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An improved acoustic Fourier boundary element method
formulation using fast Fourier transform integration

A. H. W. M. Kuijpers,a) G. Verbeek, and J. W. Verheij
Computational and Experimental Mechanics, Faculty of Mechanical Engineering, Eindhoven University of
Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

~Received 17 September 1996; revised 7 April 1997; accepted 25 April 1997!

Effective use of the Fourier series boundary element method~FBEM! for everyday applications is
hindered by the significant numerical problems that have to be overcome for its implementation. In
the FBEM formulation for acoustics, some integrals over the angle of revolution arise, which need
to be calculated for every Fourier term. These integrals were formerly treated for each Fourier term
separately. In this paper a new method is proposed to calculate these integrals using fast Fourier
transform techniques. The advantage of this integration method is that the integrals are
simultaneously computed for all Fourier terms in the boundary element formulation. The improved
efficiency of the method compared to a Gaussian quadrature based integration algorithm is
illustrated by some example calculations. The proposed method is not only usable for acoustic
problems in particular, but for Fourier BEM in general. ©1997 Acoustical Society of America.
@S0001-4966~97!04908-4#

PACS numbers: 43.20.Rz, 43.20.Tb, 43.20.Ks, 43.40.Rj@JEG#
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INTRODUCTION

The use of the boundary element method~BEM! in
acoustics, tailored to problems involving axisymmetric bo
ies with arbitrary boundary conditions, has received so
attention in the literature the past decade. Conceptually,
acoustic BEM for axisymmetric bodies applies a Fourier
ries expansion of the angular dependency of the acou
variables in the problem. As a result, the surface integra
the Kirchhoff–Helmholtz integral equation reduces to a li
integral and an integral over the angle of revolution~circum-
ferential integral!. The advantages of this so-called Four
BEM approach are evident. Discretization of the body
quires only meshing of the generator of the body with li
elements. Also, the cost of numerically solving the system
equations is reduced because of a substantial decrease
number of unknowns. The drawback of this method is
increased complexity of both the mathematical formulat
and numerical implementation of the method.

The computation of the circumferential integrals~around
the symmetry axis of the body! causes considerable nume
cal problems for the implementation of the Fourier bound
element method. The integrand of these integrals can be
gular and has an oscillatory nature. Numerical values
these integrals were obtained using Trapezium quadratur
Akyol.1 This method provided accurate results, but it w
pointed out that the efficiency of the integral computati
needed further investigation. A different method for the co
putation of the integrals was proposed by Soenarko2 and
Juhl,3 who reformulated the integrand and employed an~un-
specified! series of elliptic integrals for the singular part
the integral and Gaussian quadrature for the regular par

The evaluation of the circumferential integrals is tim
consuming and has to be done for each Fourier mode num

a!Electronic mail: ard@wfw.wtb.tue.n1
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that is present in the boundary conditions for the acou
problem. This hampers the effective application of the Fo
rier boundary element method for practical acoustic appli
tions. A faster evaluation method proposed in this article
based on fast Fourier transform~FFT!. This method handles
the calculation of the integrals both efficiently and accurat
for all Fourier harmonics simultaneously. It was impl
mented and tested and it compared favorably to an inte
tion method based on Gaussian quadrature.

I. FOURIER BOUNDARY INTEGRAL EQUATIONS FOR
ACOUSTICS

The Kirchhoff–Helmholtz integral equation is a mat
ematical description for the acoustic radiation of structur
Consider a simple axisymmetric bodyB ~Fig. 1!. The
Kirchhoff–Helmholtz integral equation for the pressurep(x)
at an observer pointx can be written as4

C~x!•p~x!5E
S
Fp~y!

]G~x,y!

]n
2G~x,y!

]p~y!

]n GdS~y!,

~1!

with

G~x,y!5
e2 ikR~x,y!

4pR~x,y!
~2!

as the three-dimensional free-space Green’s function,
C(x) as a coefficient depending on the position ofx:

C~x!55
0, for x outside the acoustic medium,

1, for x inside the acoustic medium,

1
2 , for x on the smooth surfaceS of the

acoustic medium.
~3!
139402(3)/1394/8/$10.00 © 1997 Acoustical Society of America
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For any other position ofx on S for which there is no unique
surface normal, for example whenx is on an edge or a cor
ner, the value ofC(x) is given by

C~x!55
11

1

4p E
S

]

]n S 1

R~x,y! DdS~y!

for the exterior acoustic problem,

2
1

4p E
S

]

]n S 1

R~x,y! DdS~y!

for the interior acoustic problem.
~4!

The distanceR between the pointsx and y is defined as
R(x,y)5ux2yu. The surface normal directionn is directed
inward the acoustic medium~see Fig. 1!.

The geometry of an axisymmetric body with arbitra
boundary conditions can be described using a cylindrical
ordinate system (r ,u,z). All variables then become function
of the cylindrical coordinatesr , u, andz, i.e.,

p~x!5p~r x ,ux ,zx!,

p~y!5p~r y ,uy ,zy!,

G~x,y!5
e2 ikR~x,y!

4pR~x,y!
5G~r x ,ux ,zx ;r y ,uy ,zy!,

dS~y!5r y duy dLy ,

with (r x ,ux ,zx) and (r y ,uy ,zy) as the coordinates of th
observer pointx and the surface pointy, respectively, and
dLy as the differential length of the generatorL of the body
at y. Because of the axisymmetric properties of the bodyB
the variables can be expanded in Fourier series. This ex
sion was reported by Soenarko2 as follows:

FIG. 1. Simple axisymmetric bodyB.
1395 J. Acoust. Soc. Am., Vol. 102, No. 3, September 1997
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p~y!5 (
n50

`

@pn
s sin~nuy!1pn

c cos~nuy!#, ~5!

p~x!5 (
n50

`

@pn
s* sin~nux!1pn

c* cos~nux!#, ~6!

with superscript* to discern the Fourier coefficients for th
surface pointy and observer pointx. Note that the Fourier
coefficients still depend on the coordinatesr andz, but the
dependence of pressurep on coordinateu is expressed
through the sine and cosine terms of the Fourier expans
The other functions of Eq.~1! can be expanded likewise:

G~x,y!5
e2 ikR~x,y!

4pR~x,y!
5 (

n50

`

@Kn
s sin~nuy!

1Kn
c cos~nuy!#, ~7!

]p

]n
~y![p8~y!5 (

n50

`

@pn8
s sin~nuy!1pn8

c cos~nuy!#,

~8!

]G

]n
~x,y![G8~x,y!5 (

n50

`

@Kn8
s sin~nuy!

1Kn8
c cos~nuy!#. ~9!

The Fourier coefficients in these equations are indepen
of uy but still dependent on ther y andzy . Observe that the
Fourier coefficients of the expansions of the Green’s fu
tion and its normal derivative~i.e., Kn

s , Kn
c , Kn8

s , andKn8
c!

are also dependent on all the cylindrical coordinates of po
x: r x , ux , andzx .

With the Fourier series description for the circumfere
tial dependence of the acoustic variables, a modified form
the Kirchhoff–Helmholtz integral equation can be obtaine
To that end, it is convenient to reformulate the Fourier co
ficients of the Green’s function and its derivative. The co
ficients are determined by the standard Fourier transfor
tion rules, for instance,

Kn
s5

1

p E
0

2p e2 ikR~x,y!

4pR~x,y!
sin~nuy!duy , n50,1,2,... .

~10!

By defining u[uy2ux such thatdu5duy Eq. ~10! can be
written as

Kn
s5

1

p E
0

2p e2 ikR~x,y!

4pR~x,y!
sin„n~u1ux!…du. ~11!

With the aid of a trigonometric identity, Eq.~11! can be
rewritten as

Kn
s5

1

p E
0

2p e2 ikR~x,y!

4pR~x,y!
sin~nu!cos~nux!du

1
1

p E
0

2p e2 ikR~x,y!

4pR~x,y!
cos~nu!sin~nux!du. ~12!

Because sin(nu) is an odd function ofu5p and the remain-
der of the integrand is symmetric aroundu5p in the interval
1395Kuijpers et al.: Acoustic Fourier BEM
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@0,2p#, the first integral of Eq.~12! vanishes. Introducing

Hn5E
0

2p e2 ikR~x,y!

4pR~x,y!
cos~nu!du, ~13!

Eq. ~12! becomes

Kn
s5

1

p
Hn sin~nux!. ~14!

The cosine coefficientsKn
c of Eq. ~7! can be derived in a

similar manner:

Kn
c5

1

p
Hn cos~nux!. ~15!

The Fourier coefficients of Eq.~9! can also be determine
analogously. Using

Hn85E
0

2p ]

]n S e2 ikR~x,y!

4pR~x,y! D cos~nu!du, ~16!
q
in

te

r-

1396 J. Acoust. Soc. Am., Vol. 102, No. 3, September 1997
they can be written as

Kn8
s5

1

p
Hn8 sin~ux!, ~17!

Kn8
c5

1

p
Hn8 cos~ux!. ~18!

The Fourier coefficients in Eqs.~5!, ~6!, and ~8! can be ex-
pressed similarly, for instance,

pn
s~y!5

1

p E
0

2p

p~y!sin~nuy!duy , ~19!

and similar expressions forpn
c(y), pn

s* (x), pn
c* (x), pn8

s(y),
andpn8

c(y). By expanding all variables in Fourier series, E
~1! takes the form~where some of the summations take t
index m for clarity!
C~x!H (
m50

`

@pm
s* sin~mux!1pm

c* cos~mux!#J
5E

L
E

0

2pH (
n50

`

@pn
s sin~nuy!1pn

c cos~nuy!#J 3H (
m50

`
1

p
Hm8 @sin~mux!sin~muy!1cos~mux!cos~muy!#J r yduydLy

2E
L
E

0

2pH (
n50

`

@pn8
ssin~nuy!1pn8

c cos~nuy!#J 3H (
m50

`
1

p
Hm@sin~mux!sin~muy!1cos~mux!cos~muy!#J r yduydLy .

~20!
-
e. It
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Matching the terms on the left- and right-hand sides of E
~20! and using the orthogonality properties for integrals
volving sin(muy)sin(nuy), sin(muy)cos(nuy), and cos(muy)
3cos(nuy), the following expressions can be obtained af
integration overduy :

C~x!pn
s* ~x!5E

L
@pn

sHn82pn8
sHn#r ydLy , ~21!

C~x!pn
c* ~x!5E

L
@pn

cHn82pn8
cHn#r ydLy . ~22!

All functions in Eqs.~21! and ~22! are no longer explicitly
dependent on angleu. When the Fourier coefficients of su
face pressurepn

s , pn
c and its normal derivativepn8

s , pn8
c are

known, the acoustic pressure at any observer pointx inside,
outside or on bodyB can be expressed as@see Eq.~6!#

C~x!p* ~x!5E
L
H (

n50

`

@pn
sHn82pn8

sHn#sin~nux!

1 (
n50

`

@pn
cHn82pn8

cHn#cos~nux!J r ydLy .

~23!

When observer pointx is on the surface of bodyB, Eqs.~21!
and ~22! can be rewritten as
.
-

r

C~x!pn
s~x!5E

L
@pn

sHn82pn8
sHn#r ydLy , ~24!

C~x!pn
c~x!5E

L
@pn

cHn82pn8
cHn#r ydLy ~25!

~where the superscript* has disappeared!. These modified
Kirchhoff–Helmholtz integral equations form an implicit ex
pression for the surface pressure and its normal derivativ
can be used to determine the boundary values ofp when
p8 is known and vice versa.2

II. COMPUTATIONAL ASPECTS OF FOURIER BEM

The solution of the Kirchhoff–Helmholtz equation fo
axisymmetric structures@Eq. ~23!# can be obtained numeri
cally by solving Eqs.~24! and~25! using standard boundar
element procedures. The generatorL of the axisymmetric
body is discretized and the geometry and acoustic varia
p and p8 are assumed to vary according to isoparame
shape functions on the surface of the body. The discret
tion of the body involves only line elements. The evaluati
of the integrals~4!, ~13!, and ~16! over the angular coordi-
nateu has to be sufficiently accurate and efficient, to use t
method effectively.1
1396Kuijpers et al.: Acoustic Fourier BEM
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The possible singularities in the circumferential int
grands of Eqs.~13! and ~16! are not the only difficulties in
their computation. The cosine function in the expressions
Hn andHn8 causes the total integrand to oscillate rapidly
high Fourier mode numbersn. Moreover, theR(x,y)21

function in these integrals causes a steep slope of the
grand nearu50 andu52p, when the distance betweenx and
y is relatively small. Therefore, special attention should
paid to the evaluation of these integrals.

Calculation of the circumferential integrals consume
major portion of the total amount of computation time for t
Fourier boundary element method. The integrals need to
computed often, and the calculation itself is computationa
expensive. In general, the line integrals from Eqs.~24! or
~25! need to be computed numerically for each Fourier h
monic n, for a number of observer pointsx. This requires a
value for Hn and Hn8 and thus two circumferential integra
evaluations on each integration point of the line integral,
each Fourier mode numbern. In addition, applying fixed
point numerical integration for these circumferential in
grals, like Gaussian or Trapezium quadrature, require
large number of integration points in circumferential dire
tion to obtain sufficiently accurate results.1 This is particu-
larly true for high Fourier mode numbersn where the inte-
grand evinces an oscillatory behavior. The long computa
times resulting from the application of fixed point integrati
methods as proposed by Akyol,1 Soenarko,2 and Juhl3

weaken the advantages of the Fourier BEM compared to
three-dimensional BEM. A solution to this problem will b
presented in the next section.

A. Integral evaluation based on fast Fourier transform

For a sufficiently accurate and efficient evaluation of t
integrals~13! and ~16! for Hn and Hn8 , respectively, a new
method based on fast Fourier transform~FFT! was devel-
oped. The integrands in the expressions forHn andHn8 con-
sist of a reasonable smooth~but possibly singular! function
multiplied by a cosine function. The integrand without t
cosine function is an even periodic function aroundu50
with a period equal to 2p. Given an even periodic function
f (x) with period 2L, the Fourier coefficientsFn of this func-
tion are given by5

Fn5
1

L E
2L

L

f ~x!cosS np

L
xDdx

5
1

L E
0

2L

f ~x!cosS np

L
xDdx. ~26!

With x5u andL5p, this shows that Eqs.~13! and~16! are
valid expressions of the Fourier coefficientsHn and Hn8 of
the complex even functions:

h~u!5
e2 ikR~u!

4R~u!
~27!

and
1397 J. Acoust. Soc. Am., Vol. 102, No. 3, September 1997
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h8~u!5
]

]n S e2 ikR~u!

4R~u! D , ~28!

respectively, which are in fact slightly modified forms of th
three-dimensional free-space Green’s function from Eq.~2!
and its normal derivative. Hence, to compute the integral
the expressions forHn and Hn8 we can use thenth Fourier
coefficient of the complex functionsh andh8, respectively.

In numerical mathematics, the algorithm normally us
for an efficient computation of the Fourier coefficients of
~complex! function is fast Fourier transform~FFT!. FFT al-
gorithms are optimized for speed while their accuracy is
affected. Therefore, they are a good alternative for comp
ing the integralsHn and Hn8 , but are generally more
expensive than most fixed point numerical integration ro
tines. However, a significant advantage of the propo
method is that by one FFT, the Fourier coefficients of ma
Fourier modesn are calculated, whereas the fixed point i
tegration methods required an integral evaluation for ev
Fourier moden.

An algorithm for the evaluation of the integrals in Eq
~13! and ~16! using FFT requires the following actions:

1. Determination of the number of samplesnFFT needed
for computation of integralsHn andHn8 with a desired accu-
racy.

2. Evaluation of the functionsh @Eq. ~27!# andh8 @Eq.
~28!# on nFFT equidistant values of the parameteru in the
interval @0, 2p#.

3. Fast Fourier transformation of thenFFT computed
function values.

4. Selection of thenth terms of the calculated Fourie
spectrums

which are numerical values for the integralsHn andHn8 .
Numerical problems can occur whenx coincides withy

because the functionsh and h8 cannot be evaluated due t
the R21 singularity in Eqs.~27! and ~28!. This problem can
be circumvented by taking surface integration pointsy that
do not coincide with the observer pointx when the line in-
tegrals~24! and ~25! are computed. Gauss-log integratio6

should then be applied for the line integrals because
functionsh and h8 have logarithmic behavior near the sin
gularity. Other methods proposed in literature to handle
singular integrand use a technique of subtracting and ad
up the singular part of the integrand from the regular pa
resulting in a regular and singular~surface! integral. Then,
special~analytical! integration techniques7,8 are used for the
singular integral, and ordinary~Gauss–Legendre! integration
techniques are used for the regular part. To apply this te
nique here, a special integration technique should be de
oped for the integral over a ring-shaped surface of theR21

singularity. The integration region can be split up in an in
gral over the circumference and an integral over a gener
segment of the vibrating body. The circumferential integ
yields elliptic integrals of the first and second kind,2 but an
analytical solution for the integration of these elliptic int
grals over the generator segment is not available. Theref
this regularization method cannot be used here. It sho
however be noted that this is not a consequence of the
1397Kuijpers et al.: Acoustic Fourier BEM
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posed FFT method but a general result for all FBEM imp
mentations.

The application of the method of computing the circu
ferential integrals using FFT techniques is not limited
acoustic problems governed by the Helmholtz equation
like manner, the new method is usable in non-acoustic F
rier BEM applications. The only condition to be fulfilled fo
the kernel is that it has to be a periodic function ofu.

B. Efficiency of the FFT method

Regarding efficiency, it is preferable that the number
evaluations of the functionsh(u) and h8(u) can be chosen
as low as possible, because this number is directly relate
the cost of the FFT algorithm in particular and the cost of
total method in general. The number of required evaluati
of these functions is determined by the desired accurac
the FFT process. Signal leakage and aliasing in the Fou
transform process should be taken into account. This me
that precisely an integer number of periods of the perio
functionsh(u) and h8(u) should be sampled, and that th
sampling frequency should at least be twice the highest
quency present in the functions. The first requirement is e
ily met because we exactly know the period of the functio
h(u) andh8(u) which is 2p for axisymmetric structures. To
satisfy the requirements for aliasing, however, the freque
content of functionsh(u) and h8(u) needs to be predicte
because it is not known beforehand. This is the topic of
remaining part of this section. For numerical efficiency it
desirable that the number of Fourier transform points can
written as 2f with f as a positive integer number.

A closer look at the functionsh andh8 that are Fourier
transformed is illustrative to establish a reasonable exp
sion for the minimum number of Fourier transform poin
nFFT required for each integral evaluation. A representat
picture of the functionh is plotted in Fig. 2.

The steepness of the curve close tou50 andu52p is
determined by the ratio of the minimum and maximumR
~distance between the pointsx andy!, because of the facto
R21 in Eq. ~27! for h. The ratioRmax/Rmin can serve as a
dimensionless scale factor for the problem’s geometry. T
rapid change in steepness of the curve for large values of
ratio causes nonzero high-mode number components in
Fourier transform of the functionh. Therefore a sufficiently
high number of Fourier points has to be used. Hence, a
terion for the minimum number of Fourier points need
should be a function of a steepness parameter:

cs5
Rmax

Rmin
. ~29!

The oscillations in the curves for the real and imaginary p
are caused by the terme2 ikR(u)5cos(kR)2i sin(kR) for large
numbers ofk and/or a large difference between the minimu
and maximum value forR. Thus the criterion for the mini-
mum number of Fourier points should also be a function
an oscillation parameter:

c05k~Rmax2Rmin!. ~30!
1398 J. Acoust. Soc. Am., Vol. 102, No. 3, September 1997
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The same considerations can be made for the Fourier tr
form of hn8 , leading to the same parameterscs andc0 .

An expression for the minimum number of Fouri
points is dependent on the characteristics of the integra
hn andhn8 which can be described by the parameterscs and
c0 . So an expression fornFFT can be expressed as a functio
of those parameters:

nFFT5nFFT~cs ,c0!5nFFT~Rmax,Rmin ,k!5nFFT~x,y,k!.
~31!

For an efficient application of the FFT method, an express
for nFFT can be developed for a desired accuracy. The
pression that can be derived is generally applicable for e
ciently computing integrals in Eqs.~13! and ~16! with FFT
integration. For efficiency, it is also important to obtain
relatively simple expressionnFFT, because it must be use
for each FFT based integral evaluation separately. Fo
nately, a simple expression can be derived for practical
plication, as is illustrated in Sec. III.

C. Discretization process

The boundary element method is applied for the discr
zation of the modified Kirchhoff–Helmholtz integral equ
tions ~24! and ~25!. Assume that the generatorL of body B

FIG. 2. Functionh for X5(5,0,0), Y5(5,0,0.2) andk51.
1398Kuijpers et al.: Acoustic Fourier BEM
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can be discretized withne line elements and that each lin
elementi e hasnn nodes. The total number of nodes is d
noted asnnd . Thus the coordinatesr andz can be expresse
in terms of the coordinatesr i n

and zi n
of element nodei n

using a piecewise polynomial approximation:

r ~j!5 (
i n51

nn

Ni n

nn~j!r i n
, ~32!

z~j!5 (
i n51

nn

Ni n

nn~j!zi n
, ~33!

where Ni n

nn(j) are the (nn21)th order isoparametric shap

functions,j is the local element coordinate andi n is the local
node number. The boundary variablesp0 , p08 , pn

s , pn
c ,

pn8
s , andpn8

c are also approximated using the same isopa
metric shape functions as for the coordinates, thus on
ment i e ,

c i e
~j!5 (

i n51

nn

Ni n

nn~j!c i ei n
, ~34!

where any of the boundary variables can be substituted
c i e

(j), andc i ei n
is the value of the corresponding variab

on local nodei n of elementi e . Using this approximation in
for instance, Eq.~24!, yields

C~x!pn
s~x!5 (

i e51

ne H (
i n51

nn

pniei n
s E

21

1

Ni n

nn~j!Hn8~j!r ~j!Ji e
~j!dj

2 (
i n51

nn

pniei n
8s E

21

1

Ni n

nn~j!Hn~j!r ~j!Ji e
~j!djJ ,

~35!

wherepniei n
s is the value ofpn

s at local nodei n of element

i e and Ji e
(j) the Jacobian of the transformation given

Eqs.~32! and ~33!, for elementi e :

Ji e
~j!5F S dr

dj D 2

1S dz

dj D 2G1/2

. ~36!

Expressions similar to Eq.~35! can be obtained for the othe
boundary values using Eq.~25!.

For the solution process, a collocation scheme is
plied. The observer pointsx on the boundary are chose
successively to coincide with each global nodei nd andy is
the ~surface! point of integration, now explicitly a function
of j through Eqs.~32! and ~33!. This collocation method
results in a set ofnnd linear algebraic equations in terms
the unknownpn , whenpn8 is given on each node, and vic
versa. The resulting equations may be written in the follo
ing matrix form:

Anpn
s5Bnpn8

s , ~37!

where pn
s and pn8

s are the column vectors containing th
nnd nodal values ofpn

s and pn
0, respectively.An andBn are

square matrices with the various integrals as in Eq.~35! as
their elements. For the cosine terms of the Fourier serie
similar matrix equation can be derived:
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-

-
e-

or

-

-

a

Anpn
c5Bnpn8

c , ~38!

wherepn
c andpn8

c are the column vectors containing thennd

nodal values ofpn
c and pn8

c . Thus, two matrix equations
result, relating the terms of the Fourier expansion of the
known variables to the Fourier coefficients of the bound
conditions. The matrix equations that describe the acou
radiation have to be formed for every Fourier mode num
n that is present in the Fourier expansion of the bound
conditions.

When the solution for all boundary values is compute
the value of the Fourier terms of the pressure and its der
tive for any surface or exterior point can easily be obtain

by applying an equation similar to Eq.~35! for pn
s* andpn

c* ,
substituting the calculated values forpniei n

s , pniei n
c , pniei n

8s ,

andpniei n
8c . The resulting equation is an explicit relationsh

between the acoustic variables on the surface of the radia
body and the acoustic variables at any other position in
acoustic medium.

III. APPLICATION OF THE FFT METHOD

The FFT based integration method was implemented
the in-house acoustic Fourier BEM codeBARD to assess its
efficiency compared to a Gaussian quadrature based me
that was previously proposed. For the FFT method, an
pression for the minimum number of Fourier pointsnFFT was
developed. For a large number of parameters valuescs in the
range@1,2000# andc0 in the range@0,100#, the integrals~13!
and~16! were computed with the proposed method until co
vergence was achieved. Each parameter paircs andc0 has a
specific minimum number of Fourier pointsnFFT for the in-
tegrals to converge where the relative error in the compu
value for the integrals did not exceed 1023. These pairs of
cs , c0 and relatednFFT were then used in a curve-fittin
procedure to obtain the relationship

nFFT~cs ,c0!514S cs1
c0

2p D 0.9

.

In the BEM code the expression fornFFT was implemented
and its value is computed for each circumferential integ
evaluation seperately based on values forcs andc0 for that
integral. Its value is rounded to the nearest subsequent po
of 2, to enable the use of a fast radix-2 FFT algorithm.
efficient integration algorithm based on Gaussian quadra
was also implemented such that the maximum relative e
with that method was 1023.

As a check for the accuracy of the developed FBE
codeBARD, the response of an oscillating sphere with rad
a51 was computed. To model the sphere, a mesh with
quadratic line elements was used and the response was
culated for a dimensionless wavenumber rangeka50,...,5.
The relative errors in the computed surface pressure obta
with the FBEM compared with the analytically known sol
tion for this problem9,10 were smaller than 1%.

To assess the efficiency of the FFT based integra
method, the acoustic responses of two model vibrating b
ies, a sphere and cylinder, were computed. The sphere
1399Kuijpers et al.: Acoustic Fourier BEM
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cylinder were discretized using quadratic elements. The n
mal velocity boundary condition for both problems was d
fined as

un~y!5
1

2 irv
p8~y!5 (

n51

nh

cos~nu!,

where the number of harmonicsnh ranged from 1 to 7 to
assess the usability of the methods for constructions w
more complicated boundary conditions in circumferential
rection. The acoustic pressure response was computed
both the FFT based and Gauss based integration meth
The differences between the results obtained with the F
method and the Gauss method were negligible, indica
that the circumferential integrals were computed with
same accuracy. The efficiency of the new method can
assessed by making a comparison between cpu time ne
for the radiation computation for both problems as a funct
of the number of harmonicsnh in the boundary conditions a
depicted in Fig. 3.

The cpu times were scaled by dividing the actual co
putation time by the time needed to compute the respons
the first harmonic using the Gaussian quadrature method

FIG. 3. Scaled computation time for spherical and cylindrical radiation
Gauss~* ! and FFT~s! based quadrature.
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both methods and for both problems, the cpu time neede
compute the acoustic response increased linearly with e
extra harmonic in the boundary conditions. However, the c
time for the Gaussian quadrature method increased more
extra harmonic than for the FFT method. This can be
plained by the most important difference between the me
ods: when the Gauss method is used, the circumferentia
tegrals are computed for each Fourier mode separately,
when the FFT method is used, these integrals are comp
for all modes simultaneously. In other words, the charac
istic total cpu time for the radiation computation with th
Gauss method is the computation time for one harmo
multiplied by the total number of harmonics in the bounda
conditions, while for the FFT method, the computation tim
for evaluatingoneharmonic is typical of the total cpu time
for all harmonics. For one or two harmonics in the bounda
conditions for the sphere radiation, and for one harmonic
the cylinder boundary conditions, the calculations w
Gaussian quadrature were faster than those with the
method~Fig. 3!. However, forall other problem configura-
tions that were tested, using the FFT method was cle
advantageous. In conclusion, for more than one harmoni
the boundary conditions, the FFT method is generally m
efficient than the Gaussian quadrature method, while obt
ing the same accuracy.

IV. CONCLUSIONS

A new method was presented to handle the integ
over the angle of revolution arising in the Fourier bounda
element method~FBEM! for the calculation of the acousti
response of axisymmetric bodies with arbitrary bound
conditions. Previously proposed methods to handle these
tegrals required a separate~expensive! integral evaluation for
each Fourier term~circumferential harmonic! that is present
in the boundary conditions. With the integration method p
posed here, these integrals are computed simultaneousl
all harmonics. The method efficiently uses fast Fourier tra
form ~FFT! algorithms to obtain numerical values for the
integrals.

Simulations were performed comparing the efficiency
the new FFT integration method with that of a method ba
on Gaussian quadrature. They showed that the FFT me
is generally more efficient, especially when more than o
circumferential harmonic is present in the boundary con
tions.

It is expected that the utility of the new integratio
method presented here is not limited to acoustic proble
only. The method should be usable whenever the integr
of the circumferential integral is periodic and~fast! Fourier
transformable.
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