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An improved acoustic Fourier boundary element method
formulation using fast Fourier transform integration

A. H. W. M. Kuijpers,® G. Verbeek, and J. W. Verheij
Computational and Experimental Mechanics, Faculty of Mechanical Engineering, Eindhoven University of
Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

(Received 17 September 1996; revised 7 April 1997; accepted 25 April) 1997

Effective use of the Fourier series boundary element metR&&EM) for everyday applications is
hindered by the significant numerical problems that have to be overcome for its implementation. In
the FBEM formulation for acoustics, some integrals over the angle of revolution arise, which need
to be calculated for every Fourier term. These integrals were formerly treated for each Fourier term
separately. In this paper a new method is proposed to calculate these integrals using fast Fourier
transform techniques. The advantage of this integration method is that the integrals are
simultaneously computed for all Fourier terms in the boundary element formulation. The improved
efficiency of the method compared to a Gaussian quadrature based integration algorithm is
illustrated by some example calculations. The proposed method is not only usable for acoustic
problems in particular, but for Fourier BEM in general. 1®97 Acoustical Society of America.
[S0001-496607)04908-4

PACS numbers: 43.20.Rz, 43.20.Th, 43.20.Ks, 43.4DIR{3|

INTRODUCTION that is present in the boundary conditions for the acoustic
problem. This hampers the effective application of the Fou-

The use of the boundary element meth@®EM) in  rier boundary element method for practical acoustic applica-
acoustics, tailored to problems involving axisymmetric bod-tions. A faster evaluation method proposed in this article is
ies with arbitrary boundary conditions, has received soméased on fast Fourier transforfFT). This method handles
attention in the literature the past decade. Conceptually, ththe calculation of the integrals both efficiently and accurately
acoustic BEM for axisymmetric bodies applies a Fourier sefor all Fourier harmonics simultaneously. It was imple-
ries expansion of the angular dependency of the acoustimented and tested and it compared favorably to an integra-
variables in the problem. As a result, the surface integral ition method based on Gaussian quadrature.
the Kirchhoff—Helmholtz integral equation reduces to a line
integral and an integral over the angle of revolutioinrcum-
ferential integral. The e_ldvantages of_ thi_s so-called Fourierl_ FOURIER BOUNDARY INTEGRAL EQUATIONS FOR
BEM approach are evident. Discretization of the body re-AcousTICS
quires only meshing of the generator of the body with line
elements. Also, the cost of numerically solving the system of  The Kirchhoff-Helmholtz integral equation is a math-
equations is reduced because of a substantial decrease in #@atical description for the acoustic radiation of structures.
number of unknowns. The drawback of this method is theConsider a simple axisymmetric bodg (Fig. 1). The
increased complexity of both the mathematical formulationKirchhoff—Helmholtz integral equation for the pressi(e)
and numerical implementation of the method. at an observer point can be written &5

The computation of the circumferential integrésound
the symmetry axis of the boglgauses considerable numeri- C(x)- p(X)=f [p(y) aG(X’y)—G(x,y) &p_(y) ds(y),
cal problems for the implementation of the Fourier boundary S 2% 2%
element method. The integrand of these integrals can be sin- (1)
gular and has an oscillatory nature. Numerical values foy,
these integrals were obtained using Trapezium quadrature by
Akyol.! This method provided accurate results, but it was e
pointed out that the efficiency of the integral computation Gxy)= 47R(X,Y) @
needed further investigation. A different method for the com-
putation of the integrals was proposed by Soerfarkod @S the three-dimensional free-space Green’s function, and
Juhl? who reformulated the integrand and employediam-  C(X) as a coefficient depending on the positiorxof
specified series of elliptic integrals for the singular part of 0
the integral and Gaussian quadrature for the regular part. '

—ikR(x,y)

for x outside the acoustic medium,

The evaluation of the circumferential integrals is timec(x): 1,  for x inside the acoustic medium,
consuming and has to be done for each Fourier mode number I for x on the smooth surfacs of the
acoustic medium.
dElectronic mail: ard@wiw.wtb.tue.nl 3)
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surface

S:

L: body generator

x: observer point with cylindrical
coordinates (ry, 0y, Z¢)

y: surface point with cylindrical
coordinates (ry, 8y, z,)

v: surface normal

FIG. 1. Simple axisymmetric bod.

For any other position af on S for which there is no unique
surface normal, for example whenis on an edge or a cor-
ner, the value ofZ(x) is given by

( 1
Yar Jsaw (R(x,w dsty)

for the exterior acoustic problem,
C(x)={

ds(y)

1 0 1
C4m fsﬁ(re(x.y)

| for the interior acoustic problem.

4
The distanceR between the pointx andy is defined as
R(x,y)=|x—y|. The surface normal direction is directed
inward the acoustic mediurfsee Fig. 1

The geometry of an axisymmetric body with arbitrary
boundary conditions can be described using a cylindrical co-
ordinate systemr(,6,z). All variables then become functions

of the cylindrical coordinates, 6, andz, i.e.,
P(X)=pP(ry,0x,Zy),

e—ikR(x,y)

A7R(X,Y)
dS(y)=r, dé, dL,,

G(x,y)= =G(ry,0x,2y:1y,0y,2),

with (ry, 6,z and (y,6,,z,) as the coordinates of the

observer poinix and the surface point, respectively, and
dL, as the differential length of the generatoiof the body

aty. Because of the axisymmetric properties of the b&dy

|o<y>=n§0 [p} sin(né,)+p& cogné,)], (5)

P()=2, [Py siné,)+p; cosney], ©®)
with superscript* to discern the Fourier coefficients for the
surface pointy and observer point. Note that the Fourier
coefficients still depend on the coordinateandz, but the
dependence of pressugg on coordinated is expressed
through the sine and cosine terms of the Fourier expansion.
The other functions of Eq1) can be expanded likewise:

e IkR(x.y) *
— — S i
G(x,y)= A7R(xY) Z,O [K} sin(né,)

+K§ cogné,)], Y

a o]
a—s (y)Ep’(y):g0 [pn® sin(néy) +py° cognéy)],
®

G ., _i o
5, xY)=G (X,y)—n:0 [K}® sin(né,)

(€)

The Fourier coefficients in these equations are independent
of 6, but still dependent on thg, andz,. Observe that the
Fourier coefficients of the expansions of the Green’s func-
tion and its normal derivativé.e., K}, K5, K/*, andK/°)

are also dependent on all the cylindrical coordinates of point
X: Iy, 0y, andz,.

With the Fourier series description for the circumferen-
tial dependence of the acoustic variables, a modified form of
the Kirchhoff—Helmholtz integral equation can be obtained.
To that end, it is convenient to reformulate the Fourier coef-
ficients of the Green’s function and its derivative. The coef-
ficients are determined by the standard Fourier transforma-
tion rules, for instance,

+K; cogndy)].

1 fzw e—ikR(x,y)
s

an o msm(nﬁy)dey,

n=0,1,2,....
(10

By defining 6= 6,— 6, such thatdé=d6, Eq. (10) can be
written as

ko

sin(n( 6+ 6,))do.

1 2 efikR(x,y)
| 11

S:— —

Kn 7 Jo 47R(Xy)
With the aid of a trigonometric identity, Eq11) can be
rewritten as

1 o efikR(x,y)
s_T e "
K, p jo ARXY) sin(n#)cog nh,)do

1 2 e—ikR(x,y)
| 12

7)o ARy

p cogné)sin(né,)deé.

the variables can be expanded in Fourier series. This expaBecause simy) is an odd function o= and the remain-

sion was reported by Soenafkas follows:
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[0,27], the first integral of Eq(12) vanishes. Introducing

o efikR(x,y)
Hn:fo mCOS{ﬂﬂ)dﬁ, (13)
Eqg. (12) becomes
Kf,z% H, sin(né,). (14)

The cosine coefficient& of Eqg. (7) can be derived in a
similar manner:

1
Kﬁz; H, cogné,). (15

The Fourier coefficients of Eq9) can also be determined
analogously. Using

efikR(x,y)

27 9
H”:fo 5(%)001%)“ (16)

C<x>[mz_o[pﬁf sin(mé,) + pS cos(mexn]

27 * ©
- JLJO [nzo [p;, sin(né,)+p;, cos(ney)]} ><|

©

ffzw{z [p,Ssin(né,) +p;° cos{ney)]]x[

m=

Matching the terms on the left- and right-hand sides of Eg.
(20) and using the orthogonality properties for integrals in-

volving  sin{mé,)sin(na,), sin(mey)coshay) and cosfé,)

xcosfé,), the following expressions can be obtained after

integration overd 6,

CpS (%)= fL[pﬁHa—pASHnerdLy, (21

CO0ps (0= | TPSHA—pitHLIry L, @2

All functions in Egs.(21) and(22) are no longer explicitly
dependent on anglé When the Fourier coefficients of sur-
face pressure;, p; and its normal derivative,®, p,° are
known, the acoustic pressure at any observer poinside,
outside or on body can be expressed &see Eq.6)]

CO)p* ()= | 1 2 [pSHi—P,Halsin(ng,)
L n=0

+nzo [PrHL—Pr°Halcogn6y) (rydL, .

(23
When observer point is on the surface of bodg, Egs.(21)
and(22) can be rewritten as

1396 J. Acoust. Soc. Am., Vol. 102, No. 3, September 1997

they can be written as

1,
Kis=—Hj sin(6,), (17)

1
K,’1°=; H/ cog6,). (18

The Fourier coefficients in Eq$5), (6), and(8) can be ex-
pressed similarly, for instance,

2

p(y)sin(né,)dé, (19

1
PA(Y)=—

and similar expressions f@S(y), pﬁ*(x), pﬁ*(x), p.S(y),
andp,°(y). By expanding all variables in Fourier series, Eq.
(1) takes the formwhere some of the summations take the
index m for clarity)

1
m§=:0 - H [ sin(mé,)sin(mé,) + cog mé,) cog mey)]] rydéydLy

20 % H [ sin(mé,)sin(mo, ) + cos(mex)cos{mey)]] rydeydL, .

20
[
Cp3(x)= fL[pﬁHa—prnerdLy, (24
C(X)pE(X)— JL[pﬁHa—prn]rydLy 25

(where the superscrigt has disappear@dThese modified
Kirchhoff—Helmholtz integral equations form an implicit ex-
pression for the surface pressure and its normal derivative. It
can be used to determine the boundary valuep afhen

p’ is known and vice versa.

II. COMPUTATIONAL ASPECTS OF FOURIER BEM

The solution of the Kirchhoff-Helmholtz equation for
axisymmetric structurefEq. (23)] can be obtained numeri-
cally by solving Eqs(24) and(25) using standard boundary
element procedures. The generatorof the axisymmetric
body is discretized and the geometry and acoustic variables
p and p’ are assumed to vary according to isoparametric
shape functions on the surface of the body. The discretiza-
tion of the body involves only line elements. The evaluation
of the integrals(4), (13), and (16) over the angular coordi-
nated has to be sufficiently accurate and efficient, to use this
method effectively.

Kuijpers et al.: Acoustic Fourier BEM 1396



The possible singularities in the circumferential inte- e—ikR(e))
, (28)

grands of Eqs(13) and (16) are not the only difficulties in h'(6)= > (T(é’)
their computation. The cosine function in the expressions for
H, andH/ causes the total integrand to oscillate rapidly for

i ; -1
high Fourier mode numbera. Moreover, theR(x,y) *  yegpectively, which are in fact slightly modified forms of the
function in these integrals causes a_steep slope of the int¢r oa_dimensional free-space Green’s function from @J.
grand nea®=0 and¢=2a, when the distance betwe&rand 5 its normal derivative. Hence, to compute the integrals in
y is relatively small. Therefore, special attention should bethe expressions o, andH' we can use thath Fourier

. . . n n
paid to the gvaluatlon OT these mte_gralls. coefficient of the complex functioris andh’, respectively.
Calculation of the circumferential integrals consumes a |, sumerical mathematics. the algorithm normally used
major portion of the total amount of computation time for thé,. 4y efficient computation of the Fourier coefficients of a

Fourier boundary element method. The integrals need to b&:omple& function is fast Fourier transforFFT). FFT al-
computed often, and the calculation itself is computatlonallygorithr.nS are optimized for speed while their accuracy is un-

expensive. In general, the line integrals from E@®) or  jgected. Therefore, they are a good alternative for comput-
(25 _need to be computed numerlcally for egch FOL_mer har-mg the integralsH, and H!, but are generally more

monicn, for a number of observer poinis This requires a = g, hengive than most fixed point numerical integration rou-
value forH, andH, and thus two circumferential integral ynes  However, a significant advantage of the proposed
evaluations on each integration point of the line integral, for.| 1144 is that by one FFT, the Fourier coefficients of many
each Fourier mode number. In addition, applying fixed £ ier modes are calculated, whereas the fixed point in-

point numerical integration for these circumferential inte- o ation methods required an integral evaluation for every
grals, like Gaussian or Trapezium quadrature, requires Rourier moden

large number of integration points in circumferential direc-
tion to obtain sufficiently accurate resulthis is particu-
larly true for high Fourier mode numberswhere the inte-
grand evinces an oscillatory behavior. The long computation
times resulting from the application of fixed point integration racy.

methods as proposed by AkyblSoenarkd, and Juhi 2. Evaluation of the functionk [Eq. (27)] andh’ [Eq.

weaken the advantages of the Fourier BEM compared to th(aZ8)] on neer equidistant values of the parametein the
three-dimensional BEM. A solution to this problem will be interval [0, 2]

presented in the next section. 3. Fast Fourier transformation of the-=r computed
function values.
4. Selection of thenth terms of the calculated Fourier
spectrums
A. Integral evaluation based on fast Fourier transform which are numerical values for the integrélg andH . .
Numerical problems can occur wharcoincides withy
because the functions andh’ cannot be evaluated due to
the R™* singularity in Eqs(27) and(28). This problem can
be circumvented by taking surface integration pointhat
do not coincide with the observer poirtwhen the line in-
tegrals(24) and (25) are computed. Gauss-log integrafion
should then be applied for the line integrals because the
functionsh andh’ have logarithmic behavior near the sin-
gularity. Other methods proposed in literature to handle a
singular integrand use a technique of subtracting and adding
up the singular part of the integrand from the regular part,
1 (L nw resulting in a regular and singul&surface integral. Then,
Fo=— f f(x)cos(— x)dx special(analytica) integration techniqué§ are used for the
L)L L ; . . . :
singular integral, and ordinaizauss—Legendyéntegration
1 (2L nmw techniques are used for the regular part. To apply this tech-
f(X)COS(T X)dX- (26) nigue here, a special integration technique should be devel-
oped for the integral over a ring-shaped surface ofRhé
With x= 0 andL =, this shows that Eq¢13) and(16) are singularity. Thg integration region can be split up in an inte-
valid expressions of the Fourier coefficiertts, and H/, of gral over the circumference and an integral over a generator

An algorithm for the evaluation of the integrals in Eqs.
(13) and(16) using FFT requires the following actions:

1. Determination of the number of samplast needed
or computation of integralsl, andH/ with a desired accu-

For a sufficiently accurate and efficient evaluation of the
integrals(13) and (16) for H, andH,,, respectively, a new
method based on fast Fourier transfo(RFT) was devel-
oped. The integrands in the expressionsHgrandH/ con-
sist of a reasonable smoothut possibly singularfunction
multiplied by a cosine function. The integrand without the
cosine function is an even periodic function arouéd0
with a period equal to 2. Given an even periodic function
f(x) with period A_, the Fourier coefficients,, of this func-
tion are given by

L

the complex even functions: segment of the vibrating body. The circumferential integral
yields elliptic integrals of the first and second kihdut an
e kR(O) analytical solution for the integration of these elliptic inte-
h(6)= 4R(6) (27) grals over the generator segment is not available. Therefore,
this regularization method cannot be used here. It should
and however be noted that this is not a consequence of the pro-

1397 J. Acoust. Soc. Am., Vol. 102, No. 3, September 1997 Kuijpers et al.: Acoustic Fourier BEM 1397



posed FFT method but a general result for all FBEM imple- 1.5
mentations.

The application of the method of computing the circum-
ferential integrals using FFT techniques is not limited to 1
acoustic problems governed by the Helmholtz equation. In

like manner, the new method is usable in non-acoustic Fou- g
rier BEM applications. The only condition to be fulfilled for T? 05
the kernel is that it has to be a periodic functionéof g '
-~
O -

B. Efficiency of the FFT method

Regarding efficiency, it is preferable that the number of
evaluations of the functionls(8) andh’(6) can be chosen =05
as low as possible, because this number is directly related tc
the cost of the FFT algorithm in particular and the cost of the
total method in general. The number of required evaluations
of these functions is determined by the desired accuracy ol 0.1
the FFT process. Signal leakage and aliasing in the Fouriel
transform process should be taken into account. This mean:
that precisely an integer number of periods of the periodic
functionsh(6) andh’(6) should be sampled, and that the
sampling frequency should at least be twice the highest fre-
guency present in the functions. The first requirement is eas:
ily met because we exactly know the period of the functions
h(6) andh’(6) which is 27 for axisymmetric structures. To
satisfy the requirements for aliasing, however, the frequency
content of functionsh(6) andh’(6) needs to be predicted
because it is not known beforehand. This is the topic of the -0.2¢
remaining part of this section. For numerical efficiency it is
desirable that the number of Fourier transform points can be 0 T m
written as 2 with f as a positive integer number. angle 6

A closer look at the functionk andh’ that are Fourier
transformed is illustrative to establish a reasonable expres- FIG. 2. Functionh for X=(5,0,0), Y=(5,0,0.2) anck=1.
sion for the minimum number of Fourier transform points

Neer required for each integral evaluation. A representativerhe same considerations can be made for the Fourier trans-
picture of the functiorh is plotted in Fig. 2. form of h/,, leading to the same parametetsandc,.

The steepness of the curve close®e0 and =2 is An expression for the minimum number of Fourier
determined by the ratio of the minimum and maxim#n  points is dependent on the characteristics of the integrands
(distance between the pointsandy), because of the factor h, andh’, which can be described by the parametersnd

Rfl in Eq. (27) for h. The ratioRma./Rmin Can serve as a ¢, So an expression forzer can be expressed as a function
dimensionless scale factor for the problem’s geometry. Thef those parameters:

rapid change in steepness of the curve for large values of this

ratio causes nonzero high-mode number components in the NFFT=NFeT(Cs:Co) = Ner(Rmax: Rmin . K) = Nepr(%,Y,K).
Fourier transform of the functioh. Therefore a sufficiently (31)
high number of Fourier points has to be used. Hence, a criFor an efficient application of the FFT method, an expression
terion for the minimum number of Fourier points neededfor ner can be developed for a desired accuracy. The ex-

angle 6

h (imaginary part)

should be a function of a steepness parameter: pression that can be derived is generally applicable for effi-
ciently computing integrals in Eq$13) and (16) with FFT
_ Rmax integration. For efficiency, it is also important to obtain a
Cs==—. (29 g : d .
Rmin relatively simple expressionggr, because it must be used

for each FFT based integral evaluation separately. Fortu-
The oscillations in the curves for the real and imaginary Parhately, a simple expression can be derived for practical ap-
are caused by the tereT *R(¥=coskR)—i sinkR) for large pication, as is illustrated in Sec. III.
numbers ok and/or a large difference between the minimum

and maximum value foR. Thus the criterion for the m_ini- C. Discretization process
mum number of Fourier points should also be a function of

an oscillation parameter: The boundary element method is applied for the discreti-
zation of the modified Kirchhoff—-Helmholtz integral equa-
Co=K(Rmax— Rmin) - (300  tions(24) and (25). Assume that the generatbrof body B

1398 J. Acoust. Soc. Am., Vol. 102, No. 3, September 1997 Kuijpers et al.: Acoustic Fourier BEM 1398



can be discretized with, line elements and that each line A.pc=B.p'c 38

: e ) nPn=BnPn " (38)
elementi, hasn, nodes. The total number of nodes is de- c ‘o .
noted as,4. Thus the coordinatasandz can be expressed Wherep, andp,” are the column vectors containing thg,

in terms of the coordinates andz_of element node,  Ndal values ofpy and p;°. Thus, two matrix equations
. . . N n result, relating the terms of the Fourier expansion of the un-
using a piecewise polynomial approximation:

known variables to the Fourier coefficients of the boundary
Nn conditions. The matrix equations that describe the acoustic
(&)= Nin”(f)rin, (32)  radiation have to be formed for every Fourier mode number
=t " n that is present in the Fourier expansion of the boundary

Nn conditions.
2(5)2.2 Ninn(f)zin’ (33 When the solutiop for all boundary values is cqmputed,
ip=1 " the value of the Fourier terms of the pressure and its deriva-

tive for any surface or exterior point can easily be obtained
by applying an equation similar to E(B5) for pﬁ* and pﬁ* ,
substituting the calculated values fp§; i , Prii » Phii s

en en en

where N?”(g) are the f,—1)th order isoparametric shape

functions,¢ is the local element coordinate angis the local

node number. The boundary variableg, p,, p;. Ps, e . e Nie ! .

p’s, andp'® are also approximated using the same isoparaa”d Paii, - The resulting equation is an explicit relationship

metric shape functions as for the coordinates, thus on eldetween the acoustic variables on the surface of the radiating

menti., body and the acoustic variables at any other position in the
acoustic medium.

i (O= 2 N, (34)

where any of the boundary variables can be substituted follll' APPLICATION OF THE FFT METHOD

i (€), andy; ; is the value of the corresponding variable  The FFT based integration method was implemented in
on local node, of elementi,. Using this approximation in, the in-house acoustic Fourier BEM codARD to assess its
for instance, Eq(24), yields efficiency compared to a Gaussian quadrature based method
N n, L that was previously proposed. For the FFT method, an ex-
Siy) — s Nn / _ pression for the minimum number of Fourier pointgr was
COOP(x) i21 |in2—1 p“'E'”J—lN‘n(g)H“(g)r(g)J'e(g)dg developed. For a large number of parameters vatyasthe
range[1,2000 andc, in the rangd 0,100, the integralg13)
and(16) were computed with the proposed method until con-
vergence was achieved. Each parameter @aémdc, has a
(35 specific minimum number of Fourier poinigey for the in-
tegrals to converge where the relative error in the computed
where pﬁiein is the value ofpS at local nodei, of element  value for the integrals did not exceed 0 These pairs of

i and J; (£) the Jacobian of the transformation given by Cs: Co and relatednger were then used in a curve-fitting
Egs (32)eand (33), for elementi : procedure to obtain the relationship
: , o
(36) Nerr(Cs,Co) = 14( Cst o

dr 2 dz 27172
(df) +(d§)

. o . In the BEM code the expression fog.r was implemented
Expressions similar to Eq35) can be obtained for the other 54 jts value is computed for each circumferential integral
boundary values using E@5). _ ~ evaluation seperately based on valuesdpandc, for that

~ For the solution process, a collocation scheme is apPjegral. Its value is rounded to the nearest subsequent power
plied. The observer points on the boundary are chosen f 5 1o enable the use of a fast radix-2 FFT algorithm. An
successively to coincide with each global nadgandy is  efficient integration algorithm based on Gaussian quadrature
the (surfacg point of integration, now explicitly a function 45 5150 implemented such that the maximum relative error
of & through Egs.(32) and (33). This collocation method \yith that method was 1G.
results in a set oh,4 linear algebraic equations in terms of As a check for the accuracy of the developed FBEM
the unknownp,,, whenpj, is given on each node, and vice ¢qqesARD, the response of an oscillating sphere with radius
versa. The resulting equations may be written in the follow-5_ 1 \yas computed. To model the sphere, a mesh with 10
ing matrix form: quadratic line elements was used and the response was cal-

ApE=B,p.S, (37) culated for a dimensionless wavenumber rakge=0,...,5.
The relative errors in the computed surface pressure obtained

where p; and p;° are the column vectors containing the with the FBEM compared with the analytically known solu-
Nnq Nodal values op;, and pﬂ, respectivelyA, andB, are  tion for this problem'® were smaller than 1%.

o=
1

-2 P f N(EHA(ET (£ (§)dér,
in=1 -1 n

r'HeIn

Co 0.9

3(6)=

square matrices with the various integrals as in B§) as To assess the efficiency of the FFT based integration
their elements. For the cosine terms of the Fourier series, method, the acoustic responses of two model vibrating bod-
similar matrix equation can be derived: ies, a sphere and cylinder, were computed. The sphere and

1399 J. Acoust. Soc. Am., Vol. 102, No. 3, September 1997 Kuijpers et al.: Acoustic Fourier BEM 1399



both methods and for both problems, the cpu time needed to
compute the acoustic response increased linearly with each
extra harmonic in the boundary conditions. However, the cpu
time for the Gaussian quadrature method increased more per
extra harmonic than for the FFT method. This can be ex-
plained by the most important difference between the meth-
ods: when the Gauss method is used, the circumferential in-
: tegrals are computed for each Fourier mode separately, but
D when the FFT method is used, these integrals are computed
] for all modes simultaneously. In other words, the character-
istic total cpu time for the radiation computation with the
Gauss method is the computation time for one harmonic
multiplied by the total number of harmonics in the boundary
conditions, while for the FFT method, the computation time
01 2 3 4 ; 6 - for evaluatingone harmonic is typical of the total cpu time

number of harmonics r, for aI.I 'harmomcs. For one or ch.) harmonics in the boundar'y

conditions for the sphere radiation, and for one harmonic in

the cylinder boundary conditions, the calculations with
Gaussian quadrature were faster than those with the FFT
method(Fig. 3). However, forall other problem configura-
tions that were tested, using the FFT method was clearly
advantageous. In conclusion, for more than one harmonic in
the boundary conditions, the FFT method is generally more
efficient than the Gaussian quadrature method, while obtain-
ing the same accuracy.

sphere

w A N

scaled cpu—time
o

cylinder

(o NS |

=~ W

IV. CONCLUSIONS

scaled cpu—time

N W

A new method was presented to handle the integrals
over the angle of revolution arising in the Fourier boundary
- ) ) ) ) element methodFBEM) for the calculation of the acoustic
1 2 3 4 5 6 7 response of axisymmetric bodies with arbitrary boundary

number of harmonics n, conditions. Previously proposed methods to handle these in-
tegrals required a separdexpensivgintegral evaluation for
FIG. 3. Scaled computation time for spherical and cylindrical radiation foreach Fourier ternfcircumferential harmonijcthat is present
Gauss(*) and FFT(O) based quadrature. in the boundary conditions. With the integration method pro-
posed here, these integrals are computed simultaneously for
cylinder were discretized using quadratic elements. The nora|| harmonics. The method efficiently uses fast Fourier trans-
mal velocity boundary condition for both problems was de-form (FFT) algorithms to obtain numerical values for these

fined as integrals.
nh Simulations were performed comparing the efficiency of
u,(y)=— p'(y)=>, cogné), the new FFT integration method with that of a method based
~lpw n=1 on Gaussian quadrature. They showed that the FFT method

where the number of harmonics, ranged from 1 to 7 to is generally more efficient, especially when more than one
assess the usability of the methods for constructions witf§ircumferential harmonic is present in the boundary condi-
more complicated boundary conditions in circumferential di-tions.
rection. The acoustic pressure response was computed with It is expected that the utility of the new integration
both the FFT based and Gauss based integration method§ethod presented here is not limited to acoustic problems
The differences between the results obtained with the FFPNly. The method should be usable whenever the integrand
method and the Gauss method were negligible, indicatin@f the circumferential integral is periodic artthsy Fourier
that the circumferential integrals were computed with thetransformable.

same accuracy. The efficiency of the new method can be

assessed by making a comparison between cpu time needqq P. Akyol, “Schallabstrahlung von Rotationgip@rn,” Acustica 61

for the radiation computation for both problems as a function 260_'212(19’86)_ ‘ ’

of the number of harmonias, in the boundary conditions as  2B. Soenarko, “A boundary element formulation for radiation of acoustic
depicted in Fig. 3. waves from axisymmetric bodies with arbitrary boundary conditions,” J.

The cpu times were scaled by dividing the actual com- ;AC0USt: Soc. Am93, 631-639(1993. .
. . . P. Juhl, “An axisymmetric integral equation formulation for free space
putation time by the time needed to compute the response Ofnon—axisymmetric radiation and scattering of a known incident wave,” J.

the first harmonic using the Gaussian quadrature method. ForSound Vib.163 397-406(1993.
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