for Ex and Hz with Jx = Mz = 0 are:

4 + jω0∆t

4
Ẽx|

n+ 1
2

i,j,k − ∆t

2ǫ

∂

∂y
H̃z|

n+ 1
2

i,j,k =
4− jω0∆t

4
Ẽx|ni,j,k −

∆t

2ǫ

∂

∂z
H̃y|ni,j,k, (3.32)

30



4 + jω0∆t

4
H̃z|

n+ 1
2

i,j,k − ∆t

2µ

∂

∂y
Ẽx|

n+ 1
2

i,j,k =
4− jω0∆t

4
H̃z|ni,j,k −

∆t

2µ

∂

∂z
Ẽy|ni,j,k. (3.33)

The spatial derivatives are approximated by the second-order accurate central dif-

ference formula in Elsherbeni and Demir (2009). As a result, (3.32) and (3.33) are written

as

Ẽx|
n+ 1

2
i,j,k =

4− jω0∆t

4 + jω0∆t
Ẽx|ni,j,k +

4

4 + jω0∆t

∆t

2ǫ∆
(H̃z|

n+ 1
2

i,j,k − H̃z|
n+ 1

2
i,j−1,k)

− 4

4 + jω0∆t

∆t

2ǫ∆
(H̃y|ni,j,k − H̃z|ni,j,k−1), (3.34)

H̃z|
n+ 1

2
i,j,k =

4− jω0∆t

4 + jω0∆t
H̃z|ni,j,k +

4

4 + jω0∆t

∆t

2µ∆
(Ẽx|

n+ 1
2

i,j+1,k − Ẽx|
n+ 1

2
i,j,k )

− 4

4 + jω0∆t

∆t

2µ∆
(Ẽy|ni+1,j,k − Ẽy|ni,j,k). (3.35)

By defining CA = 4
4+jω0∆t

∆t
2ǫ∆

, CB = 4
4+jω0∆t

∆t
2µ∆

and C = 4−jω0∆t
4+jω0∆t

, equations (3.34)

and (3.35) are simplified as

Ẽx|
n+ 1

2
i,j,k = C · Ẽx|ni,j,k + CA · (H̃z|

n+ 1
2

i,j,k − H̃z|
n+ 1

2
i,j−1,k)− CB · (H̃y|ni,j,k − H̃z|ni,j,k−1), (3.36)

H̃z|
n+ 1

2
i,j,k = C · H̃z|ni,j,k + CA · (Ẽx|

n+ 1
2

i,j+1,k − Ẽx|
n+ 1

2
i,j,k )− CB · (Ẽy|ni+1,j,k − Ẽy|ni,j,k). (3.37)

Substitution of the magnetic equation (3.37) into the electric equation (3.36) yields

31



a new equation in which the coefficient matrix of the unknown is tridiagonal:

Ẽx|
n+ 1

2
i,j,k − CACB(Ẽx|

n+ 1
2

i,j+1,k − 2Ẽx|
n+ 1

2
i,j,k − Ẽx|

n+ 1
2

i,j−1,k)

= C · Ẽx|ni,j,k − CACB(Ẽy|ni+1,j,k − Ẽy|ni,j,k) + CACB(Ẽy|ni+1,j−1,k − Ẽy|ni,j−1,k)

+ CAC(H̃z|ni,j,k − H̃z|ni,j−1,k)− CA(H̃y|ni,j,k − H̃y|ni,j,k−1). (3.38)

The unknown Ẽx|
n+ 1

2
i,j,k in the new equation can consequently be solved for implicitly,

and then substituted into the original pair. The other unknown H̃z|
n+ 1

2
i,j,k is then obtained

explicitly. In the second step, by following a similar procedure, the solution of Un+1, the

unknown at future time instants, can be obtained. Then, by implementing the algorithm at

successive time steps, the fields at all time instants can be calculated.

Figure 3.3 shows the envelope of Ez at the same observation point for the same 3D

cavity problem excited by the BPL source as in the previous chapter. With CFLN= 3, the

CE-ADI-FDTD solution is in good agreement with the FDTD solution. In Ma and Chen

(2005), the CE-ADI-FDTD was shown demonstrated to be a qualified algorithm, which

preserves accuracy as the CFLN increases, especially for a narrow-band problem with high

center frequency and dense spatial resolution. It has been shown that the benefits can be

improved by incorporating the four-stage technique and the basic scheme into the CE-ADI-

FDTD methodology, as will be proposed in detail in Chapter 6.
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Figure 3.3. The envelope of Ez recorded at the observation point based on the CE-ADI-
FDTD.
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CHAPTER 4

ABSORBING BOUNDARY CONDITIONS

Numerical analysis is necessary to tackle many problems of interest that involve cav-

ities defined in open regions. The relevant domains are unbounded, and cannot therefore be

modeled on a uniform grid. Several methods based on local absorbing boundary conditions

(ABC) have been developed in recent decades to truncate the problem domain. The inci-

dent waves impinging on the boundaries are canceled out by pre-defined boundary values

such that few reflection waves travel back to the simulation domain. That is, the outwardly

traveling waves are expected to disappear after hitting the boundary, so that the domain of

the problem can effectively be considered unbounded. Reflection errors still exist, however,

and are most obvious in two-dimensional and three-dimensional problems. Furthermore, in

problems that involve dispersive, inhomogeneous or anisotropic media, the performance of

the local Absorbing Boundary Conditions (ABC) may be questioned. Two popular local

ABC methods will be discussed later on.

A completely different approach is the perfectly matched layers (PML) technique

originally proposed by Berenger (1994). Several additional layers of cells are defined on the

boundaries of the computational domain, in all directions. In each additional cell, pairs of

fictitious conductivities are introduced such that all waves decay as they travel in the PML

region. Consequently, the incident waves begin to decay after entering the PML region from

the domain modeled routinely in the computation. During propagation, the incident waves

are weakened and are eventually absorbed by the PML region. Then no reflected waves

enter the computational region, which can consequently be considered boundless. Three

well known PML formulations will be presented below.
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4.1 First-Order Mur Absorbing Boundary Condition

Mur ABC is based on the solution of the one-way wave equation and was introduced

in Mur (1981). The three-dimensional wave equation is ∂2U
∂x2 + ∂2U

∂y2
+ ∂2U

∂z2
− 1

c2
∂2U
∂t2

= 0, where

U is a scalar field component. The ABC’s are defined based on the electric field that is

tangential to the boundary.

In the first-order Mur ABC algorithm, the wave equation is approximated on the

boundary by considering only the differential operator in the direction normal to the bound-

ary. In the three-dimensional case, the ABC upon Ez in the x direction is given by

∂2Ez

∂x2 − 1
c2

∂2Ez

∂t2
= 0, which is equivalent to (∂Ez

∂x
− 1

c
∂Ez

∂t
)(∂Ez

∂x
+ 1

c
∂Ez

∂t
) = 0. For the out-

going waves, the field on the left boundary is calculated via ( ∂
∂x

− 1
c
∂
∂t
)Ez|x=0 = 0. Similarly,

the ABC equations for all other electric fields can be determined.

The first-order Mur ABC has been widely used in different FDTD algorithms, be-

cause of its ease of implementation. With explicit FDTD algorithms, the fields within the

boundary cells are updated first, then the electric fields at the boundary itself are calculated.

With implicit FDTD algorithms, the electric fields at the boundaries are represented by the

field components in adjacent cells. Then a matrix solution can be determined, as in the

conventional implicit FDTD algorithm. A three-dimensional conventional explicit FDTD

algorithm with first-order Mur has been implemented numerically; the results demonstrate

the validity of the ABC, with acceptable reflection errors.

4.2 Liao Extrapolation Non-reflecting Boundary Condition

In Liao (1996), the so-called Liao ABC has been developed, by which the elec-

tric field components on the boundary are calculated by extrapolation. For the same

example as in the previous section, on the left boundary in the x direction, Ez|n+1
x0,y,z

=
∑N

i=1(−1)i+1CN
i Ez|n−(i−1)

x0+i∆x,y,z, where CN
i is a binomial coefficient, ∆x is the spatial step in

the x direction, and N is the order of the boundary condition.

The accuracy of Liao ABC can be improved by choosing a higher order algorithm –
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a larger N . Unfortunately the high order Liao algorithm has poor stability. In Zhang and

Yu (2012), the high order Liao ABC is weighted with a low order Liao ABC which gives

an improved Liao ABC. The numerical results show that the improved Liao ABC has much

smaller errors than the second order Mur ABC; however, increasing N beyond 5 scarcely

improves the accuracy.

4.3 Berenger Perfectly Matched Layers

In Berenger (1994), the two-dimensional perfectly matched layer algorithm was de-

veloped. In both the TMz and TEz cases, it was shown that the outward traveling elec-

tromagnetic waves were absorbed. The three-dimensional explicit FDTD PML formulation

was given in Elsherbeni and Demir (2009). Each field component is decomposed into two

parts, for example Ez = Ezx + Ezy. In addition, six fictitious conductivity variables are

introduced in the PML region, by which the original six Maxwell’s equations are converted

into a new set of twelve modified equations. The PML layers are defined by adding several

spatial cells in all directions. The fictitious conductivity in the PML region varies along

the direction perpendicular to the interface between the PML and non-PML region; in the

non-PML region, the fictitious conductivities are set to zero. Then, as in the conventional

FDTD algorithm, the new equations can be solved explicitly. The calculation in the non-

PML region is identical to that for the conventional explicit FDTD algorithm, because the

conductivities are zero. The PML has been found to outperform the previous two local

ABC, with small reflection errors. In Lin et al. (2007) the PML is also implemented in an

approximate two-dimensional Crank-Nicolson scheme. The result is stable and accurate for

CFLN= 4.

4.4 Stretched Coordinates Perfectly Matched Layers

The stretched coordinates (SC) PML formulation based on the modified Maxwell’s

equations in the frequency domain was introduced in Chew and Weedon (1994). It has been
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shown that the SC-PML is also compatible with the 2D CNDG algorithm by Li et al. (2015).

Starting with the frequency-domain modified Maxwell’s equations, two auxiliary terms are

defined for each component through the stretched coordinate variables and spatial differential

operators. Then, after taking the inverse Fourier transform, each frequency-domain modified

Maxwell’s equation is decomposed into one time-domain modified Maxwell’s equation and

one auxiliary differential equation. After discretization the auxiliary equation is substituted

into the time-domain Maxwell’s equation, which can be solved using the CNDG scheme.

The results confirm that the ADE CNDG-PML algorithm preserves stability and

small reflection error with a large Courant number. Furthermore, by incorporating the CE

into the ADE CNDG-PML, a new CE-ADE CNDG-PML formulation is obtained, which

provides accurate and stable results by using real field components.

4.5 Nearly Perfectly Matched Layers

Another well known and widely used PML is nearly perfectly matched layers (NPML),

which was proposed in Cummer (2003). Like the SC-PML, the NPML is based on the

frequency-domain modified Maxwell’s equations and the inverse Fourier transform. The

auxiliary variables are defined in a different way, however, such that the time-domain auxil-

iary equations are simpler than those in the SC PML.

It has been shown that the two-dimensional four-stages split-step (4S-SS) FDTD

can be incorporated into the NPML algorithm stably and also accurately by Kong and

Chu (2010b). Also, the NPML is compatible with the 2D ADI-FDTD in Ramadan (2005).

Numerical results show that the ADI-FDTD with NPML is unconditionally stable, although

an arbitrarily large Courant number cannot be chosen due to the greatly reduced accuracy.

Figure 4.1 shows the distribution of Ez on the source plane for a 3D cavity problem

similar to the example in the previous chapter. The size of the cavity is 117×117×117 cells

and the z-directed source is positioned at (59, 59, 59), the center of the cube. The source

function is
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Jz(t) = −6× 105 × exp

[

−
(

t− t0
σ

)2
]

×
(

t− t0
σ

)

, (4.1)

where t0 = 1.8006 × 10−7 second and σ = 3.1831 × 10−8 second. The time step ∆t =

4.1667×10−10 second, the spatial steps ∆x = ∆y = ∆z = 0.2498 meter, and the observation

point is 20 cells away from the source at (39, 59, 59). Figure 4.1 shows the early distribution

of Ez on the source plane (z = 59). In the early stage, the distribution based on any

absorbing boundary condition is the same, due to the dominant source. In (a), the source

just begins to excite; in (b), the electric field at the source point increases due to the growth

of the exponential factor in the source function; in (c), the source function is near its peak,

which can be seen from the magnitude of Ez at the source point; in (d), the simulation time

is larger than t0, the Gaussian delay for the peak, so that the magnitude of the electric field

at the source point begins to decay.

Figure 4.2 compares the performances of the four different absorbing condition (ABC)

methods. After a sufficiently long simulation time, differences appear. In (a) and (b), with

the analytical ABC methods, there exist reflected waves from the boundaries and the corners

of the cavity. In (c), the incident waves and the reflected waves are absorbed in the PML

region, and the interface between the computational region and the PML region is observable.

In (d), the reflected waves are restricted to the corners within the PML region, and scarcely

enter the computational region.

Figure 4.3 shows Ez recorded at the observation point based on the different meth-

ods. After the incident wave propagates through the observation point, no reflected wave

is expected to be seen thereafter because of the boundary condition. The ABC methods

clearly provide very good performance. After 0.3 µs, reflected waves are scarcely recorded at

the observation point. The analytical solution is based on a 3D free-space Green’s function

and the inverse fast Fourier transform (IFFT). The analytical ABC methods are not so good

at dealing with incident waves not normal to the boundaries, although it still neutralizes
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(a) t = 0.2t0 (b) t = 0.6t0

(c) t = 1.0t0 (d) t = 1.2t0

Figure 4.1. The early distribution of Ez on the source plane for the 3D cavity example.

the incident waves directly on the boundaries through the pre-defined boundary values. The

PML and NPML algorithm create the PML region in which waves from any angle are ab-

sorbed. Nevertheless, the PML region also involves additional cells for computation, so that

more computational time is required, especially in problems in more dimensions.
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(a) 1st Mur at t = 2.0t0. (b) Improved 5th Liao at t = 2.0t0.

(c) PML at t = 2.0t0. (d) NPML at t = 2.0t0.

Figure 4.2. The final distribution of Ez on the source plane based on different ABC’s.
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Figure 4.3. The recorded Ez at the observation point based on different ABC’s.
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CHAPTER 5

THE TOTAL FIELD SCATTERED FIELD SCHEME

5.1 Total Field/Scattered Field Boundary

The total field/scattered field (TF/SF) technique Umashankar and Taflove (1982)

was proposed in order to solve the electromagnetic problem involving excitation by a plane

wave source. The domain of computation is divided into two regions, the total field region

and the scattered field region. In addition, all scalar field components are represented by the

sum of the incident field and the scattered field; for example, Ex,tot = Ex,inc + Ex,scat. The

total field components are defined in the total field region; the scattered field components

are defined in both regions; the incident field components are considered on the interface

between the two regions.

5.1.1 The 1D Scheme

Figure 5.1 shows this model of the 1D example excited by a plane wave source. The

source function is a z-directed Gaussian pulse that propagates along the x axis. The 1D

computational domain is free space on the left and right hand sides. A dielectric with

ǫ = 3ǫ0 and µ = µ0 is placed in the middle, where ǫ0 and µ0 denote as usual the permittivity

and permeability of free space. The incident wave is defined on the TF/SF boundary and

propagates towards the +x direction. The analytical ABC walls are placed at both ends of

the domain. In the 1D cavity the incident waves are perpendicular to the boundaries, and

the analytical ABC walls therefore perform perfectly and there are no reflected waves.

In Figure 5.2 the 1D model is discretized based on the Yee lattice. The TF/SF

boundary is placed between Cell I and Cell I + 1. To update the fields near the TF/SF
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Figure 5.1. Model of the 1D TF/SF example.

boundary, the field correction method is to be applied in the FDTD algorithm, as follows.

The explicit equation for updating Ez|n+1 in Cell I is

Ez|n+1
I+1 = Ez|nI+1 +

∆t

ǫ|I+1∆x
(Hy|

n+ 1
2

I+1 −Hy|
n+ 1

2
I ). (5.1)

In (5.2) with the TF/SF scheme, the fields are all labeled according to region, so as

to indicate that the field is in the total field region or the scattered field region.
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Figure 5.2. The grid of the 1D TF/SF example.

Ez,tot|n+1
I+1 = Ez,tot|nI+1 +

∆t

ǫ|I+1∆x
(Hy,tot|

n+ 1
2

I+1 −Hy,scat|
n+ 1

2
I ), (5.2)

The labels in (5.2) are not matched, because Hy,scat|
n+ 1

2
I relates to the scattered field

region whereas Ez,tot|n+1
I+1 , Ez,tot|nI+1 and Hy,tot|

n+ 1
2

I+1 relate to the total field region. To apply

the field correction method, the field in the scattered field region is represented by

Hy,scat|
n+ 1

2
I = Hy,tot|

n+ 1
2

I −Hy,inc|
n+ 1

2
I . (5.3)
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Substitution of (5.3) into (5.2) yields

Ez,tot|n+1
I+1 = Ez,tot|nI+1 +

∆t

ǫ|I+1∆x
[Hy,tot|

n+ 1
2

I+1 − (Hy,tot|
n+ 1

2
I −Hy,inc|

n+ 1
2

I )]. (5.4)

In (5.4), the incident field Hy,inc|
n+ 1

2
I represents the excitation source, and the labels

of all other fields are matched. Finally, (5.4) can be rewritten in the classical FDTD way as

Ez|n+1
I+1 = Ez|nI+1 +

∆t

ǫ|I+1∆x
[Hy|

n+ 1
2

I+1 − (Hy|
n+ 1

2
I −Hy,inc|

n+ 1
2

I )]. (5.5)

Similarly, the equation for the magnetic field in Cell I becomes

Hy|
n+ 1

2
I = Hy|

n− 1
2

I +
∆t

µ∆x
(Ez|nI+1 − Ez|nI ), (5.6)

Hy,scat|
n+ 1

2
I = Hy,scat|

n− 1
2

I +
∆t

µ∆x
(Ez,tot|nI+1 − Ez,scat|nI ), (5.7)

Hy,scat|
n+ 1

2
I = Hy,scat|

n− 1
2

I +
∆t

µ∆x
[(Ez,scat|nI+1 + Ez,inc|nI+1)− Ez,scat|nI ], (5.8)

Hy|
n+ 1

2
I = Hy|

n− 1
2

I +
∆t

µ∆x
[(Ez|nI+1 + Ez,inc|nI+1)− Ez|nI ]. (5.9)

For cells that are not near the TF/SF boundary, all fields in each equation are in

the same region, so that no field correction is needed. The incident Gaussian fields in the

following 1D example are given by

Ez,inc|nI+1 = exp






−

(

n∆t− t0 − I∆x
c0

)2

σ2






, (5.10)
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Hy,inc|
n+ 1

2
I = − 1

η0
exp



















−

[

(

n+ 1
2

)

∆t− t0 − (I− 1
2)∆x

c0

]2

σ2



















. (5.11)

where t0 = 180.06 ns, σ = 31.831 ns, ∆x = 0.2498 m, ∆t = 0.8333 ns, η0 is the characteristic

impedance of free space and c0 is the speed of light. In (5.10), the incident electric field in

Cell I + 1 at the interface is defined as a Gaussian wave with a spatial delay I∆x
c0

and a

time delay t0. In Figure 5.2, the distance between Hy in Cell I and Ez in Cell I + 1 is ∆x
2
,

and the spatial delay for Hy,inc|
n+ 1

2
I in (5.11) is

(I− 1
2
)∆x

c0
. Snapshots of the electric field in

the one-dimensional domain are plotted in Figure 5.3. The size of the cavity is 841× 1 and

I = 221. The dielectric is located from Cell 423 to Cell 633, and all other cells are free space.

At t = 0.5t0 the magnitude of the incident electric field remains negligible due to the delay

of the Gaussian function. The electric field components along the whole one-dimensional

axis are therefore almost zero. At t = 2t0 the incident wave first becomes apparent at the

interface and travels to the right hand side. At t = 3.2t0 the incident wave impinges on the

dielectric, and is thereafter decomposed into a transmitted wave traveling to the right and a

reflected wave traveling to the left. At t = 4t0 the transmitted wave and the reflected wave

travel away from each other. Finally, at t = 4.9t0, the incident wave hits the right edge of

the dielectric, giving rise to a second transmitted wave and reflected wave.
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Figure 5.3. The distribution of Ez in the 1D domain at different times.
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5.1.2 The 2D Scheme

A 2D TMZ example of the TF/SF boundary is shown in Figure 5.4. The cavity is

free space, and a PEC plate is placed across the center as a reflector. The NPML is applied

around the entire computational domain in order to absorb the reflected waves. The total

field region and the scattered field region are set up as in the one-dimensional case Schneider

(2010). The incident wave is positioned along the left TF/SF boundary and the PEC plate

is within the total field region.

x

y NPML Region

PEC Plate

TF/SF Boundary

Incident wave

Total-Field Region

Scattered-Field Region

Figure 5.4. Two-dimensional TF/SF example.

Figure 5.5 shows the grid for the 2D cavity. The incident waves are obtained from

the auxiliary 1D FDTD simulation. The equations for the 1D auxiliary grid are
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Figure 5.5. The grid of the 2D TF/SF scheme.

Hy,1D|
n+ 1

2
i = Hy,1D|ni +

∆t

∆xµ
(Ez,1D|ni+1 − Ez,1D|ni ), (5.12)

Ez,1D|n+1
i = Ez,1D|ni +

∆t

∆xǫ
(Hy,1D|

n+ 1
2

i −Hy,1D|
n+ 1

2
i−1 )− ∆t

ǫ
Jz,1D|

n+ 1
2

i , (5.13)

where the source of the 1D simulation is

Jz,1D|
n+ 1

2
I = − 2

η∆x
exp

{

−
[(

n+ 1
2

)

∆t− t0
]2

2σ2
0

}

. (5.14)

The equations of the classical 2D FDTD are
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Hx|
n+ 1

2
i,j = Hx|ni,j −

∆t

∆yµ
(Ez|ni,j+1 − Ez|ni,j), (5.15)

Hy|
n+ 1

2
i,j = Hy|ni,j +

∆t

∆xµ
(Ez|ni+1,j − Ez|ni,j), (5.16)

Ez|n+1
i,j = Ez|ni,j −

∆t

∆yǫ|i,j
(Hx|

n+ 1
2

i,j −Hx|
n+ 1

2
i,j−1)

− ∆t

∆xǫ|i,j
(Hy|

n+ 1
2

i,j −Hy|
n+ 1

2
i−1,j). (5.17)

The fields at the TF/SF boundary must be corrected by the incident fields. For

example, after labeling the fields, Hx in Cell (Is1, Js1 − 1), Hy in Cell (Is1 − 1, Js1), and

Ez in Cell (Is1, Js1), are represented as

Hx,scat|
n+ 1

2
Is1,Js1−1 = Hx,scat|nIs1,Js1−1 −

∆t

∆yµ
(Ez,tot|nIs1,Js1 − Ez,scat|nIs1,Js1−1), (5.18)

Hy,scat|
n+ 1

2
Is1−1,Js1 = Hy,scat|nIs1−1,Js1 +

∆t

∆xµ
(Ez,tot|nIs1,Js1 − Ez,scat|nIs1−1,Js1), (5.19)

Ez,tot|n+1
Is1,Js1 = Ez,tot|nIs1,Js1 −

∆t

∆yǫ|Is1,Js1
(Hx,tot|

n+ 1
2

Is1,Js1 −Hx,scat|
n+ 1

2
Is1,Js1−1)

− ∆t

∆xǫ|Is1,Js1
(Hy,tot|

n+ 1
2

Is1,Js1 −Hy,scat|
n+ 1

2
Is1−1,Js1). (5.20)

With the incident fields on the TF/SF boundary, (5.18), (5.19) and (5.20) are rewrit-

ten as
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Hx,scat|
n+ 1

2
Is1,Js1−1 = Hx,scat|nIs1,Js1−1 −

∆t

∆yµ
[(Ez,scat|nIs1,Js1 + Ez,inc|nIs1,Js1)− Ez,scat|nIs1,Js1−1],

(5.21)

Hy,scat|
n+ 1

2
Is1−1,Js1 = Hy,scat|nIs1−1,Js1 +

∆t

∆xµ
[(Ez,scat|nIs1,Js1 + Ez,inc|nIs1,Js1)− Ez,scat|nIs1−1,Js1],

(5.22)

Ez,tot|n+1
Is1,Js1 = Ez,tot|nIs1,Js1 −

∆t

∆yǫ|Is1,Js1
[Hx,tot|

n+ 1
2

Is1,Js1 − (Hx,tot|
n+ 1

2
Is1,Js1−1 −Hx,inc|

n+ 1
2

Is1,Js1−1)]

− ∆t

∆xǫ|Is1,Js1
[Hy,tot|

n+ 1
2

Is1,Js1 − (Hy,tot|
n+ 1

2
Is1−1,Js1 +Hy,inc|

n+ 1
2

Is1−1,Js1)].

(5.23)

In the 2D TF/SF scheme, the incident fields are obtained from Cell I and Cell I + 1

in the 1D FDTD simulation. Figure 5.5 shows that only Ez and Hy exist in the 1D grid, so

that the incident fields can be written as

Ez,inc|nIs1,Js1 = Ez,1D|nI+1, (5.24)

Hx,inc|
n+ 1

2
Is1−1,Js1 = 0, (5.25)

Hy,inc|
n+ 1

2
Is1−1,Js1 = Hy,1D|

n+ 1
2

I . (5.26)

In the 2D example, ∆x = ∆y = 0.2498 m is the spatial step, ∆t = 0.58926 ns is

the time step, f0 = 100 MHz is the center frequency, λ0 = 0.29979 m is the wavelength at

the center frequency, and σ0 = 4.502 ns controls the width of the Gaussian function while
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t0 = 36.013 ns is the delay of the Gaussian peak. In Figure 5.6, the upper sub-figure shows

the Gaussian source Jz in the 1D simulation; the lower sub-figure shows the electric field in

Cell I + 1, which serves as the source of the incident wave in the 2D simulation.

Snapshots of the distribution of Ez in the 2D cavity at four time instants are shown

in Figure 5.7. At t = 0.5t0 the incident wave fisrt becomes apparent on the left TF/SF

boundary. At t = 1.2t0 the incident wave is obvious and propagates along the x axis. At

t = 1.5t0 it impinges on the PEC plate. At t = 2.0t0 the PEC plate is illuminated by the

incident wave, and the resulting induced surface current starts to radiate. Scattered waves

are generated and begin to propagate omnidirectionally.

52



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
-0.025

-0.02

-0.015

-0.01

-0.005

0

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

0.2

0.4

0.6

0.8

1

1.2

Figure 5.6. The source function for the 1D auxiliary FDTD grid and the resultant Ez,1D in
Cell I + 1.
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(a) t = 0.5t0 (b) t = 1.2t0

(c) t = 1.5t0 (d) t = 2.0t0

Figure 5.7. The results of the two-dimensional TF/SF example
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CHAPTER 6

THE DEVELOPED METHOD

A 2D TMz CE-4S-ADI-FDTD was introduced in Ramadan (2009). By splitting of the

exponential operator, the CE-4S-ADI-FDTD is formulated as a four sub-step computational

procedure. The CE-4S-ADI-FDTD solution is demonstrably much more accurate than the

CE-ADI-FDTD with the same CFLN, but it requires twice the computation time because

of the two additional sub-steps in each time step. In the implicit FDTD methods, the choice

of a large CFLN reduces the total number of time steps and facilitates rapid solution at

the cost of some accuracy. Thus, with an appropriately large CFLN, the CE-4S-ADI-FDTD

solution is faster and more accurate than the corresponding CE-ADI-FDTD. In Tan (2008),

fundamental schemes were developed for the implicit FDTD methods such that the number

of operations in the implicit equations was greatly reduced, and the speed of computation

can consequently be increased. In the present dissertation, by incorporating the fundamental

scheme and the 4S scheme into the CE-ADI-FDTD algorithm in the 3D space, the 3D CE-

4S-FADI-FDTD algorithm is set up. This proposed method is faster and more accurate

than conventional CE-ADI-FDTD. The NPML scheme is used for modeling the absorbing

boundary conditions, and the TF/SF scheme is used to model the plane wave excitation.

6.1 CE Implicit Class Problem

Implicit FDTD methods are developed for reducing the computation time by choosing

a large CFLN value. In problems that require only a low spatial sampling rate, the allowable

time step nevertheless remains small because of the accuracy limit according to the sampling

theorem. That is, the maximum CFLN necessary to maintain the accuracy of these Implicit

methods requires a large number of time steps. At each time step, the implicit equation
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requires more computational time than the explicit equation. With a small CFLN, the

implicit method is therefore slower than the explicit FDTD method.

The implicit FDTDmethod is more effective computationally than the explicit method

in problems of small size. In large-size problems, a large number of cells is needed, implying

a large number of implicit equations. Implicit equations require more computation time than

explicit equations, and a large CFLN is therefore needed which degrades the accuracy of the

implicit solution. Thus, in small-size problems, the implicit solution can be faster than the

explicit solution while maintaining accuracy with a reasonable choice of CFLN.

Use of the CE representation shifts the center frequency of the BPL source and fields

to zero. This procedure reduces the maximum frequency and accordingly increases the

allowable time step, based on the sampling theorem. Ma and Chen (2005) demonstrates

that the benefits of using the CE representation decrease as the ratio of the center frequency

to the bandwidth decreases. With a small ratio then, after shifting the center frequency to

zero, the maximum frequency is equal to half of the bandwidth, which is still high. The

small allowable time step then leads to a small CFLN and a slow implicit solution.

In conclusion, CE implicit methods are developed for solving small-size problems,

involving high spatial sampling rate and a narrowband excitation source.

6.2 3D CE-4S-FADI-FDTD with PEC Boundaries

Begin with the CE Maxwell’s equations, ∂
∂t
ũ + jω0ũ = Mũ, where the matrix M

consists of the spatial differential operators, and

ũ = [Ẽx Ẽy Ẽz H̃x H̃y H̃z]
T . (6.1)

Next, M1 and jω0 are combined and decomposed into two sub-matrices, A1 and B1

as follows:
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M1 =

































0 0 0 0 − 1
µ

∂
∂z

1
µ

∂
∂y

0 0 0 1
µ

∂
∂z

0 − 1
µ

∂
∂x

0 0 0 − 1
µ

∂
∂y

1
µ

∂
∂x

0

0 1
ǫ

∂
∂z

−1
ǫ

∂
∂y

0 0 0

−1
ǫ

∂
∂z

0 1
ǫ

∂
∂x

0 0 0

1
ǫ

∂
∂y

−1
ǫ

∂
∂x

0 0 0 0

































A1 =

































− jω0

2
0 0 0 0 1

µ
∂
∂y

0 − jω0

2
0 1

µ
∂
∂z

0 0

0 0 − jω0

2
0 1

µ
∂
∂x

0

0 1
ǫ

∂
∂z

0 − jω0

2
0 0

0 0 1
ǫ

∂
∂x

0 − jω0

2
0

1
ǫ

∂
∂y

0 0 0 0 − jω0

2

































B1 =

































− jω0

2
0 0 0 − 1

µ
∂
∂z

0

0 − jω0

2
0 0 0 − 1

µ
∂
∂x

0 0 − jω0

2
− 1

µ
∂
∂y

0 0

0 0 −1
ǫ

∂
∂y

− jω0

2
0 0

−1
ǫ

∂
∂z

0 0 0 − jω0

2
0

0 −1
ǫ

∂
∂x

0 0 0 − jω0

2

































Upon defining the auxiliary vector ṽ, the computational procedure for the 3D CE-

4S-FADI-FDTD algorithm is as follows:

sub-step 1

ṽ|n = 2ũ|n − ṽ|n− 1
4 +

∆t

4
s̃|n+ 1

8 , (6.2)

(

I − ∆t

4
A1

)

ũ|n+ 1
4 = ṽ|n, (6.3)
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sub-step 2

ṽ|n+ 1
4 = 2ũ|n+ 1

4 − ṽ|n + ∆t

4
s̃|n+ 3

8 , (6.4)

(

I − ∆t

4
B1

)

ũ|n+ 1
2 = ṽ|n+ 1

4 , (6.5)

sub-step 3

ṽ|n+ 1
2 = 2ũ|n+ 1

2 − ṽ|n+ 1
4 +

∆t

4
s̃|n+ 5

8 , (6.6)

(

I − ∆t

4
A1

)

ũ|n+ 3
4 = ṽ|n+ 1

2 , (6.7)

sub-step 4

ṽ|n+ 3
4 = 2ũ|n+ 3

4 − ṽ|n+ 1
2 +

∆t

4
s̃|n+ 7

8 , (6.8)

(

I − ∆t

4
B1

)

ũ|n+1 = ṽ|n+ 3
4 , (6.9)

where

ṽ = [ẽx ẽy ẽz h̃x h̃y h̃z]
T , (6.10)

s̃ =

[

−1

ǫ
J̃x − 1

ǫ
J̃y − 1

ǫ
J̃z − 1

µ
M̃x − 1

µ
M̃y − 1

µ
M̃z

]T

(6.11)

and I is the identity matrix. At each time step, three intermediate field components are

needed, at t = n + 1/4, t = n + 2/4 and t = n + 3/4, in the calculation involving four

sub-steps. In each sub-step, after spatial discretization, then by substituting the equation

of magnetic field components it follows that the equation for the electric field components

can be solved implicitly. The magnetic field components are then updated explicitly. For

example, expansion of the matrices in sub-step 1 yields the following equations:
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ẽx|ni,j,k = 2Ẽx|ni,j,k − ẽx|
n− 1

4
i,j,k − ∆t

4ǫ
J̃x|

n+ 1
8

i,j,k , (6.12)

ẽy|ni,j,k = 2Ẽy|ni,j,k − ẽy|
n− 1

4
i,j,k − ∆t

4ǫ
J̃y|

n+ 1
8

i,j,k , (6.13)

ẽz|ni,j,k = 2Ẽz|ni,j,k − ẽz|
n− 1

4
i,j,k − ∆t

4ǫ
J̃z|

n+ 1
8

i,j,k , (6.14)

h̃x|ni,j,k = 2H̃x|ni,j,k − h̃x|
n− 1

4
i,j,k − ∆t

4µ
M̃x|

n+ 1
8

i,j,k , (6.15)

h̃y|ni,j,k = 2H̃y|ni,j,k − h̃y|
n− 1

4
i,j,k − ∆t

4µ
M̃y|

n+ 1
8

i,j,k , (6.16)

h̃z|ni,j,k = 2H̃z|ni,j,k − h̃z|
n− 1

4
i,j,k − ∆t

4µ
M̃z|

n+ 1
8

i,j,k , (6.17)

8 + jω0∆t

8
Ẽx|

n+ 1
4

i,j,k − ∆t

4ǫ∆y
(H̃z|

n+ 1
4

i,j,k − H̃z|
n+ 1

4
i,j−1,k) = ẽx|ni,j,k, (6.18)

8 + jω0∆t

8
Ẽy|

n+ 1
4

i,j,k − ∆t

4ǫ∆z
(H̃x|

n+ 1
4

i,j,k − H̃x|
n+ 1

4
i,j,k−1) = ẽy|ni,j,k, (6.19)

8 + jω0∆t

8
Ẽz|

n+ 1
4

i,j,k − ∆t

4ǫ∆x
(H̃y|

n+ 1
4

i,j,k − H̃y|
n+ 1

4
i−1,j,k) = ẽz|ni,j,k, (6.20)

8 + jω0∆t

8
H̃x|

n+ 1
4

i,j,k − ∆t

4µ∆z
(Ẽy|

n+ 1
4

i,j,k+1 − Ẽy|
n+ 1

4
i,j,k ) = h̃x|ni,j,k, (6.21)

8 + jω0∆t

8
H̃y|

n+ 1
4

i,j,k − ∆t

4µ∆x
(Ẽz|

n+ 1
4

i+1,j,k − Ẽz|
n+ 1

4
i,j,k ) = h̃y|ni,j,k, (6.22)
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8 + jω0∆t

8
H̃z|

n+ 1
4

i,j,k − ∆t

4µ∆y
(Ẽx|

n+ 1
4

i,j+1,k − Ẽx|
n+ 1

4
i,j,k ) = h̃z|ni,j,k, (6.23)

Equations (6.12) - (6.17) for the auxiliary variables can be solved explicitly. For

simplicity, the sizes of the spatial steps are the same in all directions in the examples below:

∆x = ∆y = ∆z = ∆. The equations for the electric and magnetic fields are then written as:

Ẽx|
n+ 1

4
i,j,k = C · ẽx|ni,j,k + AC(H̃z|

n+ 1
4

i,j,k − H̃z|
n+ 1

4
i,j−1,k), (6.24)

Ẽy|
n+ 1

4
i,j,k = C · ẽy|ni,j,k + AC(H̃x|

n+ 1
4

i,j,k − H̃x|
n+ 1

4
i,j,k−1), (6.25)

Ẽz|
n+ 1

4
i,j,k = C · ẽz|ni,j,k + AC(H̃y|

n+ 1
4

i,j,k − H̃y|
n+ 1

4
i−1,j,k), (6.26)

H̃x|
n+ 1

4
i,j,k = C · h̃x|ni,j,k +BC(Ẽy|

n+ 1
4

i,j,k+1 − Ẽy|
n+ 1

4
i,j,k ), (6.27)

H̃y|
n+ 1

4
i,j,k = C · h̃y|ni,j,k +BC(Ẽz|

n+ 1
4

i+1,j,k − Ẽz|
n+ 1

4
i,j,k ), (6.28)

H̃z|
n+ 1

4
i,j,k = C · h̃z|ni,j,k +BC(Ẽx|

n+ 1
4

i,j+1,k − Ẽx|
n+ 1

4
i,j,k ), (6.29)

where C = 8
8+jω0∆t

, A = ∆t
4ǫ∆

and B = ∆t
4µ∆

. Substitution of (6.29) into (6.24) yields

Ẽx|n+
1
4 = C · ẽx|ni,j,k + AC · [C · h̃z|ni,j,k +BC · (Ẽx|

n+ 1
4

i,j+1,k − Ẽx|
n+ 1

4
i,j,k )]

− AC · [C · h̃z|ni,j−1,k +BC · (Ẽx|
n+ 1

4
i,j,k − Ẽx|

n+ 1
4

i,j−1,k)]. (6.30)

After rearranging (6.30), Ẽx can be solved by
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Ẽx|
n+ 1

4
i,j,k − ABC2 · (Ẽx|

n+ 1
4

i,j+1,k − 2Ẽx|
n+ 1

4
i,j,k + Ẽx|

n+ 1
4

i,j−1,k)

= C · ẽx|ni,j,k + AC2 · (h̃z|ni,j,k − h̃z|ni,j−1,k). (6.31)

With PEC boundary conditions, it follows that at any time instant Ẽx|i,1,k = 0 and

Ẽx|i,jmax,k = 0, where jmax is the maximum index of Ẽx in the y direction. Consequently,

(6.31) can be written in matrix form as

























1 + 2P −P 0 0 · · · 0

−P 1 + 2P −P 0 · · · 0

. . .

0 · · · 0 −P 1 + 2P −P

0 · · · 0 0 1 + 2P −P

















































Ẽx|
n+ 1

4
i,2,k

Ẽx|
n+ 1

4
i,3,k

...

Ẽx|
n+ 1

4
i,jmax−2,k

Ẽx|
n+ 1

4
i,jmax−1,k

























=

























f̃x|ni,2,k
f̃x|ni,3,k

...

f̃x|ni,jmax−2,k

f̃x|ni,jmax−1,k

























,

where P = ABC2, f̃x|ni,j,k = C · ẽx|ni,j,k +AC2 · (h̃z|ni,j,k − h̃z|ni,j−1,k), and the coefficient matrix

of Ẽx is tridiagonal. In sub-step 1, Ẽx and H̃z are calculated according to the following

procedure: first update the auxiliary fields ẽx and h̃z explicitly by (6.12) and (6.17); then

update Ẽx implicitly by (6.31); finally, update H̃z explicitly by (6.29). Next, Ẽy and H̃x are

updated in the same manner, and likewise Ẽz and H̃y. Similarly, within each time step, the

electric fields, magnetic fields and auxiliary variables in other sub-steps can be updated.

There are three terms on the right hand side of the implicit equation (6.31), based

on the proposed CE-4S-FADI-FDTD algorithm. In contrast, based on the CE-ADI-FDTD

algorithm there are nine terms on the right hand side of the implicit equation (3.38) for

calculating the same field Ẽx. Similar results are found in the comparison of other implicit

equations based on the two methods. Consequently, in the CE-4S-FADI-FDTD algorithm,

the number of terms and operations in the implicit equations is 66.67% fewer than in the
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implicit equations of the CE-ADI-FDTD algorithm. As the implicit equations need to be

solved multiple times at each time step, this results in a great reduction of the computational

time needed in the overall simulation.

6.3 3D CE-4S-FADI-FDTD with NPML

To incorporate CE-4S-FADI-FDTD into the NPML algorithm, two auxiliary variables

are defined for each field component, based on the the differential operators. For example,

Exy and Exz are defined for Ex. In the frequency domain, Exy = Ex

Sy
, where Sy = 1 + σy

jω0ǫ
,

which by inverse Fourier transform can be converted to the time domain equation, ∂
∂t
Exy +

σy

ǫ
Exy = ∂

∂t
Ex. The fictitious conductivities σx, σy and σz are defined as in the Berenger

Perfectly Matched Layers method; see Elsherbeni and Demir (2009).

As an example, Figure 6.1 shows the PML conductivity σy defined in the PML region.

The cube in the top left corner represents the computational domain. After extending several

cells along all directions, the new model is built at the bottom left corner, which includes

the computational domain and the PML region. The distribution of the PML conductivities

on the arbitrary 2D plane i = i0 is shown at right; σy is defined along the y direction and σz

is defined along the z direction. In the computational domain, σy = 0, and in the left PML

region σy is defined by the following equations:

σy|i,j,k = σmax

( |j − j−|∆y

δ

)npml

, (6.32)

σmax = −(npml + 1) ǫc0 ln(R0)

2∆yN
, (6.33)

where j0 is the index of the left computational domain-PML interface, |j − j−|∆y is the

distance between the conductivity cell and the interface, npml = 2 for the parabolic distri-

bution, N is the number of PML cells in the left PML region, δ is the thickness of the PML

region on the left, ∆y is the spatial step in the y direction, and R0 = 10−5. Here, σy in the
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Figure 6.1. The distribution of σy in the computational domain and in the PML region.

right PML region is defined according to the index of the right computational domain-PML

interface j+. The distribution of the PML conductivities in other regions of the new model

can be found likewise. Then, using the PML conductivities σx, σy and σz, the four sub-steps

computation and the matrices of operators M2, A2 and B2 for the 3D CE-4S-FADI-FDTD

algorithm are as follows:

sub-step 1

ṽ|n = 2ũ|n − ṽ|n− 1
4 +

∆t

4
s̃|n+ 1

8 , (6.34)
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(

I − ∆t

4
A2

)

ũ|n+ 1
4 = ṽ|n, (6.35)

sub-step 2

ṽ|n+ 1
4 = 2ũ|n+ 1

4 − ṽ|n + ∆t

4
s̃|n+ 3

8 , (6.36)

(

I − ∆t

4
B2

)

ũ|n+ 1
2 = ṽ|n+ 1

4 , (6.37)

sub-step 3

ṽ|n+ 1
2 = 2ũ|n+ 1

2 − ṽ|n+ 1
4 +

∆t

4
s̃|n+ 5

8 , (6.38)

(

I − ∆t

4
A2

)

ũ|n+ 3
4 = ṽ|n+ 1

2 , (6.39)

sub-step 4

ṽ|n+ 3
4 = 2ũ|n+ 3

4 − ṽ|n+ 1
2 +

∆t

4
s̃|n+ 7

8 , (6.40)

(

I − ∆t

4
B2

)

ũ|n+1 = ṽ|n+ 3
4 , (6.41)

where
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.

In each sub-step the computation is performed as follows. First, calculate the auxiliary

magnetic fields via the magnetic fields; second, substitute the auxiliary magnetic field into

the difference equation for the electric fields; third, compute the electric fields implicitly and

the magnetic fields explicitly; finally, update the auxiliary electric fields. As an example, Ẽx

and H̃z are calculated by expanding the matrices in the first sub-step as

ẽx|ni,j,k = 2Ẽx|ni,j,k − ẽx|
n− 1

4
i,j,k , (6.42)

h̃z|ni,j,k = 2H̃z|ni,j,k − h̃z|
n− 1

4
i,j,k , (6.43)

Ẽx|
n+ 1

4
i,j,k = AC · (H̃zy|

n+ 1
4

i,j,k − H̃zy|
n+ 1

4
i,j−1,k) + C · ẽx|ni,j,k, (6.44)
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H̃z|
n+ 1

4
i,j,k = BC · (Ẽxy|

n+ 1
4

i,j+1,k − Ẽxy|
n+ 1

4
i,j,k ) + C · h̃z|ni,j,k, (6.45)

where A = ∆t
4∆ǫ

, B = ∆t
4∆µ

and C = 8
8+jω0∆t

. The CE equations in the NPML region are:

∂

∂t
H̃zy + jω0H̃zy +

σy

ǫ
H̃zy =

∂

∂t
H̃z + jωH̃z, (6.46)

∂

∂t
Ẽxy + jω0Ẽxy +

σy

ǫ
Ẽxy =

∂

∂t
Ẽx + jωẼx. (6.47)

By discretizing the fields in the time domain and space domain, (6.46) and (6.47) can

be written as

H̃zy|
n+ 1

4
i,j,k − H̃zy|ni,j,k
∆t/4

+
jω0ǫ+ σy|i,j,k

2ǫ
(H̃zy|

n+ 1
4

i,j,k + H̃zy|ni,j,k)

=
H̃z|

n+ 1
4

i,j,k − H̃z|ni,j,k
∆t/4

+
jω0

2
(H̃z|

n+ 1
4

i,j,k − H̃z|ni,j,k), (6.48)

Ẽxy|
n+ 1

4
i,j,k − Ẽxy|ni,j,k
∆t/4

+
jω0ǫ+ σy|i,j,k

2ǫ
(Ẽxy|

n+ 1
4

i,j,k + Ẽxy|ni,j,k)

=
Ẽx|

n+ 1
4

i,j,k − Ẽx|ni,j,k
∆t/4

+
jω0

2
(Ẽx|

n+ 1
4

i,j,k − Ẽx|ni,j,k). (6.49)

Upon rearranging the terms, (6.48) and (6.49) become

H̃zy|
n+ 1

4
i,j,k = Ay1|i,j,k · H̃zy|ni,j,k + Ay2|i,j,k · H̃z|

n+ 1
4

i,j,k − Ay3|i,j,k · H̃z|ni,j,k, (6.50)

Ẽxy|
n+ 1

4
i,j,k = Ay1|i,j,k · Ẽxy|ni,j,k + Ay2|i,j,k · Ẽx|

n+ 1
4

i,j,k − Ay3|i,j,k · Ẽx|ni,j,k, (6.51)
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where

Ay1|i,j,k =
8ǫ− jω0∆t · ǫ−∆t · σy|i,j,k
8ǫ+ jω0∆t · ǫ+∆t · σy|i,j,k

, (6.52)

Ay2|i,j,k =
8ǫ+ jω0∆t · ǫ

8ǫ+ jω0∆t · ǫ+∆t · σy|i,j,k
, (6.53)

Ay3|i,j,k =
8ǫ− jω0∆t · ǫ

8ǫ+ jω0∆t · ǫ+∆t · σy|i,j,k
. (6.54)

Substitution of (6.51) into (6.45) yields

H̃z|
n+ 1

4
i,j,k = BC · (Ay1|i,j+1,k · Ẽxy|ni,j+1,k + Ay2|i,j+1,k · Ẽx|

n+ 1
4

i,j+1,k − Ay3|i,j+1,k · Ẽx|ni,j+1,k)

− BC · (Ay1|i,j,k · Ẽxy|ni,j,k + Ay2|i,j,k · Ẽx|
n+ 1

4
i,j,k − Ay3|i,j,k · Ẽx|ni,j,k) + C · h̃z|ni,j,k.

(6.55)

Then, by substituting (6.55) into (6.50), H̃zy|
n+ 1

4
i,j,k is represented as

H̃zy|
n+ 1

4
i,j,k = Ay1|i,j,k · H̃zy|ni,j,k + C · Ay2|i,j,k · h̃z|ni,j,k − Ay3|i,j,k · H̃z|ni,j,k

+BC · Ay2|i,j,k · (Ay1|i,j+1,k · Ẽxy|ni,j+1,k + Ay2|i,j+1,k · Ẽx|
n+ 1

4
i,j+1,k − Ay3|i,j+1,k · Ẽx|ni,j+1,k)

− BC · Ay2|i,j,k · (Ay1|i,j,k · Ẽxy|ni,j,k + Ay2|i,j,k · Ẽx|
n+ 1

4
i,j,k − Ay3|i,j,k · Ẽx|ni,j,k). (6.56)

Finally substitution of (6.56) into (6.44) yields
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Ẽx|
n+ 1

4
i,j,k − ABC2 · Ay2|i,j,k · Ay2|i,j+1,k · Ẽx|

n+ 1
4

i,j+1,k

− ABC2 · Ay2|i,j,k · Ay2|i,j,k · Ẽx|
n+ 1

4
i,j,k

− ABC2 · Ay2|i,j−1,k · Ay2|i,j,k · Ẽx|
n+ 1

4
i,j,k

− ABC2 · Ay2|i,j−1,k · Ay2|i,j−1,k · Ẽx|
n+ 1

4
i,j−1,k

=− ABC2 · Ay2|i,j,k · Ay3|i,j+1,k · Ẽx|ni,j+1,k

+ ABC2 · Ay2|i,j,k · Ay3|i,j,k · Ẽx|ni,j,k

+ ABC2 · Ay2|i,j−1,k · Ay3|i,j,k · Ẽx|ni,j,k

− ABC2 · Ay2|i,j−1,k · Ay3|i,j−1,k · Ẽx|ni,j−1,k

+ ABC2 · Ay2|i,j,k · Ay1|i,j+1,k · Ẽxy|ni,j+1,k

− ABC2 · Ay2|i,j,k · Ay1|i,j,k · Ẽxy|ni,j,k

− ABC2 · Ay2|i,j−1,k · Ay1|i,j,k · Ẽxy|ni,j,k

+ ABC2 · Ay2|i,j−1,k · Ay1|i,j−1,k · Ẽxy|ni,j−1,k

+ AC · (Ay1|i,j,k · H̃zy|ni,j,k − Ay1|i,j−1,k · H̃zy|ni,j−1,k)

+ AC2 · (Ay2|i,j,k · h̃z|ni,j,k − Ay2|i,j−1,k · h̃z|ni,j−1,k)

− AC · (Ay3|i,j,k · H̃z|ni,j,k − Ay3|i,j−1,k · H̃z|ni,j−1,k)

+ C · ẽx|i,j,k. (6.57)

As with (6.31), the coefficient matrix of Ẽx|n+
1
4 is tridiagonal. The fields Ẽx, H̃z, and

the corresponding auxiliary fields in sub-step 1, are calculated according to the following

procedure: first, update ẽx|n+
1
4 and h̃z|n+

1
4 in (6.42) and (6.43); then update Ẽx|n+

1
4 in (6.57);

third, update Ẽxy|n+
1
4 in (6.51); then update H̃z|n+

1
4 in (6.45); finally, update H̃zy|n+

1
4 by

(6.50).

There are 15 terms in (6.57), whereas the number of terms in the implicit equation for
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Ẽx based on the CE-ADI-FDTD with NPML is 21. By applying the fundamental scheme,

then, the number of terms is reduced by 28.57%. At each time step of the 3D simulation, the

implicit equations are solved multiple times, so that the reduction in the number of terms

accumulates and greatly reduces the overall computational time. With the NPML, then, the

proposed CE-FADI-FDTD algorithm provides much greater computational efficiency than

CE-ADI-FDTD.

6.3.1 3D CE-4S-FADI-FDTD with TFSF and NPML

To solve electromagnetic problems associated with excitation by a plane wave source,

the TFSF scheme is incorporated into the 3D CE-4S-FADI-FDTD formulation. As with

the 2D TFSF scheme, the 3D TFSF scheme requires an auxiliary grid for modeling of the

incident wave.

6.3.1.1 1D Auxiliary Grid

In accordance with the CE-4S-FADI-FDTD employed in the 3D domain, the same

algorithm is required for the 1D Auxiliary grid. For Ẽz and H̃y, the four sub-steps algorithm

is specified as follows:

sub-step 1

ẽz|ni = 2Ẽz|ni − ẽz|
n− 1

4
i − ∆t

4ǫ
J̃z|

n+ 1
8

i , (6.58)

h̃y|ni = 2H̃y|ni − h̃y|
n− 1

4
i , (6.59)

Ẽz|
n+ 1

4
i +

jω0∆t

8
Ẽz|

n+ 1
4

i − ∆t

4ǫ∆x
(H̃y|

n+ 1
4

i − H̃y|
n+ 1

4
i−1 ) = ẽz|ni , (6.60)

H̃y|
n+ 1

4
i +

jω0∆t

8
H̃y|

n+ 1
4

i − ∆t

4µ∆x
(Ẽz|

n+ 1
4

i+1 − Ẽz|
n+ 1

4
i ) = h̃y|ni . (6.61)
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sub-step 2

ẽz|
n+ 1

4
i = 2Ẽz|

n+ 1
4

i − ẽz|ni −
∆t

4ǫ
J̃z|

n+ 3
8

i , (6.62)

h̃y|
n+ 1

4
i = 2H̃y|

n+ 1
4

i − h̃y|ni , (6.63)

Ẽz|
n+ 1

2
i +

jω0∆t

8
Ẽz|

n+ 1
2

i = ẽz|
n+ 1

4
i , (6.64)

H̃y|
n+ 1

2
i +

jω0∆t

8
H̃y|

n+ 1
2

i = h̃y|
n+ 1

4
i . (6.65)

sub-step 3

ẽz|
n+ 1

2
i = 2Ẽz|

n+ 1
2

i − ẽz|
n+ 1

4
i − ∆t

4ǫ
J̃z|

n+ 5
8

i , (6.66)

h̃y|
n+ 1

2
i = 2H̃y|

n+ 1
2

i − h̃y|
n+ 1

4
i , (6.67)

Ẽz|
n+ 3

4
i +

jω0∆t

8
Ẽz|

n+ 3
4

i − ∆t

4ǫ∆x
(H̃y|

n+ 3
4

i − H̃y|
n+ 3

4
i−1 ) = ẽz|

n+ 1
2

i , (6.68)

H̃y|
n+ 3

4
i +

jω0∆t

8
H̃y|

n+ 3
4

i − ∆t

4µ∆x
(Ẽz|

n+ 3
4

i+1 − Ẽz|
n+ 3

4
i ) = h̃y|

n+ 1
2

i . (6.69)

sub-step 4

ẽz|
n+ 3

4
i = 2Ẽz|

n+ 3
4

i − ẽz|
n+ 1

2
i − ∆t

4ǫ
J̃z|

n+ 7
8

i , (6.70)

h̃y|
n+ 3

4
i = 2H̃y|

n+ 3
4

i − h̃y|
n+ 1

2
i , (6.71)

Ẽz|n+1
i +

jω0∆t

8
Ẽz|n+1

i = ẽz|
n+ 3

4
i , (6.72)
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H̃y|n+1
i +

jω0∆t

8
H̃y|n+1

i = h̃y|
n+ 3

4
i . (6.73)

At each sub-step the equations are solved in the same order as in the 3D CE-4S-

FADI-FDTD algorithm. For example, in sub-step 1 the auxiliary fields are solved explicitly

first; then, substitution of (6.61) into (6.60) yields the implicit equation with a tridiagonal

coefficient matrix, by which Ẽz is solved implicitly; finally, by substituting Ẽz into (6.61),

H̃y is updated explicitly.

6.3.1.2 3D Field Correction

To simplify the equations, the spatial steps are set to be identical in all directions.

Figure 6.2 shows the total field region and the TF/SF boundary in the 3D model, and

Figure 6.3 shows the six faces of the total field region. Cell (Is1, Js1, Ks1) is in the total

field region. By implementing the 2D CE-4S-ADI-FDTD in Ramadan (2009), after labeling

the fields in the total field region and in the scattered field region, with ∆x = ∆y = ∆z = ∆

and ∆t → ∆t
2
, the 3D implicit equation for Ẽx is written as

8 + jω0∆t

8
Ẽx,tot|

n+ 1
4

Is1,Js1,Ks1 −
∆t

4∆ǫ|Is1,Js1,Ks1

(H̃zy,tot|
n+ 1

4
Is1,Js1,Ks1 − H̃zy,scat|

n+ 1
4

Is1,Js1−1,Ks1)

=
8− jω0∆t

8
Ẽx,tot|nIs1,Js1,Ks1 −

∆t

4∆ǫ|Is1,Js1,Ks1

(H̃yz,tot|nIs1,Js1,Ks1 − H̃yz,scat|nIs1,Js1,Ks1−1).

(6.74)

By applying the field correction method, (6.74) becomes
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Figure 6.2. The 3D TF/SF Grid.

8 + jω0∆t

8
Ẽx,tot|

n+ 1
4

Is1,Js1,Ks1

− ∆t

4∆ǫ|Is1,Js1,Ks1

[H̃zy,tot|
n+ 1

4
Is1,Js1,Ks1 − (H̃zy,tot|

n+ 1
4

Is1,Js1−1,Ks1 − H̃zy,inc|
n+ 1

4
Is1,Js1−1,Ks1)]

=
8− jω0∆t

8
Ẽx,tot|nIs1,Js1,Ks1

− ∆t

4∆ǫ|Is1,Js1,Ks1

[H̃yz,tot|nIs1,Js1,Ks1 − (H̃yz,tot|nIs1,Js1,Ks1−1 − H̃yz,inc|nIs1,Js1,Ks1−1)]. (6.75)
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The incident field is defined on the TF/SF boundary, which is in the computational

domain. The fictitious conductivities are non-zero in the PML region, and accordingly

σx = σy = σz = 0 in the computational domain. Therefore H̃zy = H̃z, H̃zy,inc = H̃z,inc, and

similarly H̃yz,inc = H̃y,inc. The incident fields are obtained from Cell I+1 in the 1D auxiliary

grid, and only Ẽz,inc and H̃y,inc exist, so that H̃zy,inc = 0. After that, (6.75) is rewritten as

8 + jω0∆t

8
Ẽx,tot|

n+ 1
4

Is1,Js1,Ks1

− ∆t

4∆ǫ|Is1,Js1,Ks1

[H̃zy,tot|
n+ 1

4
Is1,Js1,Ks1 − H̃zy,tot|

n+ 1
4

Is1,Js1−1,Ks1]

=
8− jω0∆t

8
Ẽx,tot|nIs1,Js1,Ks1

− ∆t

4∆ǫ|Is1,Js1,Ks1

[H̃yz,tot|nIs1,Js1,Ks1 − H̃yz,tot|nIs1,Js1,Ks1−1]

− ∆t

4∆ǫ|Is1,Js1,Ks1

H̃y,inc|nIs1,Js1,Ks1−1, (6.76)

where

H̃y,inc|nIs1,Js1,Ks1−1 = H̃y,1D|nI+1. (6.77)

In (6.76), the incident field from the 1D auxiliary grid is treated as a regular source,

and the form of the equation is the same as (3.32) based on the CE-ADI-FDTD. The incident

fields in other equations can be found in the same manner. Then, with the TFSF scheme,

after correcting the fields, all of the equations are same as the equations in CE-4S-ADI-FDTD

except that the source fields J̃ and M̃ are represented by the incident fields. By substituting

the incident fields into the source functions in (6.11), the sources of the CE-4S-FADI-FDTD

are defined. Finally, by following the sub-steps from (6.34) to (6.41), the TF/SF scheme can

be incorporated into the 3D CE-4S-FADI-FDTD and NPML algorithm.
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Figure 6.3. The six faces of the total field region.
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CHAPTER 7

REFERENCE METHODS

In this chapter, three reference methods are developed for comparison with the pro-

posed 3D CE-4S-FADI-FDTD algorithm, corresponding to differing boundary conditions

and excitation sources.

7.1 Point Source and PEC Boundaries

Based on the 3D CE-4S-FADI-FDTD, the CE fields have complex values, and the

CE-FDTD in Ma (2006) has been developed to facilitate comparison of the real part, the

imaginary part and the magnitude, starting with the vector CE Maxwell’s equations as

∇× H̃ = ǫ
∂Ẽ

∂t
+ jω0ǫẼ+ J̃, (7.1)

∇× Ẽ = −µ
∂H̃

∂t
− jω0µH̃− M̃. (7.2)

In the example provided in the next chapter, J̃ = ẑJ̃z and M̃ = 0, and the vector CE

Maxwell’s equations can be represented by six CE scalar equations, as follows:

∂

∂t
H̃x + jω0H̃x = − 1

µ

∂

∂y
Ẽz +

1

µ

∂

∂z
Ẽy, (7.3)

∂

∂t
H̃y + jω0H̃y =

1

µ

∂

∂x
Ẽz −

1

µ

∂

∂z
Ẽx, (7.4)

∂

∂t
H̃z + jω0H̃z = − 1

µ

∂

∂x
Ẽy +

1

µ

∂

∂y
Ẽx, (7.5)
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∂

∂t
Ẽx + jω0Ẽx =

1

ǫ

∂

∂y
H̃z −

1

ǫ

∂

∂z
H̃y, (7.6)

∂

∂t
Ẽy + jω0Ẽy = −1

ǫ

∂

∂x
H̃z +

1

ǫ

∂

∂z
H̃x, (7.7)

∂

∂t
Ẽz + jω0Ẽz =

1

ǫ

∂

∂x
H̃y −

1

ǫ

∂

∂y
H̃x −

1

ǫ
J̃z. (7.8)

The magnetic equations are centered at time instant n. By applying the second-order

central difference approximation, it follows that ∂
∂t
(H̃x|ni,j,k) =

H̃x|
n+1

2
i,j,k

−H̃x|
n− 1

2
i,j,k

∆t
. According to

the average approximation, jω0H̃x|ni,j,k = jω0

2
(H̃x|

n+ 1
2

i,j,k + H̃x|
n− 1

2
i,j,k ). Finally, the discretized

magnetic equation can be written as

H̃x|
n+ 1

2
i,j,k − H̃x|

n− 1
2

i,j,k

∆t
+

jω

2
(H̃x|

n+ 1
2

i,j,k + H̃x|
n− 1

2
i,j,k ) =− 1

µ∆y
(Ẽz|ni,j+1,k − Ẽz|ni,j,k)

+
1

µ∆z
(Ẽy|ni,j,k+1 − Ẽy|ni,j,k). (7.9)

Similarly, all of the other discretized equations are

H̃y|
n+ 1

2
i,j,k − H̃y|

n− 1
2

i,j,k

∆t
+

jω0

2
(H̃y|

n+ 1
2

i,j,k + H̃y|
n− 1

2
i,j,k ) =

1

µ∆x
(Ẽz|ni+1,j,k − Ẽz|ni,j,k)

− 1

µ∆z
(Ẽx|ni,j,k+1 − Ẽx|ni,j,k), (7.10)

H̃z|
n+ 1

2
i,j,k − H̃z|

n− 1
2

i,j,k

∆t
+

jω0

2
(H̃z|

n+ 1
2

i,j,k + H̃z|
n− 1

2
i,j,k ) =− 1

µ∆x
(Ẽy|ni+1,j,k − Ẽy|ni,j,k)

+
1

µ∆y
(Ẽx|ni,j+1,k − Ẽx|ni,j,k), (7.11)
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Ẽx|n+1
i,j,k − Ẽx|ni,j,k

∆t
+

jω0

2
(Ẽx|n+1

i,j,k + Ẽx|ni,j,k) =
1

ǫ∆y
(H̃z|

n+ 1
2

i,j,k − Ẽz|
n+ 1

2
i,j−1,k)

− 1

ǫ∆z
(H̃y|

n+ 1
2

i,j,k − H̃y|
n+ 1

2
i,j,k−1), (7.12)

Ẽy|n+1
i,j,k − Ẽy|ni,j,k

∆t
+

jω0

2
(Ẽy|n+1

i,j,k + Ẽy|ni,j,k) =− 1

ǫ∆x
(H̃z|

n+ 1
2

i,j,k − H̃z|
n+ 1

2
i−1,j,k)

+
1

ǫ∆z
(H̃x|

n+ 1
2

i,j,k − H̃x|
n+ 1

2
i,j,k−1), (7.13)

Ẽz|n+1
i,j,k − Ẽz|ni,j,k

∆t
+

jω0

2
(Ẽz|n+1

i,j,k + Ẽz|ni,j,k) =
1

ǫ∆x
(H̃y|

n+ 1
2

i,j,k − H̃y|
n+ 1

2
i−1,j,k)

− 1

ǫ∆y
(H̃x|

n+ 1
2

i,j,k − H̃x|
n+ 1

2
i,j−1,k)

− 1

ǫ
J̃z|

n+ 1
2

i,j,k . (7.14)

As in the equations in the classical FDTD algorithm, the fields in each cell can be

represented by a number of known terms in the equations, and can therefore be updated

explicitly, as follows. At each time step, the magnetic fields are calculated first via (7.9),

(7.10) and (7.11); then the magnetic fields are substituted into (7.12), (7.13) and (7.14) and

the electric fields can be solved for.

7.2 Point Source and ABC

For the boundless problem, the reference method is based on the frequency-domain

solution. The frequency-domain electric field at the observation point is calculated from the

point source and the 3D free-space Green’s function. Then the time-domain electric field is

obtained through the inverse fast Fourier transform (IFFT). The point source used in the
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3D CE-4S-FADI-FDTD with NPML is a z-directed Gaussian, and the source function is

J̃|Is,Js,Ks = exp

[

−(t− t0)
2

2σ2
0

]

ẑ. (7.15)

where the point source is in Cell (Is1, Js1, Ks1). The bandpass-limited source is then the

modulated version of the CE Gaussian function, as follows:

J(x′, y′, z′, t) = exp

[

−(t− t0)
2

2σ2
0

]

cos(2πf0t)δ(x
′)δ(y′)δ(z′)ẑ

= exp

[

−(t− t0)
2

2σ2
0

]

exp(jω0t) + exp(−jω0t)

2
δ(x′)δ(y′)δ(z′)ẑ, (7.16)

where (x′, y′, z′) denotes the position of the point source. Upon taking the Fourier transform,

the source function in the frequency domain can be calculated as

J(x′, y′, z′, ω) = ẑ
δ(x′)δ(y′)δ(z′)

2

∞
∫

−∞

exp

[

−(t− t0)
2

2σ2
0

]

· [exp(jω0t) + exp(−jω0t)] · exp(−jωt)dt

= ẑ
δ(x′)δ(y′)δ(z′)

2
· σ0

√
2π ·

{[

−σ2
0(ω − ω0)

2

2

]

· exp [−j(ω − ω0)t0]

+ exp

[

−σ2
0(ω + ω0)

2

2

]

· exp [−j(ω + ω0)t0]

}

(7.17)

From Balanis (2011), the electric vector potential A can be obtained as follows:

A(x, y, z, ω) =
µ

4π

∫∫∫

V

J(x′, y′, z′, ω)
exp[−jβ

√

(x− x′)2 + (y − y′)2 + (z − z′)2]

4π
√

(x− x′)2 + (y − y′)2 + (z − z′)2
dv′

= ẑ
µ

4π
σ0

√
2π exp

[

− σ2
0(ω − ω0)

2

2

]

· exp
[

− j(ω − ω0)t0

]

· −jβr

r

+ ẑ
µ

4π
σ0

√
2π exp

[

− σ2
0(ω + ω0)

2

2

]

· exp
[

− j(ω + ω0)t0

]

· −jβr

r
, (7.18)
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where r =
√

x2 + y2 + z2 and β = ω
c0
. The electric field at the observation point is calculated

as

E(x, y, z, ω) = −jωA− j
1

ωµǫ
∇(∇ ·A). (7.19)

Upon substituting (7.17) into (7.18) and the result into (7.19), then eliminating the

terms containing (ω + ω0) and doubling the magnitude, the CE electric field Ẽz for an

observation cell in the FDTD grid is given by

Ẽz(x, y, z, ω) =
−jω

r
· B0 · exp (−jβr)

− j

ωµǫ
· B0 ·

(

−β2z2

r3

)

exp(−jβr)

− j

ωµǫ
· B0 ·

(

jβz2

r4

)

exp(−jβr)

− j

ωµǫ
· B0 ·

(

−jβ

r2

)

exp(−jβr)

− j

ωµǫ
· B0 ·

(

2jβz2

r4

)

exp(−jβr)

− j

ωµǫ
· B0 ·

(

3z2

r5

)

exp(−jβr)

− j

ωµǫ
· B0 ·

(

− 1

r3

)

exp(−jβr), (7.20)

where

B0 = (∆x∆y∆z)
µ

4π
σ0

√
2π exp

[

−σ2
0(ω − ω0)

2

2

]

· exp [−j(ω − ω0)t0] (7.21)

and ∆x, ∆y and ∆z are the spatial steps in the 3D FDTD grid. The time-domain solution

can finally be obtained by IFFT as

Ẽz(x, y, z, t) = IFFT
{

Ẽz(x, y, z, ω)
}

. (7.22)
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7.3 Plane Wave Source and ABC

Figure 7.1 shows the model for the 3D scattering problem excited by a plane wave

source in the boundless domain. The incident field is defined on a surface S, which is parallel

to the y − z plane. As in the 3D TFSF scheme, the incident wave is obtained from the 1D

auxiliary grid. The time-domain source function in the 1D auxiliary grid is given by

J(x′, t) =
2

η
exp

[

−(t− t0)
2

2σ2
0

]

cos(2πf0t)δ(x
′ − x0)ẑ. (7.23)

With the CE algorithm and the Fourier transform, the CE source function in the

frequency domain can then be obtained as

Jz(x
′, ω) = ẑδ(x′ − x0) ·

2

η
σ0

√
2π · exp

[

−σ2
0(ω − ω0)

2

2

]

· exp [−j(ω − ω0)t0]

+ ẑδ(x′ − x0) ·
2

η
σ0

√
2π · exp

[

−σ2
0(ω + ω0)

2

2

]

· exp [−j(ω + ω0)t0] (7.24)

By using the 1D free-space Green’s function, the incident wave Ez can be calculated

as

Ez,inc(x, ω) = −jωµ

∞
∫

−∞

Jz(x
′, ω) ·G1D(x, x

′)dx′. (7.25)

By eliminating the terms containing (ω + ω0) and doubling the magnitude, the CE

incident electric field is obtained as
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Ẽz,inc(x, ω) = −jωµ

∞
∫

−∞

2

η
σ0

√
2π · 2 exp

[

−σ2
0(ω − ω0)

2

2

]

· exp [−j(ω − ω0)t0]

·
[−j exp(−jβ|x− x′|)

2β

]

δ(x′ − x0)dx
′

= −σ0

√
2π · exp

[

−σ2
0(ω − ω0)

2

2

]

· exp [−j(ω − ω0)t0] · exp
[

−j
ω

c0
(x0 − x)

]

.

(7.26)
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Figure 7.1. The 3D MOM model.

Upon utilizing the method of moments based on the volume integral equations (VIE-

MOM) in Sefer et al. (2015), the PEC plate is divided into a number of cubic cells. The

total fields ¯̃Ex,
¯̃Ey and ¯̃Ez in each cell are taken as constant. In the case of the 3D CE-4S-
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FADI-FDTD with TFSF, only Ẽz,inc is nonzero, and Ẽx,inc = Ẽy,inc = 0. The VIE-MOM

solution then begins with a system of equations as













Ḡxx Ḡxy Ḡxz

Ḡxy Ḡyy Ḡyz

Ḡxz Ḡyz Ḡzz

























¯̃Ex

¯̃Ey

¯̃Ez













=













0

0

¯̃Ez,inc













,

where

Gmn
pq =































0 if p 6= q and n = m

1− k2
0v(rm)D1 if p = q and n = m

−k2
0v(rm)D2

(

δpq +
∂2

k20∂xp∂xq

)

g(r′, r)|r=rn
r′=rm

otherwise

, (7.27)

Here, Ḡpq(p, q = x, y, z) is an N ×N matrix, ¯̃Ez,inc is an N × 1 vector and the wave number

in free space k0 = ω
√
ǫµ. With exp(jωt) assumed in (7.27),

D1 =
1

3k2
0

[(1 + jk0) exp(−jk0a)− 1], (7.28)

D2 =
4πa

k2
0

[

sin(k0a)

k0a
− cos(k0a)

]

, (7.29)

v(r) =
k(r)

k0
− 1 (object function). (7.30)

The total electric field is calculated via

Ẽ(r) = Ẽinc(r) + jωµ

∫

r
′∈V

¯̄G(r, r′)J̃(r′)dV, (7.31)

where the induced equivalent volume current density is represented as
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J̃(r) = −jωǫv(r)Ẽ(r). (7.32)

At any point in the cavity, the total field is the superposition of the incident field and

the scattered field:

Ẽ(r) = Ẽinc(r) + Ẽscat(r). (7.33)

The scattered field can finally be obtained as

Ẽscat(r) = k2
0

∫

r
′∈V

¯̄G(r, r′)v(r′)Ẽ(r′)dV. (7.34)

In the Matlab program from Sefer et al. (2015), (7.34) is solved by
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= −













Ḡxx Ḡxy Ḡxz

Ḡxy Ḡyy Ḡyz

Ḡxz Ḡyz Ḡzz

























¯̃Ex

¯̃Ey

¯̃Ez













.

Finally, the time-domain scattering field at the observation point is obtained by IFFT.
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CHAPTER 8

EXAMPLES AND RESULTS

8.1 Point Source and PEC Boundaries

A 3D cavity example is now considered in order to compare the CE-4S-FADI-FDTD,

the CE-ADI-FDTD and the classical FDTD algorithms. The medium inside the cavity is

free space, and a z-directed electric current source is placed at the center of the cavity. The

spatial steps are set equal in each direction: ∆ = ∆x = ∆y = ∆z = 0.2855 m. The cavity

is 47 × 47 × 47 cells in size, and the point source is at (24, 24, 24). The domain of the

computation is truncated by perfect electric conductor (PEC) boundaries in all directions.

The source emits a modulated Gaussian pulse:

Jz(t) = exp

[

−
(

t− t0√
2σ0

)2
]

cos(2πf0t), (8.1)

where the center frequency f0 = 100 MHz, the bandwidth bw = 10 MHz, σ0 = 9.0032×10−8

s, the time step ∆t = 0.54986 ns for CFLN= 1, and t0 = 720.25 ns. Figure 8.1 gives

a visual comparison of Ẽz at the observation point (14, 24, 24) according to the CE-ADI-

FDTD and the proposed CE-4S-FADI-FDTD. The CE expression of the electric field is

given by Ẽz = Ep
z + jEq

z . Therefore Ep
z represents the real part of Ẽz, which is shown in

the top sub-figure of Figure 8.1. The observation point is 10 cells distant from the source

point, and the time delay of the Gaussian is around 0.72 µs; consequently, the first half

of the Gaussian can be seen at around t = 0.8 µs. The Gaussian source is narrow in the

frequency domain, and therefore wide in the time domain. In contrast, the size of the cubic

cavity is relatively small, at less than 4.5λmin in each direction. As a result of the PEC

boundaries, the reflected fields can be seen without a long simulation time. Accordingly,
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after t = 0.8 µs the incident field from the source and the reflected field from the boundary

reach the observation point. Superposition of the incident field and the reflected field forms

the peak at around t = 1.1 µs. Similar trends are seen in the middle sub-figure for the

imaginary part of Ẽz and in the bottom sub-figure for the magnitude of Ẽz.

The reference method here is CE-FDTD with CFLN= 1. As can be seen, with

CFLN= 1, both the CE-ADI-FDTD and the CE-4S-FADI-FDTD algorithms yield results

with high accuracy. To accelerate the simulation a large CFLN is needed, which leads to

a decline in accuracy of the implicit methods. Because of the 4S scheme, the CE-4S-ADI-

FDTD algorithm is much more accurate than the CE-ADI-FDTD algorithm with the same

CFLN; however, the 4S scheme also results in a four sub-step computational procedure,

which costs more time than the two sub-step computational procedure in the CE-ADI-

FDTD. In the CE-4S-ADI-FDTD algorithm, the computation time of each sub-step is same

as in the CE-ADI-FDTD. Consequently, by selecting double the CFLN used in the CE-ADI-

FDTD at each time step the computation time based on the four sub-steps computational

procedure in the CE-4S-ADI-FDTD is same as the computation time based on the two sub-

steps computational procedure in the CE-ADI-FDTD. In contrast, with the 4S scheme, the

decline in accuracy of CE-4S-ADI-FDTD due to the large value of CFLN is much less than

the decline in accuracy of CE-ADI-FDTD. In other words, by doubling the CFLN value,

the computation time of the CE-4S-ADI-FDTD is same as the computational time of the

CE-ADI-FDTD, although CE-4S-ADI-FDTD is more accurate than CE-ADI-FDTD.

In the proposed CE-4S-FADI-FDTD algorithm, as a benefit of the fundamental

scheme, the time required for each sub-step in the four sub-step procedure is much less

than the time required for each sub-step in the two sub-step based CE-ADI-FDTD. There-

fore, without a significant increase in the CFLN value, the proposed CE-4S-FADI-FDTD

algorithm provides a faster computational speed than the CE-ADI-FDTD while maintaining

greater accuracy. In all sub-figures of Figure 8.1, with CFLN= 6 the solution using the

proposed CE-4S-FADI-FDTD algorithm is in much better agreement with the reference so-
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lutions than from CE-ADI-FDTD with CFLN= 4. In Table 8.1, the CPU time required by

CE-4S-FADI-FDTD is 5% less than that required by CE-ADI-FDTD.

Table 8.1. Comparison of computational costs using different methods with PEC boundaries

CE-FDTD CE-ADI-FDTD CE-4S-FADI-FDTD
∆ λmin/10 λmin/10 λmin/10

Cavity 47× 47× 47 47× 47× 47 47× 47× 47
CFLN 1 4 6

Iterations 1965 491 327
CPU 811.44 seconds 570.95 seconds 539.6 seconds

In Figure 8.2, the FDTD solution with CFLN= 0.25 is given for comparison with the

reference CE based FDTD solutions. Because of the high center frequency of the source,

the phases of fields are extremely sensitive to spatial distance. In contrast, the phase error

grows rapidly in only a few steps of propagation; the phase error accumulates as the wave

propagates, especially after impinging on the PEC boundaries. As a result, CFLN= 0.25 is

selected for the classical FDTD. With the CE algorithm, the fields are complex but LPL,

without extreme change of phase in space. Consequently CFLN= 1 is adequate for the CE

based FDTD’s. The solutions are all in good agreement. For CFLN= 0.5, the error in the

classical FDTD solution is apparent.

These numerical results demonstrate the accuracy and unconditional stability of the

proposed method. It has been shown that, with an appropriately large CFLN, the CE-4S-

FADI-FDTD algorithm outperforms CE-ADI-FDTD in accuracy and computational effec-

tiveness together.
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Figure 8.1. Comparison of Ẽz at the observation point for the 3D model excited by a point
source and truncated by PEC boundaries.
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Figure 8.2. Comparison of |Ẽz| according to the CE based FDTD and |Ez| based on the
classical FDTD at the observation point.
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8.2 Point Source and NPML Boundaries

In this section, a 3D cavity truncated by the NPML region is modeled. The spatial

step size is chosen to be the same in each direction, at ∆ = ∆x = ∆y = ∆z = 0.2855 m. In

each direction, a NPML region of ten cells is extended along both sides of the computational

domain, which forms the new cavity with 41 × 41 × 41 cells. The point source is located

at (21, 21, 21). The source function is the same as in equation (8.1), and the observation

point is at (11, 21, 21). The time step is ∆t = 0.54986 ns for CFLN= 1. The NPML region

[10, 2, 0.001%] is defined with the same setting as in (6.32) and (6.33).

Comparison of Ẽz at the observation point is shown in Figure 8.3. Since the incident

wave and the reflected wave are absorbed in the NPML region, phase error due to reflection

is eliminated. Accordingly, the solutions using all methods exhibit excellent accuracy. In

Figure 8.3, IFFT represents the solution based on the 3D free-space Green’s function and

IFFT. The CE-FDTD solution is also depicted, and is in good agreement with the IFFT

solution. With CFLN= 6, the CE-ADI-FDTD solution is reasonably accurate without the

issue of phase error from the reflected waves; however, the error of the in-phase component in

the top sub-figure is still observable. In contrast, with CFLN= 15, the CE-4S-FADI-FDTD

solution adherers to the reference solutions, showing its ability in maintaining accuracy with

a large CFLN.

Table 8.2. Comparison of the computational costs using different methods with NPML
boundaries

CE-FDTD CE-ADI-FDTD CE-4S-FADI-FDTD
∆ λmin/10 λmin/10 λmin/10

Cavity 41× 41× 41 41× 41× 41 41× 41× 41
CFLN 1 6 15

Iterations 2096 349 140
CPU 815.26 seconds 681.24 seconds 482.13 seconds

The computation times taken for the different CE based FDTD methods are shown

in Table 8.2. The computation time for CE-4S-FADI-FDTD is 29% less than for CE-ADI-
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FDTD. The proposed CE-4S-FADI-FDTD algorithm therefore provides a faster and more

accurate solution than CE-ADI-FDTD in problems truncated by NPML boundaries.

Figure 8.4 shows the classical FDTD solution for the same problem. The magnitude

of the electric field at the observation point based on different methods is shown. By avoiding

the phase error from the reflected boundaries, the classical FDTD solution remains accurate

with CFLN= 0.5 and all solutions are in good agreement.
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Figure 8.3. Comparison of Ẽz at the observation point for the 3D model excited by a point
source and truncated by NPML boundaries.
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Figure 8.4. Comparison of |Ẽz| according to the CE based FDTD and |Ez| based on the
classical FDTD at the observation point.
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8.3 Plane Wave Source and NPML Boundaries

In the 3D cavity model excited by a plane wave source, the incident fields in the 3D

space are obtained from an auxiliary grid, and the z-directed electric current source in the

1D grid is

Jz,1D(t) = − 2

2η∆x
exp

[

− (
t− t0√
2σ0

)2
]

cos(2πf0t), (8.2)

where ∆x = λmin/20 = 0.1249 m, t0 = 180.06 ns, σ0 = 22.508 s, and the characteristic

impedance of free-space η = 120π Ω. The center frequency f0 = 100 MHz and the bandwidth

is bw = 40 MHz.

x

y

z

L1

L1

L2

L2

The computational domain

The NPML region

The PEC plate

The incident electric field


 is defined on the Surface

The observation point

S

Figure 8.5. The model for the 3D cavity with a plane wave source and NPML boundaries.

Figure 8.5 depicts the 3D model of the scattering problem. The incident CE electric
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field Ẽz,inc is defined on Surface S which is centered at (λ0, 0, 0). The PEC plate, which acts

as the reflector in the scattering problem, is centered at the origin, and the observation point

is positioned at (11λ0, 0, 0). The observation point is therefore a distance 11λ0 from the PEC

reflector. The size of S and the PEC plate aregiven by L1 and L2, where L1 = 0.75λmin and

L2 = 0.55λmin. The spatial steps in the 3D model are same as the spatial step in the 1D

auxiliary grid: ∆x = ∆y = ∆z = 0.1249 m. The time step ∆t = 0.24056 ns for CFLN= 1.

As shown in Figure 7.1, the incident field Ẽz,inc propagates in the −x direction and

subsequently impinges on the PEC plate. The PEC plate is then illuminated by the incident

field, from which the induced current is created. The induced current then becomes a

radiating source, which results in propagation of the scattered field.

The scattered field at the observation point is shown in Figure 8.6. The size of the

cubic cell in VIE-MOM is same as that in the CE based FDTD’s. The PEC plates in

all the solutions are consequently modeled by one layer of cubic cells. As can be seen in

all the sub-figures, CE-FDTD and VIE-MOM serve as the reference solutions, and are in

good agreement. With CFLN= 6, the proposed CE-4S-FADI-FDTD solution still preserves

great accuracy and stability. Comparison of the numerical results makes clear that the

TFSF scheme and the NPML algorithm can be incorporated into the CE-4S-FADI-FDTD

algorithm for modeling the boundless cavity excited by a plane-wave source.
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Figure 8.6. The scattered field at the observation point.
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CHAPTER 9

CONCLUSIONS AND FUTURE WORK

9.1 Conclusion

The 3D CE-4S-FADI-FDTD algorithm has been formulated in detail by considering

the excitation source and the boundary conditions. It is well known that a large value

of CFLN leads to a decline in accuracy. By applying the 4S scheme, the four sub-steps

procedure is used at each time step and provides greater accuracy than the two sub-steps

procedure in the CE-ADI-FDTD algorithm.

In addition, use of the fundamental scheme greatly reduces the number of terms and

operations in the implicit equations. In each sub-step, the implicit equations are solved

multiple times, and most of the computation time is consumed by the implicit equations.

This improvement in solving the implicit equations therefore gives a considerable reduction

in the total computation time.

The examples demonstrate that the CE-4S-FADI-FDTD algorithm provides more

accurate and faster solutions than the CE-ADI-FDTD algorithm for cavity problems with

different sources and boundary conditions. In summary, by benefiting from the 4S scheme

and the fundamental scheme, the proposed CE-4S-FADI-FDTD algorithm outperforms CE-

ADI-FDTD in both accuracy and computational effectiveness.

9.2 Future Work

The proposed CE-4S-FADI-FDTD algorithm serves as an improved version of the

CE-ADI-FDTD. Disadvantages of the CE-ADI-FDTD have also been inherited, however,

and overcoming these disadvantages is an aim of future work. Three disadvantages of the

proposed method are identified, as follows.
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9.2.1 The Bandwidth of The Source Excitation

Like the CE-ADI-FDTD, the proposed 3D CE-4S-FADI-FDTD method is developed

for a problem with a narrow-band source. That is, as the ratio of the center frequency to the

bandwidth in the source function increases, the accuracy from the CE scheme is improved.

With a wide-band source, therefore, the accuracy using the CE scheme is less.

9.2.2 The Cavity Size

As an implicit FDTD method, the CE-4S-FADI-FDTD algorithm provides a faster

solution than the explicit FDTD method for a relatively small cavity problem. The compu-

tation time cost from using an implicit equation is much larger than that from an explicit

equation. For a large cavity, more cells are therefore needed in modeling the problem. All

fields in the explicit FDTD are calculated by explicit equations, and the increase in the com-

putation time is therefore limited. In contrast, the electric fields in the CE-4S-FADI-FDTD

algorithm are all calculated via implicit equations. More cells imply more implicit equations,

and therefore greatly increase the computation time. To compensate for the time increase

from the additional implicit equations, a larger CFLN is required, degrading the accuracy.

9.2.3 The Spurious Charge Problem

The proposed 3D CE-4S-FADI-FDTD algorithm suffers from the spurious charge

problem, discussed in Jung et al. (2009). A spurious charge exists near the source region,

which acts as a secondary radiating source and causes errors. If the CFLN is small, the

spurious charge grows extremely slowly, and the erroneous fields generated by the spurious

charge is negligible. With a large CFLN, however, as the simulation proceeds, the spurious

charge grows rapidly and wrecks the solution based on the actual source. So far no stable

method has been developed for eliminating the spurious charge in the 3D case; this is an

interesting challenge.
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