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Recognition of three-dimensional (3D) shape is a remarkable subject in computer vision systems, because of the lack of excellent
shape representations. With the development of 2.5D depth sensors, shape recognition is becoming more important in practical
applications. Manymethods have been proposed to preprocess 3D shapes, in order to get available input data. A common approach
employs convolutional neural networks (CNNs), which have become a powerful tool to solve many problems in the �eld of
computer vision. DeepPano, a variant of CNN, converts each 3D shape into a panoramic view and shows excellent performance. It
is worth paying attention to the fact that both serious information loss and redundancy exist in the processing of DeepPano, which
limits further improvement of its performance. In thiswork, we propose amore e�ectivemethod to preprocess 3D shapes also based
on a panoramic view, similar to DeepPano. We introduce a novel method to expand the training set and optimize the architecture
of the network.�e experimental results show that our approach outperforms DeepPano and can deal withmore complex 3D shape
recognition problems with a higher diversity of target orientation.

1. Introduction

�ree-dimensional (3D) shapes contain information about
real-world objects, and scientists in the �eld of computer
vision have focused on how to fully use 3D shapes to solve
problems such as object classi�cation and object recognition.
Convolutional neural networks (CNNs) have been widely
applied to 2D images and show brilliant performance, and
hence it is natural to introduce CNNs to 3D object recogni-
tion. One of the most important challenges in generalizing
CNNs from 2D to 3D images is that while 2D images have
a regular data structure, 3D shapes such as point clouds or
meshes are too irregular to act as direct input for CNNs.
Hence, it is clear that the performance of object recognition
is greatly a�ected by whether good representations can be
obtained for 3D shapes. According to the theoretical basis,
previous works on 3D object recognition can be roughly
summed up in two categories: hand-designed features based
methods and deep learning based methods [1]. �e primary
di�erence between the two categories is in how to choose
the features of 3D shapes: the former depends on arti�cially

designing features, while the latter can automatically learn
more abstract features by employing multilayer neural net-
works. Hand-designed methods mainly use features such as
histogram of oriented gradient (HOG), scale-invariant fea-
ture transform (SIFT), signature of histograms of orientations
(SHOT), viewpoint feature histogram (VFH), and point fea-
ture histogram (PFH), which are applied to various machine
learning algorithms, for instance, random forests [2], support
vector machines (SVMs) [3], or perceptionmachines [4].�e
recognition process is hence summarized by the following
steps: feature extraction, feature coding, feature combination,
and object recognition. Although this method has been
popular and achieved success in 3D recognition, the features
are low-level. Additionally, designing an appropriate feature
usually requires domain expertise and experience. Even then,
it requires much research and time and it remains dicult
to achieve a satisfactory level of recognition. �e rise of
deep learning greatly changed the state of image recognition.
Methods based on deep learning not only map from features
to output but also extract the features themselves, and o�en
result in much better performance than can be obtained
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with hand-designed features. Deep learning can make the
recognition algorithm quickly adapt to variable tasks, with
less human intervention.

Previous work on 3D recognition based on deep learning
can be broadly categorized into two styles, and di�erent
types of methods have di�erent advantages and disadvan-
tages. Volumetric CNNs[5–7] convert 3D shapes to voxelized
shapes in a similar approach to the representation of 2D data.
However, volumetric representation is subject to the limits of
resolution. In order to obtain proper resolution comparable
to 2D images, the number of voxels is large and the data
tends to be sparser.�is poses a challenge to storage capacity
and operational performance of algorithms. Li et al. [8]
and Wang et al. [9] proposed a special method to alleviate
this problem; however, it does not fundamentally solve the
problem. Multiview CNNs render a 3D shape into a group
of 2D images by projecting the 3D model onto a plane
from various perspectives [6, 10]. �us, 3D recognition
subjects can be converted to large 2D recognition problems,
which have been solved with excellent performance. With
available network architecture, this method has achieved
dominating performance on shape classi�cation and retrieval
tasks. However, when this method converts 3D shapes to
2D images, part of the spatial information is inevitably lost,
and this results in a reduction of spatial discrimination.
Additionally, this method is dicult to extend to other 3D
tasks such as scene understanding and shape completion.
For feature-based CNNs, the main idea is that 3D data is
converted into a vector by this method, and traditional shape
features act as the input for networks [11, 12]. �e use of
traditional features additionally implies that thismethod does
not take full advantage of the ability of deep neural networks
to automatically learn features.

In this work, we propose a new machine learning tech-
nique for 3D shape recognition, related to the previous
method DeepPano [13], which transforms 3D shapes into 2D
panoramic views. Di�erent from multiview convolutional
neural networks[10], DeepPano renders a 3D shape into only
one image. �e le� and right sides of the rendered image
are divided; however, they are generally connected in the
original 3D shape. Hence, there is a loss of information in the
conversion process. In order to avoid any loss, DeepPano adds
to one side of the map an extra padded area cloned from the
other side. �is means that some of the pixels are repeated,
and redundant information is included. �e convolutional
feature map extracted from the panoramic views shi�s
as the 3D shape rotates, so in order to obtain rotational
invariance, another creative method of DeepPano, row-wise
max-pooling layer (RWMP), is introduced. Unlike the typical
pooling layer in CNN, RWMP transforms a long line of
elements in a featuremap into only one element, which causes
an additional large information loss. We propose a new tech-
nique to avoid the loss of information and the redundancy
that occur in DeepPano. In our approach, for panoramic
views, when the 3D shape rotates, pixels of the corresponding
2D rendered image move in parallel. When rendered images
are obtained, we do not directly treat them as input data,
but instead transform the pixels in each image by certain,
or even random, step sizes to generate a series of copies of

each image; the expanded training set included a series of
rotational copies of the original 3D shape. CNNs trained
by the expanded training set can obtain excellent rotational
invariance. We called this method rotation expansion.

In short, the key contribution of this paper is the rotation
expansion method, a novel processing method on training
sets for 3D shape recognition. In addition to achieving higher
accuracy on original test sets, we also design comparative
trials to study the recognition performance onmore complex
test sets. Our results show that rotation expansion is a more
e�ective method and can preserve more original information
to higher accuracy when compared to DeepPano.

�is paper is structured as follows. Section 2 reviews the
related work on the application of deep learning to 3D object
recognition. Section 3 describes the details of panoramic
view rotation expansion. Section 4 shows the experimental
results. Finally, Section 5 draws some conclusions about our
work and sets future research lines to improve the proposed
method.

2. Related Work

Deep learning has achieved outstanding performance in
2D object class recognition. �ere are many representative
network architectures, and convolutional neural networks are
some of the most signi�cant approaches. Krizhevsky et al.
apply a deep learning model, which was developed based
on CNN in the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) [14] 2012 and obtained excellent results
compared with previous work.

Due to the distinguished performance of CNNs on
problems related to 2D images, it is natural and reasonable to
introduce them for similar applications on 2.5D and 3D data.
RGB-D (R: red, G: green, B: blue, D: depth) data is typically
a kind of 2.5D data. Methods based on CNNs simply add the
depth as a forth channel of input to the previous RGB image,
which has three channels of input.�is approach is essentially
equivalent to the old method based on the RGB data and,
hence, does not fully use the geometric information provided
by the depth.

It is a notable fact that 3D data has a much more complex
structure than 2D data, which is in a more regular format.
�is makes it quiet dicult to directly apply CNN methods
to 3D shape recognition. �e input data of CNN is generally
in tensor form. In order to make use of CNN in 3D shape
recognition, the �rst issue to be solved is how to transform
3D shapes into an available format that can act as the input
for a CNN. Di�erent methods to represent 3D shapes have
led to a series of solutions.

Voxelization based methods: voxelization is based on
volumetric representation, which has played an important
role in the computer vision community since the 1980s. It
provides a simple and robust description and can be regarded
as an extension of the pixels in 2D images; the 3Dmodels have
regular data structure, which facilitates digital processing.
With the successful application of CNNs in the �eld of 2D
images, many researchers have begun to apply 3D CNNs to
volumetric shapes. Maturana et al. [5] trained a real-time 3D
supervised learning architecture with volumetric 3D shapes.
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Figure 1: Flowchart used to illustrate the proposed method. �e blue arrow represents the pipeline corresponding to Section 4.3, used to
study classi�cation; the purple arrows represent the pipeline related to Section 4.4, used to study robustness to rotation.

Wu et al. [7] transformed each 3D shape into a 3D grid, and
volumetric models were applied for 3D shape recognition
with the use of a convolutional deep belief network. In
[15], features from a probabilistic space were learned by
leveraging advances in volumetric convolutional networks
and generative adversarial nets, which can be widely applied
to 3D recognition. In [8], a 3D convolutional auto-encoder
was applied to recognize 3D shapes.While volumetric shapes
were not directly considered as an input for 3D CNNs in [16],
multilayer dense representations of the volumetric shapes
were extracted using a feature generator consisting of a
convolutional neural network and recurrent neural network
(RNN) and were fed into a classi�er to recognize 3D shapes.

Projection basedmethods, which are di�erent fromdirect
3D representations, project 3D shapes into various 2D spaces.
In [10], a multiview CNN was applied to extract visual fea-
tures from projected images from di�erent views, and max-
pooling technologywas applied to combine information from
multiple views of a 3D shape into a single shape descriptor
and achieved higher recognition performance than single
image recognition architectures. Similarly, coding technology
was proposed in [17] which constructs a compact descriptor
based on a series of 2D views, in the format of depth rendering
from 3D objects. A light �eld descriptor (LFD) [18] was
used to extract features from light �elds rendered from
cameras located on a sphere in order to improve robustness
to rotation. Papadakis et al. [19] used a set of panoramic
views of a 3D shape to generate a 3D shape descriptor named
PANORAMA, which describe the position and orientation of

the shape in 3D space.�e 2Ddiscrete Fourier Transform and
the 2D Discrete Wavelet Transform are computed for each
view. Shi et al. [13] proposed DeepPano. �e main idea of
DeepPano is to render 3D shapes into 2D panoramic views by
projecting the 3D shape onto a cylindrical surface whose axis
is parallel to the principal axis of the 3D shape.�is approach
is based on the assumption that models in ModelNet-10 and
ModelNet-40 are oriented upright.�us, an image containing
spatial information is obtained and can be transmitted to
a variant of CNN for object recognition. �e most creative
part of this method is an additional layer, the row-wise
max-polling layer (RWMP), which is inserted between the
convolutional and fully connected layers, to enhance the
robustness of the learned representations to rotation.

3. Methodology

In this section, we outline the proposed method for 3D shape
recognition. We �rstly render the 3D shapes of both the
training and test sets into 2D panoramic views; in this way we
convert 3D shapes into 2D datasets. �us, the 2D training and
test sets we use are obtained. Next, we process the training set
through some reasonable methods, including oversampling
and rotation expansion, to produce an expanded training
set. To improve the performance of the network for object
recognition, we feed both the original training set and the
expanded training set into the CNN architecture. An overall
�owchart to illustrate the proposed method is shown in
Figure 1.
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Figure 2: Illustration of the panoramic view construction process. In this �gure, p1 is the center point of the corresponding grid, q1 is the
point on the z-axis at the same height as p1, t1 is the intersection of the ray drawn from q1 and the model surface, and d1 represents the distance
between q1 and t1. �e geometric meanings of q2, p2, t2, and d2 are similar to q1, p1, t1, and d1, respectively.

3.1. Converting a 3D Shape into a 2D Panoramic View. In
order to construct the panoramic view, the 3D model is sur-
rounded by a cylindrical surface whose central axis coincides
with the principal axis of the model. A 3D mesh model is
composed of a series of small triangles, and the position of
each triangle vertex is represented by Cartesian coordinates.
In this case, it is convenient to represent the spatial location
by cylindrical coordinates. We de�ne the principal axis in
the vertical upward direction as the positive z-direction, and
the z value of the lowest vertex as the origin (zero). Since
objects in the same category may have di�erent sizes, which
can a�ect the performance of object classi�cation algorithms,
we automatically match the height of the cylindrical surface
to the height of the object.

�e process of generating a 2D panoramic view from a
certain 3D shape is shown in Figure 2.�e cylindrical surface
is divided into a dense grid structure, and each grid square
is represented by the cylindrical coordinate (r, �, h) of its
center point p, where � is the polar angle, h is the z value,
and r is the value of radial parameter. For each grid point
p = (ri, �i, hi), there is a corresponding point q = (0, 0, hi)
of the same height on the z-axis. A ray drawn from an axis
point q toward the corresponding grid point p may or may
not intersect with the surface of the 3D shape. Considering
the complexity of 3D shapes, there may even be more than
one intersection. We are measuring the distances between
the starting point q and the intersections t, and for each
grid, we choose the maximum distance as the corresponding
mapped distance. Additionally, if no intersection occurs, we
set the distance to zero. Each square on the grid thus obtains a
certain distance value. We discretize these distance values to
256 levels and assign a corresponding grayscale. Finally, the
cylindrical surface is unfolded from a certain angle � (here we
choose �=0) to form the �nal 2D image. Figure 3 shows some
examples of panoramic view.

3.2. Oversampling and Rotation Expansion. In this paper,
in addition to directly feeding the generated 2D images to
the network, we also preprocess the 2D data in two ways:
oversampling and rotation expansion.

Oversampling is proposed based on a study of the impact
of imbalanced training data on CNN performance in image
classi�cation [20]. In certain datasets, some categories con-
tain large amounts of samples, while other categories may
include only a few samples. A set of this kind presents an
imbalanced distribution between classes. Results show that
imbalanced training data can potentially have a severely
negative impact on the performance of CNN. A method
named oversampling is proposed to overcome the negative
e�ects. Here, we apply oversampling for 3D recognition by
randomly selecting and duplicating samples in all, except the
largest, classes until they all have the same number of sam-
ples.

During the process of converting 3D shapes to 2D
panoramic views, a�er projecting the 3D shape to the cylin-
drical surface, we unfold the surface from a certain angle
and thus obtain a 2D image. It is obvious that pixels on
either side of the unfolding angel are initially interlinked and
represent an integral part of the surface of the 3D model.
�e le� and right boundaries of the 2D image hence lead to
a loss of information which may have a negative in�uence
on the performance of CNN. To avoid the artifacts caused
by boundaries, DeepPano pads the panoramic view on one
side, and the padded area is cloned from other side of the 2D
image. Although the purpose is to avoid boundary artifacts,
the padded area means that some of the repeated pixels are
arti�cially added to the image, and this can be regarded as
another type of artifact. �e padded area is not just a matter
of information redundancy, but also a great distortion of the
original information. It also introduces a negative factor that
in�uences the network performance.
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Figure 3: 3D shapes and their corresponding panoramic views.
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Figure 4: Comparison of two pooling methods: (a) row-wise max-pooling (RWMP), the colored grids represent the maximum elements in
each row; (b) typical max-pooling, the colored grids represent the maximum elements in a local area of 2 × 2.

Although the 3Dmodels are oriented upright, the convo-
lutional features extracted from the panoramic views change
with rotation of the 3D shape. In order to get robustness
for rotation, a novel layer named row-wise max-pooling
(RWMP) is introduced in DeepPano. Unlike the typical
pooling layer in CNN, RWMP simply transforms row ele-
ments in feature maps to a single feature, which takes the
maximum value of each row in the input map of this layer
and concatenate them into the output vector (Figure 4(a)).
In this way, the output of the RWMP layer is not a�ected
by the shi� of the input map; thus its output is invariant to
the rotation of the 3D shape. However, this also means that
a large number of elements, which are obtained by massive
computing between multiple convolutional layers, in the
feature maps are discarded. And, during the conversion from
a matrix to a column vector, only spatial information along
the vertical direction is preserved and the spatial distribution
of elements inside each row is lost. Moreover, the typical
pooling layer of CNN acts on a fairly local area, and a�er the

pooling operation, the spatial distribution is largely retained
(Figure 4(b)).

In order to retain the advantages of DeepPano but also
try to overcome the shortcomings mentioned above, a novel
method named rotation expansion (Figure 5) is proposed.
Instead of a padded area cloned from one side and spliced
with the other side, the circle is divided into n equal angles,
and a certain 3D shape is rotated n times according to this
set of angles. �us we obtain n copies of every 3D shape. In
fact, considering the correspondence between the 3D shape
and the 2D panoramic view, it is more convenient to directly
apply the circulation translation to the 2D image according
to a series of uniformly spaced steps, and this operation
can be called “rotation” for convenience. �is process is
equivalent to unfolding the cylinder at a series of di�erent
reference angles. Although each copy has boundary artifacts,
the combination of a series of copies retains complete
information without any boundary artifacts, and no repeated
pixels are introduced into the images as in the padded area
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Figure 5: Illustration of rotation expansion. �e top le� image is the original view, and the others are variants, corresponding to rotation
angles of 60∘, 120∘, 180∘, 240∘, and 300∘, read from top to bottom and le� to right.

approach [13]. If we apply rotation expansion to the training
set and feed it into the neural network, features that are
robust to rotation will be fully extracted and the network will
obtain rotational invariance, similar to the e�ect of RWMP in
DeepPano, but without the loss of spatial information inside a
row.

As an extension, for the purpose to further strengthening
the rotational robustness of features extracted from training
data, we generate several copies for each 3D shape by
rotating randomly rather than according to uniformly spaced
angles. In order to test the strength of the robustness of the
recognition results to rotation, we also generate a variation of
the test set by randomly rotating each sample in the original
test set. �is is a reasonable and necessary veri�cation,
because the samples in ModelNet-10 and ModelNet-40 that
we used have been arti�cially adjusted, more or less, based on
observation and information from the Princeton ModelNet
website. In fact, results of comparative experiments later in
this paper prove this point. Details of ModelNet data and the
experimental results are represented in Experiments.

4. Experiments

4.1. Datasets. One of the most widely used 3D shape datasets
is the Princeton ModelNet, which contains 127,915 CAD
(computer aided design)models in 662 object categories. Two
subsets of it are o�en selected to train and test networks: (1)
ModeleNet-10 is a subset composed of 4899 CAD models
classi�ed into 10 categories and divided into a training set and
a test set. �e training set includes 3991 models and the test
set includes 908 models. All the CAD models in ModelNet-
10 are manually cleaned and the orientation of each one is
aligned. (2) Modelnet-40 is a larger set than ModeleNet-
10, featuring 12,311 models classi�ed into 40 categories; 9843
models are used for training and the 2468 are used for

testing. It is claimed that the orientations of these models
were not aligned. However, most models in ModelNet-40 in
fact satisfy the upright assumption based on the observation
of a considerable part of the models through 3D graphics
so�ware.

4.2. Implementation Details. In our implementation, each
3D model is projected into a 36 × 108 panoramic image,
and the training set composed of these panoramic views is
regarded as the original training set. In order to improve the
performance of CNN networks, oversampling and rotation
expansion are applied to the original data. We call the
oversampled dataset balanced data. Rotation expansion has
two di�erent implementation options: expanding the data
according to either n �xed or n random steps. We call
the former regularly expanded data and the later randomly
expanded data. �e architecture of the network is illustrated
in Figure 6. For the convolutional layers (conv1–conv4),
there are 64, 80, 160, and 320 feature maps, and for each
convolutional layer, the size of �lters is 1, 2, 4, and 6,
respectively. A 2 × 2 max-pooling layer is inserted a�er every
convolutional layer. For the fully connected layers (fc1–fc2),
there are 512 and 1,024 hidden units.�e so�max layer output
class probabilities, and the class with the highest probability is
regarded as the prediction. Table 1 illustrates the comparison
of dimensions between our architecture and other typical
methods. It is obvious that the input size of our architecture
is much smaller compared with other architectures, also the
numbers of kernels in convolutional layers and the numbers
of weights in fully connected layers. In addition, except conv1,
the strides of conv2, conv3, and conv4 are all 2. All these facts
result in the fact that the dimension of our architecture is
much smaller than other architectures.�enetwork is trained
using the stochastic gradient descent (SGD), with rms-decay,
weight-decay, and dropout techniques.
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Table 1: Comparison of the parameters of architectures used in the three methods. In this table, “conv” represents convolutional layer and
“fc” represents fully connected layer. For each convolutional layer, the �rst number in brackets is the kernel size, and the second is the number
of kernels. For each fully connected layer, the number represents the number of hidden units in this layer.

Method 3D ShapeNets [7] DeepPano [21] Our Method

Input Size 30 × 30 × 30 160 × 64 108 × 36
Conv1 (6, 48) (5, 96) (1, 64)

Conv2 (5, 160) (5, 256) (2, 80)

Conv3 (4, 512) (3, 384) (4, 160)

Conv4 None (3, 512) (6, 320)

Fc1 1200 Unknown 512

Fc2 4000 Unknown 1024

Output Size 10 or 40 10 or 40 10 or 40
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Figure 6: Illustration of network structure. In this �gure, “conv” represents convolutional layer (each layer contains the corresponding max-
pooling layer), “fc” represents fully connected layer, and “so�max” represents so�max layer.

�e construction of panoramic views is implemented
separately in C++, rendering the panoramic view for each 3D
shape with an unoptimized CPU implementation. �e GPU-
accelerated network is implemented within the TensorFlow
framework, running on a machine with Intel Core-i7 CPU,
NVIDIA TITAN-XP GPU, and 16 GB RAM. �e training
process takes from 20 min to 4 h, depending on which type
of training set is selected.

4.3. 3D Shape Classi	cation. To evaluate the proposed
method on 3D shape recognition,we trained the classi�cation
networkwith the various training sets (original, oversampled,
regular expansion, and random expansion). �e pipeline is
illustrated by the blue arrow in Figure 1. �e performance
is evaluated by the average category accuracy. We compare
our method with the light �eld descriptor [23] (LFD, 4700
dimensions), spherical harmonics descriptor [22] (SPH, 544
dimensions), 3D ShapeNets [7], and DeepPano [21] meth-
ods.

Table 2 summarizes the results. Based on the compari-
son of parameters of architectures and classi�cation results,
our method outperforms all the other methods to varying
degrees. �e hand-cra�ed LFD, SPH, PANORAMA and
DeepPano are all designed to be rotationally invariant, and
the deeply learned representation our method obtained was
e�ective. �is is mainly because we designed an available
architecture and required the network learn a rotationally
invariant representation by feeding it a training set processed
by oversampling and rotation expansion.

For ModeNet-10, the highest accuracy is 89.80%, corre-
sponding to the balanced training set. �e balanced training
set did not get too much better result than the original
training set. It is well known that training a network with an
unbalanced dataset tends to harm those classes with the least
number of examples and bene�t those with the most [24],
and it is not clear how the imbalanced attribute a�ects the
experimental results. Sometimes balancing the training set
improves the accuracy of the classes with fewer examples but
harms the success rate for classes with more samples [7]. For
ModelNet-10, the overall e�ect of the balanced training set is
to maintain a slightly higher accuracy than the original one.
For balanced training sets processed by rotation expansion,
both the regular and random expansion caused the accuracy
to slightly drop.�e reason is thatModelNet-10 iswell aligned
and the 3D orientation of the models is highly consistent.
�ismakes the complexity of the original training set and test
set exactly match; representation learned from the original
or balanced training set is sucient to recognize the models
in the test set with quite good performance. Representation
learned from the training set processed by rotation expansion
has a high degree of rotational invariance that is not necessary
for the original test set. �at is, for a test set that has less
complexity, rotation expansion in fact introduces noise in the
representation and has a negative impact on the results.

ModelNet-40 is not as well aligned as ModelNet-10. �is
means that the 3D orientation of models in ModelNet-40
has much higher complexity, and the experimental results
are quite di�erent from ModelNet-10. �e balanced training
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Table 2: Classi�cation accuracy of various methods on the ModelNet-10 and ModelNet-40 datasets. Best results of this method are marked
in bold font. �e expanded training sets are expanded based on the balanced training set.

Method ModelNet-10 ModelNet-40

Spherical harmonics descriptor [22] 79.79% 68.23%

Light�eld descriptor [23] 79.87% 75.47%

3D ShapeNets [7] 83.54% 77.32%

DeepPano [13] 88.66% 82.54%

Original training set 89.04% 80.68%

Balanced training set 89.80% 81.85%

Regularly expanded training set 87.54% 82.47%

Randomly expanded training set 85.62% 80.55%
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Figure 7: Accuracy results on di�erent test sets corresponding to the original training set: (a) ModelNet-10; (b) ModelNet-40. During each
epoch, all samples in the training set were used once for training.

set still maintains slightly higher accuracy and the highest
accuracy is 82.47%, corresponding to the regularly expanded
training set, not the original training set. �is is primarily
because the test set is more complex in 3D orientation,
and so proper representation requires equivalent or a little
higher complexity. While the accuracy corresponding to the
original training set is lower than 82.47%, the representation
learned from the regularly expanded training set obtains
suitable complexity compared with the test set. Accuracy
corresponding to the randomly expanded training set is
almost equal to the original training set. �e reason is that
randomly rotating models in the original training set lead
to learned features with higher complexity than the test set.
Hence, it does not help improve recognition accuracy.

4.4. Robustness and Generalization. As mentioned in
Section 3, rotation expansion can enhance the rotational
invariance of recognition. It is also known that models in

ModelNet-10 are well aligned and the 3D orientation of the
models is highly consistent, whereas models in ModelNet-40
are not manually aligned but still have a certain regularity.
Hence, whether the representation learned by the network
has a high degree of rotational robustness cannot be
ascertained by the experimental results of the original test
set. A viable solution is to randomly rotate the models in the
test set and compare the results of the original test set and
the test set processed by random rotation, corresponding to
the same training set (pipeline shown by the purple arrows
in Figure 1). If the accuracy is equivalent, we can con�rm
that the representation learned from the expanded training
set has a high degree of robustness and that the network
can recognize more complex shapes, which also means good
generalization performance.

Results corresponding to the original training set are
illustrated in Figure 7. It is obvious that the di�erence in
accuracy between the original test set and the random
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Figure 8: Accuracy results on di�erent test sets corresponding to the regularly expanded training set: (a) ModelNet-10; (b) ModelNet-40.
During each epoch, all samples in the training set were used once for training.

rotation test set is large. �is proves that the representation
learned by training with the original training set is not robust.
�is also indirectly proves that models in Modelnet-10 are
well aligned, and although every model in ModelNet-40 is
not well aligned, the 3D orientations have a certain regularity.
With this kind of training set, the learned representation does
not have sucient rotational invariance to handle recognition
on a more complex test set.

Figure 8 displays the results of the regularly expanded
training set. A di�erence in accuracy between the two kinds
of test sets still exists, but the gap is signi�cantly narrower.
Accuracy on the random rotation test set is still lower. Al-
though the network trained by the training set obtains high
rotational invariance though regular expansion, the complex-
ity still does not match that of the random rotation test set.

Figure 9 shows the result of experiments on the randomly
expanded training set. For both ModelNet-10 andModelNet-
40, the accuracy curves of the two kinds of test sets are
almost coincident and the convergence value is close to the
best recognition accuracy illustrated in Table 2. �is means
that representation obtained by training the network with
the randomly expanded training set has a higher degree of
rotational invariance; the network is able to identify shapes
that have a more complex 3D orientation. �erefore this
approach has the best generalization performance.

5. Conclusions

In this paper, we propose a method to process datasets
based on panoramic view to improve the performance of 3D

recognition. �e expansion method can potentially lead to a
higher accuracy, substantially increased robustness to more
complex 3D shapes, and better generalization performance.
We also discuss the relationship between the complexities of
the training set and the test set; we conclude that when the
complexities of the training and test sets match, the network
will showbest performance.�ese results suggest a promising
future for real-time 3D recognition tasks.

Following on this work, there are a number of directions
to explore in the future. During the experiment stage, we
realized that the improvement in accuracy had an upper
limit. �is means that the method we applied has natural
restrictions, and this may be due to the fact that projecting
a 3D shape onto a cylindrical surface cannot completely
retain the original 3D information. We will explore new
methods to transform 3D shape into 2D data. Also, the
databases, including the expanded ones we used, do not have
a complexity that can be compared with the real world. �e
generalization performance of the network we trained is still
far from meeting real-world needs. We need to discover
methods of achieving higher robustness for various 3D
gestures. In addition, instead of panoramic view, recognition
based on a single perspective is worthy of study.

Data Availability

�e ModeleNet-10 and ModeleNet-40 datasets used to sup-
port the �ndings of this study have been deposited in the
Princeton ModelNet website (available from http://modelnet
.cs.princeton.edu/).

http://modelnet.cs.princeton.edu/
http://modelnet.cs.princeton.edu/
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Figure 9: Accuracy results on di�erent test sets corresponding to the randomly expanded training set: (a) ModelNet-10; (b) ModelNet-40.
During each epoch, all samples in the training set were used once for training.
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