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Civil aviation transportation equipment is more convenient and faster than other transportation tools and is an essential part of
intelligent transportation. It is signifcant to study the reliability of positioning information and enhance trafc safety. Advanced
receiver autonomous integrity monitoring (ARAIM) can provide vertical guidance during the diferent navigation stages in civil
aviation felds. Te traditional multiple hypothesis solution separation (MHSS) algorithm distributes the probability of hazardous
misleading information (PHMI) and probability of false alarm (PFA) uniformly over all visible satellites resulting in reduced
global availability of ARAIM. Aiming at this problem, we proposed an adaptive simulated annealing particle swarm optimization
(ASAPSO) algorithm to redistribute integrity and continuity risks and establish a protection level optimization model. Based on
the real BeiDou navigation satellite system/global positioning system (BDS/GPS) data, the experimental results show that the
optimized algorithm can reduce the vertical protection level (VPL), and the ARAIM global availability of BDS/GPS is improved by
1.73%∼2.73%. Te optimized algorithm can improve the availability of integrity monitoring at diferent stages of the navigation
system and provide a basis for ensuring the reliability of the positioning results.

1. Introduction

Te BDS-3 satellite navigation system is operating smoothly
and achieving global coverage. It is playing an irreplaceable
role in the future and is widely used in road, railway, water,
air transportation, and other aspects of transportation. In
recent years, trafc safety has become a research hotspot.Te
satellite navigation system is closely related to trafc situ-
ational awareness and safety supervision of intelligent ve-
hicle navigation [1, 2]. And satellite navigation is also widely
used in the aviation feld [3, 4]. Te integrity monitoring
algorithm provides some assurance of location information
reliability. Integrity algorithm is one of the utmost priorities
for safety critical GNSS (global navigation satellite system).
Te rapid development of multiconstellation integrated
navigation systems has assumed a single constellation and

a single failure untenable [5–7]. Te ARAIM provides
localizer precision with vertical guidance up to 200
feet altitude (LPV-200) for global aircraft landing
navigation [8].

Related scholars have conducted a lot of research on
ARAIM availability optimization. Te Gauss Newton
method is used to optimize the model, and the polynomial
coefcient optimization algorithm is integrated to improve
the ARAIM availability [9]. Te integrity risk is allocated by
the binary search method to reduce the VPL value [10].
Reduce VPL by optimizing the allocation of integrity risks
[11]. Genetic algorithm is used to redistribute continuity risk
and integrity risk to achieve VPL optimization [12]. PSO
algorithm is used to optimize the integrity risk allocation
process to reduce the protection level [13]. Trough the
maximum minimization method, the fminimax function is
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used to reasonably allocate the risk probability to reduce the
VPL [14]. Tese researches improved the availability of
ARAIM in diferent ways. Working Group C defned
multiple hypothesis solution separation as the baseline al-
gorithm [15]. Tis work focuses on VPL computation and
the global availability of ARAIM [16]. Traditional risk
equalization strategy leads to the conservatism of VPL. Tis
study reallocated PHMI and PFA by using the ASAPSO to
optimize availability.

Te efectiveness of the ASAPSO algorithm was analyzed
and validated in terms of global VPL and the ARAIM
availability based on dual constellation by optimizing VPL.
Te results show that the optimization method based on
binary constellation diagram optimized the VPL and im-
proved the global ARAIM availability in diferent air nav-
igation stages. In Section 2, the MHSS algorithm and the
ASAPSO ARAIM algorithm are described in detail. In
Section 3, simulations are performed using a dual-frequency
carrier-smoothed position solution based on the BDS/GPS
constellation. Finally, the study is concluded in Section 4.

2. ARAIM Algorithm Analysis

ARAIM algorithm uses a dual-frequency technology to
eliminate ionospheric interference and uses multiple con-
stellations to obtain more observations to enhance the global
availability of LPV-200. Te ARAIM algorithm is an ex-
tension of the RAIM algorithm, which requires much higher
performance than the RAIM algorithm. It is a multifre-
quency and multiconstellation integrated navigation RAIM
algorithm. ISM parameters carry information on SIS ranging
error (SISRE) and fault statistics, which refect inherent
performance parameters of the core constellation, including
nominal measurement biases bnom, the standard deviation of
ephemeris, and clock error σURA. Psat and Pconst denote the
satellite failure state probability and the constellation failure
priori probability, respectively. ISM parameters are gener-
ated and verifed on the ground and transmitted to users as
required [17, 18].

2.1. MHSS ARAIM Architecture. Te MHSS algorithm is
shown below [19, 20]. Based on the MHSS traditional
ARAIM algorithm, it can be expressed as follows:

y � Hx + ε, (1)

where H represents the observation matrix, y represents the
pseudo-range observed from the navigation message and the
pseudo-range residual vector calculated using the satellite
position and the receiver clock error. x is the position
correction parameters of the user receiver in the three-
dimensional space and the receiver clock bias. ε can obey
a Gaussian distribution with a mean value of zero and
a variance of σ20.
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where W represents the weight matrix and σall,i represents
the standard noise error of the i − th satellite. Te solution
separation test is as follows:

∆xi � xi − x0
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where xi represents the i − th subset and x0 represents the
subset with no fault. Furthermore, the detection threshold of
the vertical position corresponding to the fault subset is as
follows:

Di � Kfa,i × σdv,i + 

Nsat

i�1
∆Si(3, i)


 × bcont,i. (4)

TeARAIMVPL calculation can be expressed as follows:
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where VPLi represents VPL corresponding to the fault
subset. i � 0 denotes VPL corresponding to the fault-free
subset. S0 represents the fault subset’s weighted least squares
projection matrix, Si denotes the i − th fault subset, and bnom
represents the maximum standard deviation of the i − th

satellite used to evaluate the integrity; it can be expressed as
follows:

∆Si � Si − S0, (6)

where σv,0, σv,i, and σdv,i can be expressed as follows:
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Te traditional ARAIM algorithm equally allocates the
continuity and integrity risk probability to all visible sat-
ellites. Te integrity constraint coefcient Kmd,i and Kfa,i are
determined by PHMI and PFA expressed as follows:

Kfa,i � −Q
− 1 PFA

N
 ,

Kmd,0 � −Q
− 1 PHMI

2(N + 1)
 ,

Kmd,i � −Q
− 1 PHMI

Psat,i(N + 1)
 ,

(8)

where Q is the right hand side cumulative distribution
function of a zero mean unit Gaussian. N is the number of
fault subsets; traditional allocation of PHMI and PFA will
lead to conservative protection levels. Terefore, the PHMI
and PFA are allocated by the ASAPSO algorithm, and this
allocation strategy will be discussed.

2.2. VPL Calculation of MHSS ARAIM Algorithm Optimized
Based on ASAPSO. Te PSO algorithm easily falls into local
convergence, which leads to slowing down the overall
convergence speed [21, 22]. Terefore, the simulated
annealing algorithm is combined with the PSO algorithm.
Te algorithm is divided into two stages: the standard PSO
algorithm is used for optimization in the early stage and the
simulated annealing algorithm is used later to optimize and
search the parameters in the PSO algorithm [23, 24].

Tis study proposed an optimization strategy based on
the ASAPSO algorithm to solve the problem that the average
distribution strategy is not optimal. Te VPL is optimized by
introducing an adaptive weight function. Te proposed
optimization algorithm can obviously reduce the vertical
protection level and improve the ARAIM availability.

Step 1. Calculation of the velocity and position of particles.

vm(it + 1) � wvm(it) + c1r1 pbestm − xm(it)(  + c2r2 gbestm − xm(it)( , (9)

xm(it + 1) � xm(it) + ]m(it + 1), (10)

where it represents the current particles number of itera-
tions, w represents the inertia weight, c1 and c2 represent the
acceleration constants, which are used to adjust the velocity
of motion in the pbest and gbest directions, respectively. r1
and r2 are the random number between 0 and 1. xm rep-
resents the particle’s position. vm represents the moving
speed of the particle m [25, 26].

Step 2. Selection of adaptive inertia weight.
Te method of adaptive inertia weight was introduced to

balance the global and local search ability of the PSO and
improve the algorithm’s performance. Te formula is as
follows:
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(11)

where ωmax and ωmin represent the maximum and minimum
values of the inertia weight w, respectively. f is the ftness
value of the particles. favg and fmin are the average and
minimum ftness values of the particles in the population,
respectively [27].

If the target value region of each particle is consistent and
the region is locally optimal, the inertia weight will increase.
If the target value of each particle is dispersed, the inertia
weight will decrease.

Step 3. Metropolis criterion updating strategy combined
with the simulated annealing algorithm.

We proposed an update strategy based on the Me-
tropolis criterion to solve the particle position update
problem. First, calculate the particle’s next possible po-
sition according to the updating equation (9). Ten, judge
whether it can be accepted as the particle’s next position
according to the Metropolis criterion. Finally, the steps
are as follows:
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where fiti+1 is the ftness value for the next position of the
particle. Te Metropolis criterion is introduced so that the
particle does not accept the diferent solution with full

probability, but accepts probability with
exp(−f iti+1(t) − f iti(t)/T)> rand.TeMetropolis criterion’s
update strategy avoids particle degradation in some extent.

Step 4. Particle ftness function selection.
According to the MHSS algorithms, the probability

average allocationmethod of PHMI and PFA is adopted, and
the VPL calculation method can be expressed as follows:
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According to equation (13), VPL is taken as the opti-
mization objective.Te schemes assigned to each fault subset
by PHMI and PFA are as follows:
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where the VPL corresponding to each fault subset is
expressed as follows:
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Terefore, the weighted sum of VPLi is taken as the
optimization objective, expressed as follows [17]:
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where Gi is optimization objective function and Nset rep-
resents the total number of particles.

Step 5. ASAPSO algorithm optimization VPL.
ASAPSO algorithm is introduced into the optimization

process. Te details are as follows:

(1) Firstly, M visible satellites were extracted and di-
vided into M groups. Ten, the PHMI was set to
0∼PHMI and the PFA is set to 0∼PFA. Finally, they
were randomly divided intoM groups and coded to
form the initial population n.

n �
Pfam0, Pfam1, Pfam2, ..., PfamNset

PHMIm0,PHMIm1,PHMIm2..., PHMImNset

⎡⎣ ⎤⎦.

(17)

where m� 1,2, . . ., n, and n is the number of
populations.

(2) Initialize the algorithm parameters.

(a) Initialize the position of particles in the
population

(b) Set the initial temperature, where
T0 � (−fg)/(ln 0.2) represents the initial
temperature

(c) Initialize each parameter

Te acceleration coefcient c1 � c2 � 0.2, the
population particle size is set to M � 50, the
maximum iteration times are set to 50, the
maximum particle moving to speed is vmax � 2,
and the minimum moving speed is vmin � −2.
Ten, the PHIMI and the PFA of each particle are
calculated. Ten, the ftness function is calcu-
lated. Te distribution method of PHMI and PFA
generated in the initial population are substituted
into VPL. Te individual optimal PHMI and the
population optimal PFA are assigned to each
particle.

(3) Iterative updating: First, the inertia weight W is
updated based on equation (11). Next, based on the
initial iteration value, the function value of each
particle target is set to the individual optimal value,
and the optimal value is selected from the indi-
vidual optimal value as the global optimal value.
Ten, the particle position and velocity are updated
according to equations (9) and (10). During each
iteration, the individual optimal position pbestm
and the global optimal position gbest will be
updated. Calculate the probability and generate
a random r. If r< min [1, p], the particle will enter
a new position and iterate again.
Te particle will move to a new position by
accepting a diferent probability. Finally, the tem-
perature is cooled byTk+1 � z × Tk. Trepresents the
temperature, the value of z generally ranges from
0.5 and 0.9, and k represents the number of
iterations.

(4) Judgment termination condition: Judge whether
the particle reaches the maximum iterations. If this
condition is met, the optimized PHMI and PFA
allocation strategy will be output to the optimized
VPL. Otherwise, go back to step 2 and continue
iterating updates. Finally, the VPL’s optimal allo-
cation strategy is obtained.

3. Experimental Verification and
Results Analysis

3.1.Optimization Simulation of Continuous Risk and Integrity
Risk Allocation Method. We extracted navigation in-
formation and observation fles from the IGS website to
verify the algorithm’s performance.Te simulation started at
00:00:00 on June 6, 2020, lasted for 12 hours, and the
simulation step length was 10minutes. Tis study uses the
BDS/GPS constellation dual-frequency carrier smoothing
method for simulation, and the experimental conditions are
shown in Table 1.

Figure 1(a) shows that the number of visible satellites is
relatively stable between 20 and 25. Meanwhile, Figure 1(b)
shows that the GDOP is between 1.3 and 2. It can be in-
dicated that the BDS/GPS satellites have a good space dis-
tribution in general. Figure 2(a) shows that the PFA is
allocated by the ASAPSO algorithm. In this algorithm, PFA
is randomly assigned to diferent satellites as a particle, and
diferent satellites are allocated to diferent PFA.Te value of
PFA remains between 2.7e− 6 and 3.9e− 6. Figure 2(b)
shows that the value remains between 5.7e− 8 and
9.8e− 8 by the optimized ASAPSO algorithm from the risk
allocation of PHMI. Te ASAPSO can optimize the risk
allocation strategy of PHMI and PFA. Both PHMI and PFA
are less than the threshold value. Te improved algorithm
allocates diferent values for diferent visible satellites, which
can reduce the VPL and improve the ARAIM availability.
Figure3shows that the VPL value of the ASAPSO is less than
that of the traditional algorithm in any epoch, and both the
traditional algorithm and the optimized algorithm are less
than 35m under GPS/BDS dual-frequency dual-system
combination. Terefore, under the premise of ensuring
PHMI and PFA, the ASAPSO algorithm can reduce the VPL.
It can also improve ARAIM availability.

3.2. Global Availability Simulation Analysis of the Traditional
and Optimized Method. Tis experiment uses BDS/GPS
almanac data to analyze global availability. BDS data were
downloaded from the Test and Evaluation Center of China
Satellite Navigation System Management Ofce and GPS
data were downloaded from the https://celestrak.com
website [27]. Te data were collected on January 2, 2021.
Te data simulation time is 3 hours with the step of
5minutes.

Te approach phases of an aircraft can be roughly di-
vided into the nonprecision approach (NPA) and vertical
guidance approach phase, which includes the APV-I, APV-
II, and precision approach phase CAT-I, CAT-II, and CAT-
III. Operational risks in diferent civil aviation approach

Journal of Advanced Transportation 5
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Table 1: ISM parameters setting.

Parameters Defnition Setting
PHMI Total integrity budget 9.8e− 7
P fa Continuity budget allocated to disruptions because of false alert 4e− 6
VAL Vertical alert limit 35m
EMT Efective monitoring threshold 15m
Constellation Navigation constellations GPS/BDS
P sat Priori failure probability of satellites 1e− 4
P const Priori failure probability of constellations 1e− 5
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Table 2: ICAO navigation performance requirements for each approach phase.

Phase Precision (95%) Alarm limit Continuity Availability

NPA 220m (H) 550m (H) 1× 10–4/h 0.99
N/A (V) N/A (V) 1× 10–8/h 0.99999

APV-I 16m (H) 40m (H) 8×10–6/15 s 0.99
20m (V) 50m (V) 0.9999

APV-II 16m (H) 40m (H) 8×10–6/15 s 0.99
8m (V) 20m (V) 0.99999

LPV-200 16m (H) 40m (H) 8×10–6/15 s 0.99
4m (V) 35m (V) 0.99999

CAT-I 16m (H) 40m (H) 8×10–6/15 s 0.99
4∼6m (V) 10m (V) 0.99999
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Figure 4: VPL before and after optimization. (a) VPL average� 19.7652. (b) VPL average� 20.4044.
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phases are diferent, so the integrity requirements of each
phase are also diferent [28]. Te ICAO (International Civil
Aviation Organization) navigation performance re-
quirements for each approach phase are shown in Table 2.

Te availability of an integrity monitoring algorithm has
an essential relationship with satellite geometric space dis-
tribution, which refers to the percentage of time that system
functions can meet the requirements of integrity perfor-
mance in a certain fight stage. Terefore, it is of great
signifcance to study aircraft availability in diferent navi-
gation stages. It is essential to analyze the availability of
aircraft integrity monitoring algorithms at diferent navi-
gation stages. Te performance of the optimization algo-
rithm is verifed through simulation and compares whether
it can meet the integrity requirements of the vertical
guidance approach phase and the precision approach phase

(Figures 4–8). Te latitude and longitude interval is the grid
spacing set by simulation, and it is selected as 10° ×10°.

Figures 4–8 show the comparison of the global VPL and
availability of the traditional method (a) and the optimized
method (b) under appropriate ISM parameters in diferent
navigation stages of the BDS/GPS dual constellation. Fig-
ure 4 shows that the color of the improved algorithm
gradually turns green in the range of 100°W-120° W lon-
gitude, 40°N-60°N latitude, 0°E-50°E longitude, and 40°E-
60°E longitude, which plays an optimized efect. Figure 5
shows a signifcant improvement in the availability of the
improved algorithm in the range of 25°S-20°N and 20°W to
10°E. Te efciency of the improved algorithm is obviously
superior to the traditional MHSS algorithm. Te MHSS
algorithm is based on the spatial distribution of visible GPS
satellites and uses the averaging method for risk allocation.
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Figure 5: Before and after optimization global availability of ARAIM under the LPV-200. (a) Traditional algorithm Coverage (99.5%)�

95.80%. (b) Optimized algorithm Coverage (99.5%)� 97.53%.
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Figure 6: Before and after optimization global availability of ARAIM under the LPV-250. (a) Traditional algorithm Coverage (99.5%)�

99.06%. (b) Optimized algorithm Coverage (99.5%)� 99.37%.
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Te space geometry distribution of GPS satellite is uniform,
the constellation fault probability is low, and the protection
level calculation under various fault assumptions is similar.
For BDS/GPS integrated navigation system, BDS perfor-
mance is weak, and BDS constellation distribution is uneven.

Satellites of diferent Beidou constellations have diferent
efects on positioning errors. Terefore, the traditional av-
erage distribution method will lead to VPL being too
conservative, which will reduce the global availability of
ARAIM.
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Figure 7: Before and after optimization global availability of ARAIM under the APV-II. (a) Traditional algorithm Coverage (99.5%)�

8.77%. (b) Optimized algorithm Coverage (99.5%)� 12%.
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Figure 8: Before and after optimization global availability of ARAIM under the CAT-I. (a) Traditional algorithmCoverage (99.5%)� 0%. (b)
Optimized algorithm Coverage (99.5%)� 0%.

Table 3: Global availability ARAIM comparison between before and after optimization.

Navigation stages Traditional algorithm (%) Optimized algorithm (%)
LPV-200 95.8 97.53
LPV-250 99.06 99.37
APV-II 8.77 12
CAT-I 0 0
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Figures 5–8 show a global availability analysis of navi-
gational integrity requirements at diferent navigational
performance stages. Figure 5 shows that the improved al-
gorithm is signifcantly improved in the range of 20°N–20°S
and 40°N–60°N. And it can be found that the lower the
availability before the improvement is, the more obvious the
availability after the optimization algorithm is adopted.
Figure 6 shows that the improved algorithm optimizes the
range of 40°N–60°N and 100°W–120° W. Figure 7 shows
a signifcant improvement in the area near the tropics.
Figure 8 shows that neither algorithms can satisfy the
availability of the CAT-I approach navigation stage. Table 3
shows the global availability ARAIM comparison before and
after optimization in diferent navigation performance
stages.

Table 3 shows that the global availability efect of the
traditional allocation method and ASAPSO algorithm is
excellent under the LPV-250 because the vertical alarm limit
(VAL) of ARAIM is 50m under the LPV-250. Te VAL is
much higher than the VPL. It can meet the ARAIM
availability under LPV-250. However, in the LPV-200
navigation stage, the global availability of the optimized
algorithm is higher, and the availability of the ARAIM is
more than 90%. Te ARAIM VAL is 35m under the LPV-
200. Terefore, the availability of ARAIM under the
LPV-200 is signifcantly lower than that of the LPV-250
navigation stage in terms of global availability. Te global
availability of the traditional and optimized algorithm is
about 8% and 12% under the APV-II navigation stage.
Because the VAL required is 20m under the APV-II. In the
CAT-I stage, the VAL of ARAIM is stricter than APV-II.
And the VAL is 10m, which is far lower than the VPL. It
cannot meet the integrity requirements in the CAT-I nav-
igation stage. In addition, it can be seen that the availability
of ARAIM under LPV-250> LPV-200>APV-II>CAT-I is
under the same ISM parameter. Te improved optimization
algorithm has the most obvious efect on the ARAIM
availability under the LPV-200 and APV-II. However, the
impact of LPV-250 and CAT-I is not obvious and needs
improvement.

3.3. Complexity Analysis. Teoretically, the algorithm’s time
complexity cannot be calculated directly, and it needs to be
tested on computers. Moreover, the running time on dif-
ferent computers may be diferent, so we just analyze the
time-frequency and time complexity. For the ASAPSO
optimization algorithm, the population size is recorded as n,
and the time-frequency, that is, the number of iterations, is
recorded as T(n). When n changes, T(n) will also change.
Te time complexity of the ASAPSO is T(n)O(n2). However,
it does not exceed the alarm time specifed by ICAO, and the
global availability of the algorithm has been improved.

4. Conclusions

Te ASAPSO algorithm optimized the risk allocation of
PHMI and PFA and improved ARAIM availability. In
diferent navigation stages, the degree of availability

optimization of the improved algorithm is diferent. Te
availability is improved by 1.73%∼2.73%. It can meet more
stringent navigation phase requirements for integrity
performance.

In 2020, the BDS-3 system was built successfully. And it
provides global services. Tis study used BDS-3 actual data
validated and compared the optimization and conventional
algorithms. Te ARAIM availability was obviously im-
proved. With the navigation performance requirement of
aviation users, the integrity of navigation performance be-
comes extremely important. Tis study presented an opti-
mized PHMI and PFA risk allocation method. Te
experiment shows that the proposed algorithm can signif-
icantly improve ARAIM availability and provides more
reliable services for aviation users. And the ongoing
transportation revolution (especially autonomous transport
systems) has signifcance in this work. It can provide safer
and more reliable positioning information for users.
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