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ABSTRACT

By modifying the simplex method of linear programming, we are able

to present an algorithm for !Zl approximation which appears to be superior

computationally to any other known algorithm for this problem.




AN IMPROVED ALGORITHM FOR DISCRETE ll LINEAR APPROXIMATION

sk Kok
I. Barrodale and F. D. K. Roberts’

1. Introduction
This paper provides an algorithm which appears to be the most efficient
vet devised for solving the general ll linear approximation problem. The algorithm
is a modification of the simplex method applied to the primal formulation of the
ﬁl probiem as a linear program. A Fortran IV program for the algorithm is supplied,
and some numerical results are given comparing the computational behavior of
this and other 11 algorithms,
The general ﬂl linear approximation problem can be stated as follows.
Let f(x) be a given real-valued function defined on a discrete subset
X = {xl, Xy eee Xm} of Euclidean space EN. Given n (< m) real-valued
functions ¢j (x) defined on X, we form a linear approximating function
L(A, x) :.il aj¢j(x) for any set A = {al, B, eee, an} of real numbers. The
lll probleJr; is to determine a best approximation L(A*, x) which minimizes
m
121 lfx) - LA, x| (1)

It is well known that at least one best approximation always exists, and there

are now several algorithms for calculating a best approximation. However,
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some of these algorithms require that the set of given functions {q;l(x),

¢2(x), sy ¢n(x)} be linearly independent on X, or that it satisfy the

Haar condition on X. This latter condition, which is equivalent to requiring
that the given functions be linearly independent on every subset of n distinct
elements from X, can be quite restrictive in practice.

As yet, it seems that the only use made of "least-first-power" approx-
imations has been in the analysis of experimental data. Even in this situation,
many scientists are unwilling to use estimates of parameters computed in a norm
for which few statistical tests are available.‘ However, there is
no doubt (see Bafrodale [2]) that best Jll approximations are often superior to
best { 5 approximations when estimating the true form of data that contain some
very inaccurate observations.,

The approximating functions used by experimental scientists for
interpreting data are almost never polynomials, and they rarely constitute Haar
sets (indeed, continuous functions of more than one independent variable never form
a Haar set). If the approximation problem is presented as the equivalent problem
of solving an overdetermined system of linear equations, it may be quite difficult
to decide on the rank of the given matrix. Consequently, we feel that a data-
fitting algorithm should impose as few restrictions as possible on the user's
choice of approximating function. Since our algorithm is based on the simplex

method it can be used with any linear approximating function.
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The connection between linear programming and £, approximation was

1
pointed out by Wagner [15] in 19 59, although other more direct (but cumbersome)
algorithms for the Jll problem had been proposed much earlier (see Barrodale [ 2]
for references to these).

In 1966 Barrodale and Young [ 6] described a primal algorithm which takes
advantage of the special structure of the linear programming formulation of the
ll problem. The primal algorithm of the present paper is an improved version
of this earlier simplex algorithm; in short, we have been able to reduce significantly
the total number of iterations required , by discovering how to pass through several
neighboring simplex vertices in a single iteration,

In 1967 Usow [13] presented a des‘cent method whichattempts to calculate
a best £ 1 approximation by locating the lowest vertex of a convex polytope
represeﬁting the set of all possible ll approximations., This iterative algorithm
requires that the approximating function be formed from a Haar set, and it also
stops prematurely if a certain degenerate situation arises. Usow [14] states that
he has now corrected this latter deficiency and exten&ed his algorithm to
approximating functions formed from linearly independent sets of given functions.

In 1969 Robers and Ben-Israel [11] applied a new method for linear
programming to the dual formulation of the ll problem. Their new method (which
they call interval linear prograinming) is capable of solving any bounded-variable
linear programming problem, and so it is natural to apply it to the 11 problem

in particular. Robers and Robers [12] have now supplied a special version of the

general method of [11] which is designed specifically for the fll problem,

#1172 -3-



Finally, early in 1971 Abdelmalek [1] described an algorithm which

determines best . approximations as the limit of best lp approximations ag

1
p - 1+. His technique thus obtains a solution to a linear problem be' solving a
sequence of nonlinear problems.

Clearly, a comparison of the computational behavior of these various
algorithms is both desirable and overdue. Consequently, we have conducted some
numerical tests on (i) the latest descent method of Usow [14], (ii) the special
adaptation by Robers and Robers [ 12] of the more general method of Robers and
Ben-Israel [11}, (iii) the bounded-variabie simplex method of Dantzig [ 7]
applied to the dual formulation of the 11 problem, and (iv) our modified standard
form of the simplex method applied to the Jll problem in its primal form. (The
numerical results given in Abdelmalek [1] demonstrate that his algorithm cannot
possibly be as efficient as those selected above). These numerical tests confirm
that our algorithm is the most efficient in general.

The ll problem (1) is restated as a linear program in §2, our algorithm is

described in §3, and the numerical results are in §4.

2. Linear programming and £, approximation

1

For the !Zl problem (1) let us write ¢j = ¢J_(Xi), fi = f(xi), and define

51

nonnegative variables U, Voo b, cj by putting
]

£, ~Z ajcbj,i =u, -v, for i=1,2, ..., m,
j=1
and a8, = bj - < for j=1, 2, ..., n. Thena best £, approximation corresponds

to an optimal solution to the (primal) linear programming problem:
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m
minimize ) (u, +v,)
izl 1 1

and bj, c,u,v, >0,
]

i’ i J

The formulation (2) appears in Barrodale and Roberts [ 4] along with the following
result,

Theorem. If the column rank of the m X n matrix & = {¢j,i}T is
k (< n), then there exists a best 11 approximation which interpolates f(x) in
at least k points of X.

Several authors (Wagner [15], Rabinowitz [10], Barrodale [ 3], for example)
have suggested that the dual of (2) should be solved instead when m is large.
The dual of (2) is stated most conveniently (e.g. Rabinowitz [10]) as the following

bounded-variable linear programming problem:

§ )
maximize Z (w1, - £)
) I
i=l
m m
subject to Z wiq:_ i = Z b, i
gz VLYoo > (3)

G=1,2,...,n) )

and O—<-Wi-<-'2'
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As the results of our numerical tests indicate, applying the bounded-variable
simplex method of Dantzig [ 7] to (3) leads toa less efficient algorithm in
general than solving (2) by our version of the standard form of the simplex

method.,

3. The algorithm

A direct application of the simplex method to (2) does not vield an
efficient algorithm. (On the other hand, this might well be a reasonable
strategy if a particular problem arises involving additional (inequality) constraintg
on the approximating function). Barrodale and Young [ 6] observed that an initial
basic feasible solution to (2) is immediately available, and that most of the
column vectors in the simplex tableau need not be stored explicitly. Barrodale
and Roberts [ 4] recommended that for the first n iterations the choice of pivotal
column be restricted to the columns associated with the variables bj and cj,
and that thereafter a special pivotal column selection rule be employed. In spite
of these improvements, the simplex method can take a large number of iterations
to solve some problems. The reason for this can best be explained by considering
the following particular problem,

Suppose that we wish to approximate f(x) = eX on 201 uniformly spaced
points in the interval [0, 2] bya straight line L(A, x) = a + a,X. The

initial simplex basis is provided by the column vectors associated with

u uZOl' If the simplex method with the above modifications is applied

1’ UZ, c oo g

to this problem, the first iteration brings the vector associated with bl into the
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basis and forces the vector associated with u; out. The second iteration
brings the vector corresbonding to b2 into the basis, and that corresponding
to u2 goes out. Thus, after two iterations, the simplex tableau represents
an approximation which interpolates the first and second data points (since

the current values of U vy, U, and v are all zero). Subsequent iterations

29
correspond to approximations which interpolate the following pairs of data
points: (Ist., 3rd.), (2nd., 3rd.), (2nd., 4th.), (2nd., 5th.), (2nd. , 6th.),
(3rd., 6th.), (3rd., 7th.), ... . After 20l iterations, the (unique) best approximation
is obtained which interpolates the 5lst. and 15lst, data poiﬁts. The difficulty
arises because of the nonnegativity restrictions on ui, A (and also bj’ Cj)
which are somewhat artificial. What is required is an algorithm which at each
iteration can bypass intermediate data points and thereby substantially reduce
the number of iterations required to obtain a best approximation. We shall now
describe such an algorithm; it requires just 7 iterations to solve the above
problem,

Inspection of the linear programming problem (2) reveals that (i) an
initial basic feasible solution is immediately available, and (ii) only n columns
are needed to store the information contained in the right-hand sides of the equality
constraints. Thus, denoting the columns of the simplex tableau corresponding to (2)
by R, QJ., gj, Yy, ¥y (see Table 2, for example), an. initial basis is provided by

U, Uy e, U whenever each fi is nonnegative. Ifan fi is negative we change the

signofthe corresponding row and replace u, inthe basis by Xi' Itis alsoclearthat
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9]‘ = —gj and u, = -y, and that the sum of the marginal (or reduced) costs of

gj and gj is zero and of u, and v, is -2. Thus the condensed form of the

simplex method (in which the basis is suppressed) can be applied to just n

columns, which initially contain b,, 92’ coo, Qn .

Basis R _191 Qz ceo Qn
4 £ %1 b2, e b
Y t .2 %2,2 4
m fm ¢l,m ¢2,m q5n,m
m m m m
Marginal
costs Z fi Z ? i Z ®0 Z i
i=1 i=l 7 i=l 7 i=l 7

TABLE 1: Initial condensed simplex tableau for the algorithm, assuming
each fi is nonnegative. (A full tableau is displayed in Table 2).
The entire computation is performed usingan m+ 3 by n+ 2 matrix.
The additional column and one additional row are required to label the vectors
(see Table 1), and the remaining row is used whenever the initial tableau is
scaled. We scale the initial data by dividing the column vectors R, b,

1
b

byy eev, —b-n by their largest elements in absolute value. The use of this scaling
option in our program is recommended when large problems are to be solved,

although it will not always improve their condition.
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The algorithm is implemented in two stages. Stage 1 restricts the choice
of pivotal column during the first n iterations to the vectors _}:3]. and _c_:_j,
The vector to enter the basis is chosen as that with the most positive marginal

cost. The vector leaving the basis is chosen from among the basic vectors Y,

and v, by selecting that which causes the maximum reduction in the objective

function, At the end of Stage 1, therank k (< n) of the matrix @ is determined
by the total number of vectors Qj’ _c_:_j in the basis. Since k of the vectors
u, (or y_i) have been removed from the basis, the current simplex tableau
represents an approximation which interpolates at least k data points. If the
approximation interpolates more than k data points then the simplex tableau is
degenerate; this does not cause any problems in practice.

Stage 2 involves interchanging nonbasic u, or v, with basic u, or v.:
the basic Qj and _g_j vectors are not allowed to leave the basis during Stage 2.

The vector entering the basis is that with the most positive marginal cost, and

the vector leaving the basis is again chosen as that which causes the maximum
‘ % reduction in the objective function. The algorithm terminates when all the
§ marginal costs are nonpositive. In Stage 2 each simplex tableau corresponds to
an approximation which interpolates k data points (assuming nondegeneracy).
At each iteration, k-1 of these points remain fixed. The vector entering the
basis determines which point is to be dropped from the interpolating set while

the vector leaving the basis determines the new point of interpolation.
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The final tableau at the end of Stage 2 may be infeasible since some of
the basic vectors 91‘ and _c_:_j can have negative values associated with them,
The solution becomes feasible (and hence optimal) by interchanging éuch basic
vectors _}_3_]. {or gj) with the corresponding nonbasic vectors _c_:], (or Qj).

The main modification to the simplex method is in choosing the vector

u, or v, to leave the basis. In both Stage 1 and Stage 2 this vector is chosen

as that which causes the maximum reduction in the objective function. A direct

search over all the basic vectors Ei and gi is inefficient and a computationally
more efficient technique can be used. This is best described by means of a
simple worked example.

Example. Find the best 11 approximation to  {(1, 1), (2, 1), (3, 2), (4, 3),
(5, 2)} by L(A, x) = a; + a_x. Equivalently, find the £  solution to the over-

1 2 1

determined system of equations:

al+a2:1
a1+ 2a2=l
al+3a2:2
a1+4a2:3
a1+ 5a2:2

The full initial simplex tableau (without scaling) is given in Table 2.
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Costs - 0 0 0 1 1 1 1 1 1 1 1 1 1
=
Bagis | R | b b. jc c
| Sl 22 B = (8 By 8y 4, BV V, VoV, Y
Loy 1| 1 1 1 -1 |1 o1
1 1] 1 R T ] -
-92 2 2 1
skskok
Iy, 2 | 1 3 -1 -3 1 -1
] 3] 1 4 -1 -4 1 -1
2y
1 lu 2l 1 5F a1 - 1 -1
Marginal | 915 15 |-5 -15{0 0 0 0 0|-2 -2 -2 -2 -2
costs

TABLE 2: Full initial simplex tableau for the worked example.

At the first iteration in Stage 1, _132 is brought into the basis corresponding

sk
to the largest marginal cost (=15). The normal simplex pivot (5 } corresponds to

an approximation in which b2 =2/5, ug =V = 0, i.e. an approximation which

interpolates the fifth data point. However, if we increase b2 beyond the value

2/5 we can further reduce the objective function, but this makes u_ negative.

5

Hence we replace ug in the basis by Ve This can be accomplished by sub-
tracting twice thefifth row from the marginal cost row (thus making the marginal

cost of v_ zero), changing the sign of the fifth row and replacing the label

5

ug by Ve in the basis. The marginal cost of 22 is now 5, and hence we

increase b2 further. The second pivot (2""") corresponds to an approximation in

which b2 =1/2, Uy =V, = 0, i.e. an approximation which interpolates the

second data point. Interchanging u, and v, in the basis reduces the marginal

2 2
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ek sk
cost of 92 to 1. Thus we increase b2 further. The third pivot (3

corresponds to an approximation in which b2 = 2/3, u3 = v3 =0, i.e. an
approximation which interpolates the third data point. The objective function
cannot be decreased further by increasing bZ’ since if we interchange 33
and Y, in the basis, the marginal cost of p_z becomes -5. Hence we pivot
on this element (3***) and bring 92 into the basis in place of u,. Using the

condensed tableau, the complete solution to this example is given in Table 3.

After two iterations (at the end of Stage 1) the marginal costs of Hl and 33 are

-1 and 0 respectively, and so the marginal costs of the (suppressed) vectors v
and v, are -1 and -2 respectively (recall that the sum of the marginal costs of
Ei and Xi is -2). Since all of the nonbasic vectors have nonpositive marginal
costs, there is no need for Stage 2 in this example. The final tableau represents

%
a best approximation LA |, x) = 1 + 1 x which interpolates the first and third data

? 2 2

points. The deviations at the other points are given by v2 = -é-, u, = -?%, Vg = 1
Basis R bl 22 Basis R lql u, Basis R y u,
u; Ly w /31 2/3 -1/3| b |1/2] 3/2 <102
4, o2 v, 1/31-1/3  2/3 v, |V/2f /2 1/2
u, 2| 1 3 b, 2/3) /3 1/3|| b, /2]-1/2 1/2
u, 30 1 4 | u, 1/3/-1/3 -4/3 u, (1/2| 1/2 -3/2
u, 2] 1 5" v, /31 2/3 5/3)| v, |1 | 1 2

sl I SO | e B R e R

TABLE 3: Solution to the worked example using condensed tableaux.
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and the error of approximation is 2. The solution is not unique since the final

marginal cost of u, is zero; this vector can be brought into the basis yielding a

3
new best approximation which interpolates the first and fifth data points, Other
best approximations can be generated as convex combinations of these two extreme
point solutions.

This concludes the description of our primal algorithm. There are, of
course, several variants of the standard form of the simplex method which can
be used to solve a linear programming problem (two forms of the revised simplex
method, the primal-daul algorithm, the dual simplex algorithm, etc.). However,
the denseness of the condensed tableau corresponding to (2), the availability of
an initial basic feasible solution, and the simplicity with which we can implement

our main modification, combine together to make the standard form of the simplex

method the most economical algorithm for the ﬁl problem.

4, Numerical results

The following test problems were designed both to illustrate the flexibility
of the various algorithms and to compare their computational behavior.
Example 1, Approximate f(x) = e-xsin x on X = {0(0.02)4} by

n
j-1
LA, x) = ), a}_x] for n=1,2, 0., 7.
j=1 ‘ 00
Example 2. Approximate f(x,y) = Re{f e %/ dz} on 100 points defined
x+iy

by x = 0,1(0.1)1.0, y =0,1(0.1)1.0, using the two-dimensional approximating

J

function

2
= +
L(A, x, ¥) all azx + a3y + a4xy + a5x + aéy .
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(The values of f(x,y) are taken from Fox, Goldstein and Lastman [8] where

they are recorded to six decimal places),

Example 3, Approximate f(x) =A%

on X = {0(0.02)1} by the Cubic
4 i.p &
spline L(A, X) = Z aij + Z a4
j=1 =]

3
+t(x-a/t)+, where o = 0.1, o

2 30.2, 013 = O°4’
t= .
04 =0,7,
Example 4, Approximate f(x) = sin x on X = {-g(g)g}, for k = 20,
6 ,
-1 y, . T
50, 100, 200, by L(a, x) = P, (x) :jZ_l o with P(-T) -, PL() = o,

rows corresponding to these constraints, (We simply multiplied both rows by
1000 in the initial tableau),

Example 5, Approximate f(x) = min(ex, el/z) on X = {O(al)l}, for
5
d =20, 50, 100, 200, by LA, %) =a +) (a

in jx +
& 2] sin jx az,
Example 6, Calculate 3 best 11

41 Cos jx).

solution to the following overdetermined
System of linear equations:

-14-
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+ + =
5a1~|~»3aZ 4a3 12a4+4a5 7

I
N

+
9a Ta_, + 3a3 + 19a4+ 13a5

6511 + 6a2 + 0a3 + 12;514 + 12,a5

1
[QY]

H
]

+
9a1 9a2+ 7a3 + 25a4+ lla5

3a1+0a2+ 1a3+4a4+2a5:7

8511 + la2 + 8a3 + l7a4+ 1a5

i
-J

1
W

lal + 9a2 + 8a3 + 18a4 + Za5

i
W

+ +
Oa1 + 9a2 3a3 12a4+ 6a5

3a1+1a2+1a3+ 5a4+ 335:5

+ + + =
6al+7a2 6a3 19&14 ’ia3 1

6a1+ la2+9a3+ 16a4+ 2a5=4

Oal+4az+8a3+12a4+~4a5=1

+ + 1 + - =
Oal 5a2+7a3 2a4 2a5 6

H
o~

7a1 + 3a2 + 2a3+ 12a4 + 8a5

+ 1 =

5al+4az+9a3 8<’5L4+Oa5 0

The entries in the first, second, and third columns were chosen from a table of
random integers. The fourth column is the sum of the previous three columns,
and the fifth column is the sum of the first two columns minus the third column.

The matrix of coefficients @ is thus a 15 X 5 matrix of column rank 3. The
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entries on the right-hand side, which correspond to values of f(x) in the
approximation problem, were also chosen from a table of random integers,

4

3 N
Example 7. Approximate f(x) =1+ x + x2 + x +x + E(x), where

s
E(x) =5 for 0.94 <x <1 and E(x) =0 otherwise, on X = {0(0.02)1} by
L(A, x) = i ajxj-l. This example was designed primarily to test the
effectivenjezsls of the new algorithm of Usow [14]. If an intermediate approximation
is formed from just the uncontaminated portion of the data, corresponding to
the range 0 <x <0.92, itwill result in a large number of zero residuals (i. e,
an L(A, x) is formed which interpolates f(x) in many more than n (= 5) points
of X). This phenomenon can cause the original algorithm of Usow [13] to stop
prematurely. In a primal linear programming algorithm it causes degeneracy;
in practice the simplex method handles degeneracy without any special provisions
having to be made.

We attempted to solve all seven test examples using each of the four
methods identified as:

(i) USOW: see Usow [14].

(ii) ROB2: see Robers and Robers [12].

(iii) DUAL: the dual formulation (3) solved by the bounded-variable

simplex method of Dantzig [7].

(iv)  PRIM: the primal formulation (2) solved by our algorithm

Methods (i) and (ii) were coded by their respective authors, and methods (iii)

and (iv) were coded by us; all of the programs were written in Fortran IV. The
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program supplied by Dr. K. H. Usow is still essentially at the experimental
stage, since there are some quite delicate computations involved in his
method. Unfortunately, we were not able to solve some of our test problems
using his program even though all seven problems were attempted.

The central processor times given in Table 4 are for a CDC 6600 computer,
and they do not include time spent in compiling or setting up the data for each
problem. (These CP times are not exact, for we have observed slight discrepancies
when repeating some of the computations). The calculations were performed in
single precision floating-point arithmetic using a 48-bit mantissa. The best
11 error of approximation given in the final column of Table 4 is from the output
supplied by our algorithm PRIM. The algorithm DUAL produced essentially the
same results as PRIM, but ROB2 sometimes differed from these two by somewhat
more than the expected rounding error (particularly in Example 5). The error of
approximation produced by Usow also differed in some cases from that shown
in Table 4. In the linear programming algorithms we used a tolerance of 10—8
when deciding whether or not certain quantities are "zero", and the initial

approximation required by Usow was chosen by interpolating the first n points
Finally, we note that all of these test problems have unique best El

approximations (except, of course, for the linearly dependent overdetermined

system in Example 6},

#1172 ~17 -




TIME (seconds) Error of Approximation
Example n *
2 ee)-La” x|
USOW |ROB2 | DUAL | PRIM | i=1
1{m=201)
n=1 % 2,38 0.63 | 0,29 21.81556
n=2 2.04 113,95 | 2.79 | 0.85 9.27171
n=3 1.97 18.57 2.58 | 0.81 9.07895
n=4 2.61 30.00 4,21 1.69 4.64073
n=5 2,81 40.82 5.12 | 2.54 1,05559
n=6 7.46 54.76 6.09 3,55 0.06045
n=7 5.94 61.77 7.63 3.29 0.03471
2(m=100,n=6) * 16.93 1.68 1.06 3.87741
3(m=51,n=8)" * 9.04 0.70 0.51 0.05312
4(n=6)
m=23 0.18 0.39 0.12 | 0.05 0.00188
m=53 0.65 1.39 0.60 0.17 0.00436
m=103 1,57 6.28 2.10 0.51 0.00858
m=203 5.25 33,18 7.86 1.67 0.01694
5(n=ll)
m=21 0.85 * 0.28 0,15 0.06170
m=51 1.60 * 1.60 | 0,51 0.15642
m=101 4,42 * 4,24 1.33 0.30852
m=201 10.90 * 15.54 | 4,27 0.61230
6(m=15,n=5) * * 0.05 | 0.02 34. 22449
7(m=51,n=5) * 2.80 0.28 0.22 16.73658

o

- No results available

TABLE 4: A comparison of the calculation times required by each algorithm

to solve the test problems on a CDC 6600 computer,
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5. Remarks

It is quite clear that our new primal algorithm is both e fficient and
reliable, and we supply a Fortran IV program for the method in the Appendix.
We have used a double precision version of this code to solve geveral other
problems on an IBM 360/50 and on a Univac 1108 computer, (In particular, we
have solved an overdetermined system of size 500 X 10 using double precision
versions of PRIM and DUAL on a Univac 1108; PRIM took 4. 56 seconds and DUAL
required 59.68 seconds to solve this problem).

In practice, of course, it makes little difference whether (say) PRIM or
DUAL is used to solve a single small problem in data analysis. However, it
is important to have an efficient algorithm at hand if several tens or hundreds
of problems are to be solved. An important instance of this occurs when nonlinear
approximating functions are used to interpret data, for in this case some
linearization of the problem will normally be employed which calls for the
repeated application of a linear algorithm. Two recent methods along this line

are described in Barrodale, Roberts and Hunt [ 5] and Osborne and Watson [9].
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APPENDIX

The Fortran IV SUBROUTINE L; (Q, M3, N2, TOLER, SCALE)

This subroutine calculates (for n < m) a best £, approximation to f(x)

1
n

by 'Zl aj¢j(x) onaset X={x, X, ..., x_}, l.e. parameters a;, a"z‘, e k
J:

m n
are determined which minimize Z ff(xi) - Z ajcbj(xi) . The algorithm is a

i=1 j=1
modification of the standard form of the simplex method applied to the primal

formulation of the 11 problem as a linear program,

INPUT

Q: Areal array of dimensions (m + 3, n+ 2) which initially contains the

m X n matrix

'/¢1(Xl) ¢2(Xl) 0o ol (Xl)

N o) e 9 (%))

in the first m rows and n columns, and the vector of function values

[f(xl),, fx,), oot f(xm)]T in the first m rows of the (n+l)st. column.

No other input is required.

M3: A positive integer set equal to m + 3.

N2: A positive integer set equal to n + 2.
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TOLER: A positive real number set to approximately the desired order of
relative accuracy of the calculated parameters a;.k, e.g. 10‘5 or
10—8. This number prevents pivoting on elements of Q which avre too
small, and a decrease in its value will usually cause more iterations
of the simplex method.,

SCALE: An integer that should be set to 1 only if the user wishes the initial

data to be scaled columnwise. In this event, the final tableau is

rescaled automatically. (Scaling is usually beneficial).

. . , ired. . 0
No other input to the subroutine is required. If a best weighted 1
approximation is desired, the user should multiply each row of data by its chosen

(positive) weight prior to entering the subroutine.

OUTPUT
All output parameters are real numbers contained in Q.
Q(m+2, nt+l): Has the value 1 if a best approximation has been calculated,
and the value 2 if no suitable pivot is available and the iterations
have been terminated prematurely (this latter condition can occur

only with badly conditioned problems),

m noo.
Q(m+1,n+l): Error of approximation Z lf(xi) - Z a;, ¢J.(xi) f

i=l j=1
Q(m+l,n+2): The rank of the matrix ®. (If the rank of & is less than n,

the surplus columns of ® are stored in the first columns of Q).
Q(m+2,n+2): The number of iterations required by the simplex method.
Q(m+3,n+2): Has the value ]l if the best approximation is unique and the value

0 if there is more than one best approximation (which may be due

to the rank of @ being less than n).
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o o %k

The absolute values of the parameters al, az, PR an are contalned

in the first n rows of the (n+l)st. column, and their signed labels are contained

J,

in the corresponding rows of the (n+2)nd. column (az< has the label +1, az

has the label + 2, etc.). The absolute values of (m-n) of the deviations

f(xi) - 21 a;,kq;]. (xi) =u -V, = di are contained in the remaining (m-n) rows

of the J(_n+1)st. column, and their signe‘d labels are contained in the corresponding
rows of the (n+2)nd. column (dl has the label + (106 + 1), dZ has the label

+ (lO6 + 2), etc.). Thus, for the worked example given in Table 3 of this paper,

the first m rows of the (ntl)st. and (n+2)nd. columns of Q finally appear as:

/2 1
1/2 2
1/2 -(107 + 2)
1/2 m6+4
1 -a06-+5)

If the labels + (lO6 + i) do not appear in the (n+2)nd. column, then di =0

and x, is the abscissa of a point of interpolation.
i
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