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'e main challenge of Strap-down Inertial Navigation System (SINS)/Doppler velocity log (DVL) navigation system is the
external measurement noise. Although the Sage–Husa adaptive Kalman filter (SHAKF) has been introduced in the integrated
navigation field, the precision and stability of the SHAKF are still the tricky problems to be overcome. 'e primary aim of this
paper is to improve the precision and stability of underwater SINS/DVL system. To attain this, a SINS/DVL tightly integrated
model is established, where beam measurements are used without transforming them to 3D velocity. 'e proposed improved
SHAKF algorithm is based on variable sliding window estimation and fading filter. 'e simulations and vehicle test results
demonstrate the effectiveness of the proposed underwater SINS/DVL tightly integrated navigationmethod based on the improved
SHAKF. In addition, the position accuracy of the designed method outperforms that of the SHAKF method.

1. Introduction

As humans explore the ocean, the demand for resource
development, marine environmental surveys, and opera-
tions has also increased. Underwater vehicles can replace
humans in deep ocean to complete the detection and de-
velopment of marine resources, saving a lot of cost for
production. Underwater vehicles have become one of the
important tools for human ocean development [1]. With the
gradual deepening of human beings in the field of ocean
exploration, the tasks to be accomplished by underwater
vehicles are becoming more and more complex and the
working time is getting longer and longer. Now, the de-
velopment of underwater vehicles faces many problems,
such as the realization of high-precision autonomous nav-
igation and positioning functions. 'e autonomous navi-
gation system can provide navigation information for the
underwater vehicle to ensure the correct travel.

At present, there are many kinds of navigation systems
used on underwater vehicles such as Strap-down Inertial
Navigation System (SINS), Long Baseline (LBL), Doppler
velocity log (DVL), and Ultrashort Baseline (USBL) [2]. 'e

premise of acoustic navigation system applications such as
Long Baselines and Ultrashort Baselines is that the reference
matrix is placed in the working sea area beforehand.
However, the debugging and arranging process would waste
manpower and material resources. So they are not suitable
for a wide range of navigation and position. An autonomous
navigation system based on SINS requires navigation by
means of inertial devices (gyroscopes and accelerometers) in
the navigation system [3]. However, due to inertial mea-
surement unit (IMU) installation errors and self-propelled
problems, the navigation errors of the system will accu-
mulate over time and will not be corrected in time.
'erefore, the navigation accuracy will decrease after a
period of time. DVL can provide relatively accurate speed
information, which is self-contained, and the error does not
accumulate over time. 'erefore, SINS/DVL-based inte-
grated navigation is a commonly used integrated navigation
method for underwater vehicles [4].

In integrated navigation systems, Kalman filter is a
widely used information fusion algorithm. 'e wide ap-
plication of Kalman filter began in the 1960s. 'e essence of
this filter is a recursive process, which is the optimal
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minimum variance estimation of data. 'e filter can achieve
an optimal estimate by fusing information from different
sensors.'e traditional Kalman filter can be applied to linear
systems, but in fact many systems are nonlinear systems. So,
extended Kalman filter (EKF) is proposed. 'is filter no
longer requires the system to be linear, which compensates
for the deficiency of traditional Kalman filter to some extent.
'en, the unscented Kalman filter (UKF) based on the
nonlinear system is proposed [5, 6]. 'e algorithm realizes
the recursion of the state quantity of the system by setting the
sampling point, and U transforms the sampling point to
replace the original value. In order to obtain better filter
estimation, the above methods all require the system model
to be accurate and the external interference signal is un-
correlated white noise with statistical characteristics. Oth-
erwise, the filtering accuracy cannot be guaranteed, and even
the filter divergence may be caused. However, in the actual
SINS/DVL system, due to the error drift of the navigation
device, the dynamic error caused by the vehicle manipu-
lation, and the influence of the complex environment in the
water, the systemmodel is difficult to be completely accurate
and the noise statistical characteristics are also uncertain. In
order to further study the above issues, some researchers
have introduced the Sage–Husa adaptive Kalman filter al-
gorithm [7] to estimate the statistical characteristics of noise
in real time.

Reference [8] pointed out the insufficiency of Sage–Husa
adaptive filtering; that is, the measurement noise variance
matrix R and the system noise variance matrix Q cannot be
estimated online at the same time. 'erefore, scholars have
proposed a simplified Sage–Husa filter [9], which can es-
timate R when the Q is known, and the method has good
adaptability. According to [10], a modified SHAKF is in-
troduced to enhance the performance and increase the
stability of the algorithm for the low cost EMES-INS/GPS
tightly integrated system. 'e proposed Sage–Husa adaptive
Kalman algorithm in Reference [11] is based on the adaptive
weight that makes a better performance than KF for fiber
optic gyroscope (FOG) drift error signal denoising. In order
to solve the problem of reduced accuracy or the divergence
of the filter, an adaptive Kalman filter (AKF) algorithm based
on one-step smoothing filter is designed in [12] for inte-
grated SINS/DVL systems. 'e variational Bayesian ap-
proach is introduced in Kalman filter in [13–15]. Parameter
estimation and inference problems in Bayesian models are
often very difficult. 'e adaptive Kalman model based on
Sage–Husa is relatively simple and meets the real-time re-
quirements of integrated navigation.

To further improve the antijamming capability of the
navigation system, some methods are proposed. On the one

hand, a novel SINS/DVL tightly integrated model is built,
which can work well when the number of DVL beam
channels is less than 3. On the other hand, an improved
Sage–Husa adaptive Kalman filter (ISHAKF) is introduced,
which introduces the forgetting factor and variable sliding
window.

'e structure of this paper is as follows: a SINS/DVL
tightly integrated model is designed in Section 2. In Section
3, the ISHAKF method is presented, which is based on the
fading factor and the variable sliding window method. 'e
simulation and vehicle test are designed to illustrate the
superiority of the method in Section 4. and 5 is devoted to
the conclusions.

2. SINS/DVL Tightly Integrated System

'e underwater SINS/DVL navigation system based on the
loose combination takes the difference between the three-
dimensional velocity of the DVL output and the three-di-
mensional velocity of the SINS. When the number of DVL
beam channels is less than three, DVL will not be able to
output 3D speed information, so the SINS/DVL integrated
navigation system will not work well [16]. 'e tightly in-
tegrated navigation method proposed in this paper makes
full use of DVL beam data to extend the measurement in-
formation to four dimensions. When the DVL beam in-
formation is less than three, the integrated navigation system
can still work normally, further improving the fault toler-
ance of the system. A novel structure of the SINS/DVL
tightly integrated navigation system is shown in Figure 1,
where it can be seen that the differences among the original
information of the four channels output by DVL and the
SINS speed are used as the measurement information. At the
same time, the three-dimensional SINS velocity information
is extended to four dimensions through the transfer matrix.
'e system can estimate the DVL scale factor error, the gyro
zero bias, and the add-on zero bias by Kalman filtering and
finally feed back to the sensor output information to further
improve the navigation accuracy of the underwater system.

2.1. State Equation. 'e state equation of the SINS/DVL
tightly system can be shown as follows:

_X � FX + GW, (1)

where F denotes the state transition matrix, G is the system
noise matrix, W is the process noise vector, and X denotes
state vector, which can be obtained as follows:

X � ϕx ϕy ϕz δV
n
E δVnN δVnU δλ δL δh εx εy εz ∇x ∇y ∇z KD bPS[ ]T, (2)

where ϕ represents attitude error, δV represents velocity
error, δλ, δL, δh denote position error, ε represents gyro bias,
∇ represents accelerometer bias, KD represents DVL scale

factor, and bPS represents pressure sensor bias. 'e system
state transition matrix F, the matrix G, and W can be
expressed as follows [17]:
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F �

Maa Mav Map −Cnb 03×3

Mva Mvv Mvp 03×3 Cnb 03×2

03×3 Mpv Mpp Cnb 03×3

08×15


,

G �
−Cnb 03×3

03×3 Cnb

011×1 011×1

 ,

W �
wbg

wba

 ,

(3)

where Maa,Mav,Map,Mva,Mvv,Mpv,Mpp,Mvp can be
known in [17].

2.2. Measurement Equation. 'e measurement equation of
the SINS/DVL tightly integrated system model is given as

Z � HX + V, (4)

where H is the measurement transfer matrix, V is the
measurement information noise, and Z is the measured
matrix, which can be expressed as

Z �

Ṽ
d

DVL 1 − Ṽ
d

SINS 1

Ṽ
d

DVL 2 − Ṽ
d

SINS 2

Ṽ
d

DVL 3 − Ṽ
d

SINS 3

Ṽ
d

DVL 4 − Ṽ
d

SINS 4

H̃PS −HPS




, (5)

where Ṽ
d

SINS � Ṽ
d

SINS 1 Ṽ
d

SINS 2 Ṽ
d

SINS_3 Ṽ
d

SINS 4
[ ]T de-

notes the velocity of SINS under the d frame and Ṽ
d

DVL �

Ṽ
d

DVL 1 Ṽ
d

DVL 2 Ṽ
d

DVL 3 Ṽ
d

DVL 4
[ ]T denotes the velocity of
DVL measurement. 'e noise V is

V � wD wPS[ ]T. (6)

We give definitions as follows: n represents the navi-
gation frame, b represents body frame, and d represents the
DVL frame. 'e relationship between SINS velocity and
DVL velocity can be expressed as

V
d
DVL � V

d
SINS � C

d
bC

b
nV

n
SINS, (7)

where Cbn is the direction cosine matrix and represents a
transition from frame n to frame b and Cdb is the direction
cosine matrix and represents a transition from frame b to
frame d, which can be given as

C
d
b �

0 cos α −sin α
cos α 0 −sin α
0 −cos α −sin α

−cos α 0 −sin α


, α � 70°, (8)

where α represents the horizontal angle between the beams
and the underwater vehicle. Commonly, there is α � 70°.
Taking DVL beam 1 as an example, its conversion rela-
tionship is shown in Figure 2.

Figure 2 is reproduced from [17]. (under the creative
commons attribution license/public domain). We define the
PS error model as

H̃PS � HPS + δbPS + wPS, (9)

where HPS represents the true value,δbPS represents the PS
biases, and wPS represents the white noise. 'e DVL mea-
surement error model can be expressed as [18]

Ṽ
d

DVL � 1 +KD( )VdDVL + wD, (10)

where Vd
DVL represents the true value, KD represents the

scale factor, and wD represents the white noise. Considering
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Figure 1: Structure of the proposed underwater SINS/DVL tightly integrated system.
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the installation angles error, the conversion relationship
between frame b and frame d is

C̃
d

b � C
d
b I3×3 + φ×( ), (11)

where ϕ � φx φy φz[ ]T denotes the installation angle
error between IMU and DVL. According to the above
analysis, the velocity of SINS under frame d can be expressed
as

Ṽ
d

SINS � C̃
d

b C̃
b

nṼ
n

SINS � C̃
d

b C̃
b

n I3×3 + φ×( ) V
n
SINS + δV

n
SINS( )

≈ C̃db C̃
b

nV
n
SINS + C̃

d

b C̃
b

nδV
n
SINS + C̃

d

b C̃
b

nφ × V
n
SINS.

(12)
Substituting (7) into (12), we can get

Ṽ
d

SINS � V
d
DVL + C̃

d

bC
b
nδV

n
SINS − C̃

d

bC
b
nV

n
SINS × φ. (13)

'e measurement information is

Ṽ
d

DVL − Ṽ
d

SINS � 1 + KD( )Vd
DVL + wD − V

d
DVL − C̃

d

bC
b
nδV

n
SINS

+ C̃
d

bC
b
nV

n
SINS × φ

� V
d
DVLKD + wD − C̃

d

bC
b
nδV

n
SINS + C̃

d

bC
b
nV

n
SINS × φ

� V
d
DVLKD + wD − C

d
b I3×3 + φ×( )CbnδVn

SINS

+ C
d
b I3×3 + φ×( )CbnVn

SINS × φ.

(14)
So, the measurement transfer matrixH can be expressed

as

H �
Mhb Mha 04×9 Vd

DVL 04×1

01×8 −1 01×7 1
 ,
·

Mha � −Cdb I3×3 + φ×( )Cbn
Mhb � Cdb I3×3 + φ×( )CbnVn

SINS × .


(15)

From (5), it can be seen that the DVL beam measure-
ments are directly used without being transformed to frame
b.

3. Improved Adaptive Filter Method

3.1. Sage–Husa Adaptive Kalman Filter. In 1969, scholars
A. P. Sage and G. W. Husa designed an adaptive filter al-
gorithm, which can estimate the noise characteristics of the
system in real time through the measurement output while
performing state estimation [19]. Sage–Husa adaptive al-
gorithm is based on the Kalman filter to add time-varying
noise estimator to estimate and correct the statistical
characteristics of system noise in real time, thereby reducing
model error, suppressing filter divergence, and enhancing
filter accuracy. However, it is impossible to estimate all noise
parameters such as system noise mean and variance and
measurement noise mean and variance. Considering that
system noise generally has less impact, the effects of system
noise can be ignored. 'e currently used Sage–Husa filter is
an adaptive filter algorithm, which is based on the estimated
measurement variance matrix R. 'e system model can be
established as

Xk � Φk,k−1Xk−1 + Γk−1Wk−1,

Zk � HkXk + Vk,
{ (16)

where Xk denotes state vector, Φk,k−1 denotes one-step
transfer matrix from k–1 to k, Γk−1 denotes the system noise
matrix, Zk denotes measurement vector,Hk is measurement
matrix, Wk−1 denotes system noise, and Vk is measurement
noise. 'e noise matrices Wk−1 and Vk satisfy the following
statistical characteristics:

E Wk[ ] � qk, Cov Wk,Wj[ ] � Qkδkj,

E Vk[ ] � rk, Cov Vk,Vj[ ] � Rkδkj,

Cov Wk,Vj[ ] � 0,

 (17)

where Qk denotes covariance of the system noise and Rk
denotes covariance of the measurement noise. 'e standard
Kalman process is as follows [20,21]:

Xk,k−1 � Φk−1X̂k−1 + Γk−1qk−1, (18)

Pk,k−1 � Φk−1Pk−1Φ
T
k−1 + Γk−1Qk−1ΓTk−1, (19)

Kk � Pk,k−1ΗTk ΗkPk,k− 1Η
T
k + Rk( )− 1, (20)

X̂k � X̂k,k−1 + Kk Zk −HkX̂k,k−1 − rk( ), (21)

Pk � I − KkHk( )Pk,k−1. (22)

Vb
z

Vb
y

Vb
x

Vb
DVL_1Beam 1

α

α

Figure 2: 'e relationship between frame b and frame d.
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'e simplified SHAKF is based on (18)–(22) to increase
the measurement noise estimator.

εk� Zk −HkX̂k,k−1 − rk, (23)

R̂k � 1 − 1
k

( )R̂k−1 + 1k εkε
T
k −HkPk,k−1H

T
k( ). (24)

'e SHAKF algorithm can measure the noise R in real
time and achieve the adaptive effect while estimating the
state.

3.2. Improved SHAKFMethod. In view of the deficiencies of
SHAKF algorithm, this paper makes improvements from
two aspects. Firstly, the variable fading factor is designed to
improve the adaptive ability of the filtering. Secondly, the
variable sliding window method is used to measure the
estimation of noise, and the estimation accuracy of the
measurement noise is further improved.

(1) Based on the SHAKF algorithm, the fading factor λ is
introduced. 'erefore, considering the idea of combining a
fading factor, (21) can be given as

X̂k � X̂k,k−1 + λ · Kk Zk −HkX̂k,k−1 − rk( ). (25)

'is paper proposes an adaptive adjustment function for
fading factors. It can be known from formula (25) that when
the error is large, λ should be reduced, thereby reducing the
weight of the current measurement information. When the
error is small, λ should increase, thereby increasing the
weight of the current measurement information. Because the
size of the fading factor can be determined by the error [22],
we use the error mean E[εk] as the error point. When it is
less than the error mean E[εk], λ is adjusted closer to 1.
When it is larger than the error mean E[εk], λ is adjusted
closer to λmin. According to the above analysis, the proposed
adaptive adjustment function is as follows:

λ � 1 − λmin
π

arccot εk − E εk[ ]( ) + λmin. (26)

From (26), we know that the fading factor λ is controlled
by the measurement error, which can ensure that the error
swings around the error mean E[εk], which can improve the
stability of the SHAKF. Normally, the value of λmin ranges
from 0.7 to 0.8, and the value of λ ranges from λmin to 1. It
can be seen from (26) that the forgetting factor λ is con-
trolled by the error, which can ensure that the error swings
around E[e(n)], and the change is slow, which can buffer the
poor tracking effect caused by the λ change too fast.

It can be known from (23) that if the measurement noise
of the actual system is smaller than the theoretical model
value, εkε

T
k will be smaller. If the state noise setting is too

large,HkPk,k−1H
T
k will be larger. Both of the above cases may

cause εkε
T
k −HkPk,k−1H

T
k < 0, which makes it easy for R̂k to

lose positive definiteness and cause filtering abnormality. To
solve this problem, this paper adopts the sequential filtering
method and limits the size of each element of the R̂k diagonal
[23–25]. Assume R̂k is a diagonal matrix. Sequential filtering

is used to perform the ith scalar sequential measurement
update. 'e scalar measurement equation is

Z(i)k � H
(i)
k Xk + V

(i)
k ,

ρ(i)k � Z̃
(i)
k,k− 1( )2 −H

(i)
k P

(i)
k,k−1 H

(i)
k( )T. (27)

Set the R̂k value range to meet the following conditions:

R̃
(i)
k �

1 − βk( )R̃(i)k−1 + βkR(i)min, ρ(i)k <R
(i)
min,

R(i)max, ρ(i)k >R(i)max,

1 − βk( )R̃(i)k−1 + βkR(i)k , others,

 (28)

where i denotes the ith scalar. R̃
(i)
k represents the ith scalar

element of the diagonal matrix R̂k at time k.'rough the above
processing, the measurement noise R̂k can be limited between
R(i)min and R(i)max, thereby having better adaptive ability and
reliability.

(2) In order to enhance the estimation accuracy of
measurement noise, a variable sliding window estimation
method is designed in this paper. 'rough the measurement
noise mean processing in the SHAKF, the estimation ac-
curacy of the measurement noise is further improved. 'e
following improvement is made to (24) in the filtering
algorithm:

R̂k � R̂k−1 +
1

m
∑m
j�0

εk−jε
T
k−j −Hk−jPk−j,k−j−1H

T
k−j( ), (29)

where m is the variable sliding window value. 'e range of
values of m satisfies the following conditions:

m �
m, m<N,
N, m>N,

{ (30)

where N is the preset window maximum. When a large
change in the R value is detected, m� 0, and the sliding
window is incremented from 0 to N. When the value ofm is
greater than N, the window m�N. 'is method is well
adapted to the variation of the R value. 'e two processes of
window adjustment are shown in Figures 3 and 4. Figure 3 is
a window adjustment process when m<N. It can be seen
from the figure that as the observation data increases, the
window m also gradually increases.

Figure 4 is a window sliding adjustment process when
m>N. It can be seen from the figure that as the observation
data increases, the moving window size remains N.

3.3. ISHAKF for SINS/DVL Tight System Scheme.
Figure 5 is the structure of the improved Sage–Husa adaptive
Kalman filter algorithm.'e algorithm is based on the SINS/
DVL tight combination navigation system designed in this
paper, which can realize the noise estimation of four-di-
mensional velocity information. 'e ISHAKF algorithm is
based on the SHAKF algorithm. Based on the original al-
gorithm, the forgetting factor and variable sliding window
method are introduced. 'e steps of implementing the
ISHAKF algorithm are as follows.

Mathematical Problems in Engineering 5



(1) Perform ISHAKF algorithm status update.

(2) Calculate the forgetting factor according to the in-
troduced forgetting factor adjustment function.

(3) Calculate the filter gain according to the forgetting
factor, and perform the ISHAKF filter measurement
update at the same time.

(4) Calculate the sliding window value, and perform the
sliding window averaging processing on the mea-
surement noise.

(5) Determine if the R value is outside the set range and
further process the R value.

4. Simulation and Vehicle Test

To illustrate the navigation performance of the proposed
ISHAKF method, the simulation and vehicle experiment are
designed. First, the trajectory is simulated, which simulates
the underwater vehicle swinging motion. Second, the out-
performance of the ISHAKF method is verified compared
with Sage–Husa adaptive Kalman filter and Kalman filter in
complex sea conditions. Finally, the vehicle test is designed,
which simulates underwater SINS/DVL tightly integrated
navigation system.

4.1. Simulation. 'e accelerometer biases and the random
walk noise are set as 100μ g and100μ g/

���
Hz

√
, respectively.

'e gyroscope biases and the random walk noise are set as
0.02°/h and 0.02°/

��
h

√
, respectively. 'e DVL scale factor is

set as 0.002. 'e initial angle errors are set as 0.02°, −0.02°,
and 0.5°, respectively. 'e DVL provides velocity

information for four channels. 'e out frequencies of the
IMU and DVL device are set as 200Hz and 1Hz, respec-
tively. 'e vehicle movement start position is set to latitude
32.056°N and longitude 118.794° E. 'e curve of moving
trajectory is shown in Figure 6. 'e altitude value of moving
trajectory for underwater vehicle is 50m, and the altitude
value does not change during the whole movement.

Since the underwater vehicle movement is affected by the
water flow, its motion should be a rocking motion. In order
to simulate the swaying motion of the underwater vehicle,
the attitude angle of the vehicle is given as

θ � θm sin
2π

5
t + θ0( ),

c � cm sin
2π

7
t + c0( ),

ψ � ψm sin
2π

6
t + ψ0( ),



(31)

where the amplitudes of the swaying motion are set as
θm � 3°, cm � 4°, and ψm � 3°, respectively, while the cycles
of the swaying are 5 s, 7 s, and 6 s, respectively. 'e initial
phases are set as θ0 � 0°, c0 � 0°, and ψ0 � 0°, respectively.
'e curve of vehicle velocity and attitude is shown in
Figure 7.

In order to illustrate the anti-interference ability of the
proposed ISHAKF method to external noise, different noise
levels are set. 'e measurement noise covariance is set as R �

N + 1
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N + 2
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Figure 4: Window sliding adjustment process when m>N.
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Figure 3: Window sliding adjustment process when m<N.
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Figure 5: Process of the improved Sage–Husa adaptive filter for SINS/DVL.
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diag (0.1m/s)2, (0.1m/s)2, (0.1m/s)2, (0.1m/s)2{ } during
400 s∼700 s. 'ree methods are listed for SINS/DVL tightly
integrated system. Figure 8 shows the curve of velocity error
for KF, SHAKF, and ISHAKF.

'e navigation accuracy and anti-interference ability of
three methods (KF, SHAKF, and ISHAKF) are compared by
calculating the root-mean-square error (RMSE) of the velocity:

RMSE �

�������������
1

n
∑n
i�1

X̃i −Xi( )2
√√

, (32)

where Xi denotes the real velocity obtained by the simu-
lation, n is the number of signals, and X̃i is the measurement
information. 'e RMSE has a good reflection of the mea-
surement precision. So, the error data in Figure 8 is pro-
cessed by the RMSE, and the results are shown in Table 1.

From Table 1 we know that the RMSE of north, east, and
up velocity for ISHAKF are 0.138m/s, 0.135m/s, and
0.056m/s, respectively, which has better performance than
KF and SHAKF method. Figure 9 shows the curve of po-
sition error for KF, SHAKF, and ISHAKF. Compared with
KF and SHAKF, it can be known that ISHAKF proposed in
this paper has the smallest position error.

According to navigation system, the positioning
performance of the three methods is compared, the above
position error is analyzed, and the max error is calcu-
lated, whose results are listed in Table 2. We can see that
the north and east position errors for ISHAKF are
14.303 m and 14.559 m, respectively, which reduced by
44.59% and 45.96% than SHAKF method.

In order to further compare the positioning accuracy of
the three methods, the horizontal position error is calculated
for the KF, SHAKF, and ISHAKF as shown in Figure 10.'e
max horizontal position errors for three methods are
126.30m, 32.27m, and 20.39m, respectively, which shows
that the ISHAKFmethod has the better accuracy than the KF
and SHAKF method.

4.2. Vehicle Test. 'e vehicle experiment is designed to
simulate underwater vehicle due to the limitations of the
experimental conditions. 'e vehicle experiment device
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Figure 8: Curve of velocity error for three methods.

Table 1: RMSE for three methods.

KF SHAKF ISHAKF

ΔVN (m/s) 0.246 0.139 0.138
ΔVE (m/s) 0.271 0.145 0.135
ΔVU (m/s) 0.061 0.058 0.056
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Figure 9: Curve of position error for the three methods.

Table 2: Max error for three methods.

KF SHAKF ISHAKF

ΔPN (m) 113.137 25.816 14.303
ΔPE (m) 57.966 26.946 14.559
ΔPU (m) 0.604 1.014 1.014
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Figure 10: 'e horizontal position error for the three methods.
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includes a PHINS of IXSEA Corporation, a navigation
computer, a Flex Park 6 GPS receiver, and an inertial
measurement unit. Meanwhile, PHINS is used as a reference
navigation system to provide the accurate navigation in-
formation in real time. 'e vehicle equipment is shown in
Figure 11. In vehicle experiment, the PHINS and GPS

receiver are integrated, which works on the PHINS/GPS
mode. So, PHINS provides relatively accurate navigation
information including velocity position and attitude. 'e
speed information output by the PHINS can be used to
simulate the speed information provided by the DVL device.
'e instrument specifications are listed in Table 3.

(a) (b)

Figure 11: (a) Experimental vehicle and (b) equipment.

Table 3: Instrument specifications.

Instruments Parameters Accuracy Frequency (Hz)

IMU

Gyroscope bias ≤0.02°/h 200
Gyroscope random walk ≤0.005°/

��
h

√
200

Accelerometer bias variation ± 50ug 200
Accelerometer output noise ≤ 50 ug/

���
Hz

√
200

GPS
Velocity (RMS) 0.03m/s 1
Position (L1) 1.5m 1

PHINS Attitude (GPS aided mode) ≤ 0.01° 200
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Figure 12: Curve of moving trajectory.
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'e entire test route is on the campus of Southeast Uni-
versity and lasts for 1000 s. Figure 12 shows the motion tra-
jectory.'e curve of attitude and velocity is shown in Figure 13.

In order to verify the fault-tolerant performance of the
designed SINS/DVL tightly integrated navigation method, the
loosely integrated navigation method is introduced in this
section. 'e DVL scale factor is 0.002. 'e initial attitude error
is[0.1°, 0.1°, 0.5°]. TwoDVL beammissing regions are set: DVL
beam channel 2 signalmissing between 150 s and 200 s andDVL
beam channel 4 signal missing between 600 s and 650 s.

Figure 14(a) shows the curve of velocity error, whose
mean and standard deviation (STD) for two methods are
shown in Figure 14(b). 'e position error for two methods is
shown in Figure 15, where it can be known that the tightly
integrated method proposed in this paper has better accuracy
than the loosely integrated method. When the DVL beam
channel information is less than 4, the loose combination
cannot complete the combined navigation solution, so its
speed error will continue to diverge. However, the tight
combination method can still complete the combined
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navigation solution in the case of DVL beam loss and suppress
the navigation error divergence. It can be know from the
results that the tight combination method has better fault
tolerance. 'e curve of the horizontal position error is shown
in Figure 16, where it can be known that the max horizontal
position error for tightly integrated method is 54.51m, which
is reduced by 63.9% compared to loosely integrated method.

'e curve of velocity error for two methods is shown in
Figure 17(a), in which the SHAKF is marked by blue line and
the ISHAKF is marked by red line. Mean and standard
deviation (STD) of velocity errors for two methods are
shown in Figure 17(b), which displays that the mean and
STD of ISHAKF are better than SHAKF method.

'e RMSE of velocity for SHAKF and ISHAKF method
is listed in Table 4. It can be seen that the north and east

velocity errors for ISHAKF are 0.171m/s and 0.204m/s,
respectively, which reduced by 12.7% and 7.2% compared to
SHAKF method.

Figure 18 displays the curves of the north, east, and up
position errors for SHAKF and ISHAKF. Compared with
SHAKF, we know that the ISHAKF method has smaller
position error. To further compare the positional accuracy
of the two methods, the horizontal position error for the
SHAKF and ISHAKF is displayed in Figure 19, which
shows that the position accuracy based on ISHAKF is
better than the SHAKF. 'e max horizontal position
errors for SHAKF and ISHAKF are 49.76m and 31.49m.
Compared with the SHAKF method, the accuracy of the
ISHAKF method is improved by 36.71% which is listed in
Table 5.
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Figure 17: Curve of velocity error (a) and mean and STD of the velocity errors (b) for two methods.

Table 4: RMSE for two methods.

SHAKF ISHAKF

ΔVN (m/s) 0.196 0.171
ΔVE (m/s) 0.220 0.204
ΔVU (m/s) 0.142 0.130
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Figure 18: Curve of position error for two methods.
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5. Conclusions

In order to improve the fault tolerance of SINS/DVL in-
tegrated navigation in complex environment, this paper
proposes an improved Sage–Husa adaptive filtering SINS/
DVL tight combination navigation method, which is im-
proved from two aspects. Firstly, a new compact combined
navigation model is derived based on the traditional SINS/
DVL loose combination and the state equation and mea-
surement equation are established. Secondly, based on the
Sage–Husa adaptive Kalman filter algorithm, the forgetting
factor and variable sliding window are introduced, which
further improves the robustness and adaptive ability of the
adaptive filter. Finally, simulation and in-vehicle tests
verify that the proposed method can further enhance the
robustness and navigation accuracy of the SINS/DVL
system.
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