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Abstract 

In this paper, we analyze the reason for the slow rate of convergence of 

net output error when using the backpropagation algorithm to train neural 

networks for a two-class problems in which the numbers of exemplars for the 

two classes differ greatly. This occurs because the negative gradient vector 

computed by backpropagation for an imbalanced training set does not point 

initially in a downhill direction for the class with the smaller number of exem

plars. Consequently, in the initial iteration, the net error for the exemplars in 

this class increases significantly. The subsequent rate of convergence of the net 

error is very low. We suggest a modified technique for calculating a direction in 

weight-space which is downhill for both classes. Using this algorithm, we have 

been able to accelerate the rate of learning for two-class classification problems 

by an order of magnitude. 

1 Introduction 

Classification, the assignment of an object to one of a number of predetermined 

groups, is of fundamental importance in a number of areas ranging from image and 

speech recognition to the social sciences. Consequently, a number of statistical clas

sification techniques have been developed, based primarily on Bayes' rule. 

In the classification problem we assume that a pattern, can belong to exactly one 

of several classes. We are provided a training set consisting of sample patterns which 
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are representative of all classes along with class membership information for each 

pattern. Using the training set, we deduce rules for membership in each class and 

create a classifier which can then be used to assign other patterns to their respective 

classes according to these rules. 

One connectionist approach to the classification problem, which has gained pop

ularity in recent years, is the use of backpropagation-trained [10] neural networks. 

Backpropagation, based on the method of steepest descent [6], is one of the most 

widely used training algorithms for feed-forward neural networks. Since these net

works can be taught arbitrary non-linear mappings, it is relatively straightforward to 

adapt them for pattern classification tasks (5]. 

Although backpropagation has enjoyed wide popularity, it has been observed that 

the rate of convergence of error is very low in many applications. Consequently, 

several researchers have devised modifications to the backpropagation algorithm to 

increase the convergence rate. The general approach has been to vary the learning 

rate dynamically during training in order to maintain it at the largest value that will 

not cause oscillations (13] (2]. Attempts have been made to learn from a subset of the 

patterns to determine the network size and initialize the weights to reduce training 

time [12]. 

When training a network with backpropagation for a two-class problems in which 

the numbers of exemplars for the two classes differ greatly (i.e. the training set is 

imbalanced), we have observed that the rate of convergence of net output error is 

especially low. In an imbalanced training set, the class with more exemplars is called 

the dominant class while the other is called the subordinate class. Imbalanced training 

sets do occur frequently in practice. 

In this paper, we show that the low rate of convergence of net error occurs because 

the negative gradient vector computed by backpropagation for an imbalanced train

ing set does not initially decrease the error for the subordinate class. Consequently, 

in the initial iteration, the net error for the exemplars in the subordinate class in

creases significantly. The subsequent rate of convergence for the exemplars of the 

subordinate class is very low. To solve this problem, we suggest a modified technique 

for calculating a direction in weight-space which is downhill for both classes. Using 

this algorithm, we have been able to accelerate by an order of magnitude the rate of 

learning for two-class classification problems. 
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In section 2 of this paper, we consider the standard backpropagation algorithm 

and present an analysis of the MSE which points towards the reasons of the above 

mentioned drawbacks. In section 3, we present a modified backpropagation algorithm 

which performed significantly better than the standard backpropagation algorithm. 

A comparison of the two algorithms is made in section 4 for three examples and 

analysis is presented in section 5. 

2 Backpropagation and classification problems 

Although backpropagation has enjoyed wide popularity, it has been observed that 

the rate of convergence is often very low in many applications. Consequently, several 

researchers have devised modifications to the backpropagation algorithm to increase 

the rate of convergence of error. Vogl, et al. [13], suggest that the learning rate be 

modified during training depending on the rate of convergence of error. Anderson [2] 

suggests that every weight in a network should be given its own learning rate and 

and that these learning rates be varied during training. 

We have observed that net error often converges especially slowly when training 

networks with the standard backpropagation algorithm for two-class problems with 

imbalanced training sets. In these problems, we have also found that the net error 

for exemplars in the dominant class is reduced rapidly in the first few iterations but 

net error for the subordinate class increases considerably. The subsequent rate of 

decrease of net error for the subordinate class is very low. 

Typical behavior of the errors is shown in figure 1 where the net error of the 

subordinate and dominant class are plotted. A logarithmic scale is used for the X

axis in order to highlight the large change in net error that occurs in the first iteration. 

We analyze the cause of this phenomenon in section 2.2. Mathematical results are 

presented only for networks with one hidden layer. 

2.1 Definitions 

In order to explain the reasons for the observed phenomenon, it is necessary to re

produce some of the well known properties of feed-forward networks. In this section, 

we define these concepts and introduce necessary notation. 
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Figure 1: Net errors for dominant and subordinate classes after each iteration during 

a training session. 

Network architecture: A schematic diagram of a feed-forward network is shown 

in figure 2. The nodes in the network are organized in the form of layers. There are 

no interconnections among nodes in the same layer. The output of each node in one 

layer feeds into all nodes in the next layer through weights. We will consider networks 

with only one node in the output layer since we focus on two-class problems in this 

paper. 

The hidden layers are numbered in increasing order away from the output layer 

as shown in the diagram. No computation is performed by the input layer: it merely 

receives the input pattern and distributes the components to the last hidden layer. 

We shall use the term downstream to mean "towards the output layer". 

The output from the network is clamped during training. If the target for a pattern 

of class 1 is 1 - f but the output is greater than 1 - E, then the output is clamped 

to 1 - f. Similarly for a pattern of class 2, if the target is td but the network output 

is less than f, then the output is clamped to f. The clamp is used to implement the 

modified penalty function suggested by Sontag and Sussmann [11]. They observe that 

backpropagation is less likely to get stuck in local minima when the output is clamped 

during training. Clamping is particularly desirable in classification problems because 

it makes no sense to say that an error has occurred when the network gives an output 

4 



Input layer Hidden layer 0 (Output layer) 

1 
Hidden layer 2 1 

I Hidden layer 1 

r-- -., ,..-t-., ,..-*-., r-- -., 

clamp 

Figure 2: A multilayer feed-forward network for a two-class problem. 

greater than 1- f when the target is 1 - f (i.e., the network classifies samples with 

very low error). 

Notation: To fix the notation, we consider a backpropagation network with one 

hidden layer (HL) shown in figure 3. There are I+ 1 nodes in the input layer for 

input patterns of length I; the additional node represents the bias, (), in the function 

I+e-<+.. ·X+ II) computed at each node. The H L contains L + 1 nodes including a node for 

the bias term. Since we deal only with two-class problems in this paper, we assume 

that there is only one node in the output layer, which we call the output node. 

The exemplars of class Ck form the set 

The input vector for the jth exemplar of the l.-th class (i.e. the (j, k)th exemplar) is 

(k) - ( (k) (k) ) 
xi - xi,l' ... 'xi,I+I 

where x~~)+I = 1 and the target values are t~t) = 1- t and t~ 2 ) = t. The training set 

T, for a two class problem is T1 U T2 • 
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HL 

Input layer 

Figure 3: Notation for identifying nodes and weights in a network. 

The outputs of H L can be collectively written as 

(k) - ( (k) (k) ) 
Yi - Yi,l' · · ·, Yj,L+l 

where YJ~+1 = 1. The output of the network (i.e. that of the output node) is given 

by zy>. 
In this network, the weight assigned to the link from the rth node of the input 

layer to the sth node of the H L is denoted by Ws,r· The weights on the links from 

the input layer to the sth node in H L are collectively denoted by 

We collectively refer to all weights between the input layer and H L by 

W = (w(1), ... , W(L))· 

The weight of the link from the sth node of the hidden layer to the output node 

is denoted by W 8 • All such (w.,) weights are collectively denoted by w , i.e., 

W = (wt, ... ,WL+t)· 

Finally, all weights of the network are denoted by W: 

W = (w ,w). 
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Gradients: We express the net error for the entire training set, E(W), in terms of 

the net errors for subsets T1 and T2 denoted by Et(W) and E2(W) respectively: 

E(W) - Et (W) + E2(W) (1) 

"' E~:(W) - L: f(t~k), z~k)) for k = 1, 2 
i=l 

Where f is the penalty function: 

f(t'· o'·) = { (t~- o~) 2 if ((t~ = 1- f) 1\ (o~ < t~)) V ((t~ = f) 1\ (o~ > t~)) 
'' ' 0 otherwise 

The gradient, V E(W), of the error function E(W) can be expressed in terms of the 

gradients for E1 (W) and E2(W): 

V E(W) = V Et(W) + V E2(W) (2) 

In each iteration of the standard backpropagation algorithm, we compute V E(W), 

the gradient vector of the error surface. Since net error decreases most rapidly in the 

direction exactly opposite to that pointed to by the gradient vector, we move the 

weights in the direction of - V E(W). 

Backpropagation is summarized in the following equation: 

W(m + 1) = W(m)- .\VE(W(m)) 

where W(m) is the weights of the network at the beginning of the mth iteration, and 

A, a positive constant, is the learning rate. Some modifications to backpropagation 

vary the learning rate during the training process [2] [13]. 

A vector v is said to point in a downhill direction for E(W) if 

V· (-VE(W)) > 0 

In other words, the angle between v and - V E(W) is less than 90°. 

Weight change computation: The hidden node outputs {yj~, ... , yj1} are com

puted as follows: 

x<.">.w 
(k) e 1 <•> 

Y;,s = (") , for s = 1, ... , L, k = 1, 2, and j = 1, ... , nk. 
1 + exi ·We•> 
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The network output z?> is obtained with the following equation: 

y<">.w 
(k) - e J d . 1 

zi - (A:) , for k = 1, 2, an J = , ... , nk. 
1 + eY; ·W 

h f h . 'd f t' 1 th 1 (k) (k) d (k) Due to t e nature o t e s1gmm unc wn, t+e-u, eva ues Yj,l, ... , Yj,L an zi 

are always positive and in the range (0, 1 ). 

All weight changes consist of a product of the error signal for a node and the 

output of another node. The weight change in w8 due to the (j, k)th exemplar is 

given by: 

D.w~i,k) - A x Error signal of output node x Output of sth node of HL 

D.w~i,k) - A ((t}k)- z~k))zt>(1- z~k))) (y~~) (3) 

. d k 1 2 Th' d t \ aE<J,k)(W) for s = 1, ... , L + 1, J = 1, ... , nk an = , . 1s correspon s o "' aw. . 

Similarly, the weight change in Wr,s due to the (j, k)th exemplar is given by: 

D.w(i,k) -
r,s A x Error signal of rth node of HL X Output of sth input node 

D.w(i,k) 
r,B _ A ((t~k)- z}k))z?>{l- z~k))wr) (x~~1) (4) 

for r = 1, ... , L, s = 1, ... , I+ 1, j = 1, ... , nk and k = 1, 2. 

The contribution of the (j, k)th exemplar to the gradient vector, V E(j,k)(W) is: 

(5) 

where D.w (j,k) = (D.w~i,k), ... , D.w~+kf) and similarly D.w(i,k) = (D.w~j,k), ... , D.w~·k>). 

Finally, the gradient vector V Ek(W) is defined as follows: 

n~c 

v Ek(W) = L v E(j,k)(W) k = 1, 2. (6) 
j=l 

2.2 Analysis of the standard BP 

In this section, we present a mathematical analysis of the slow rate of convergence of 

net error. 

Theorem 1 If all inputs to a feed-forward network with one hidden layer are posi

tive, then for eve1·y weight in the network, the weight change in the first iteration of 

backpropagation has the same sign for all exemplars of class C1 and the opposite sign 

for all exemplars of class c2. 
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Proof: In equations 3 and 4, we find that the sign of the weight change for any weight 

in the network due to the (j, k)th exemplar depends only on the term (t}k) - zY)) 

since the weights are the same for all exemplars and all x, y and z have only positive 

values. Since (t}k) - z~k)) is non-negative for class C1 and non-positive for class C2, 

the result follows. 0 

Discussion: In the statement of theorem 1, we have assumed that all inputs to 

the network are positive. 

The assumption of positive inputs is not restrictive since all inputs can be made 

positive by a simple translation. In most applications of backpropagation it is desir

able to transform the inputs to belong to (0, 1 ]I with a simple transformation. If this 

is not done, a single large input value often dominates the output through a sigmoid 

function, slowing down the rate of convergence of net error. 

We have observed that error signals are attenuated as they travel backwards 

through the randomly initialized network in the first iteration. Hence the changes 

prescribed for the weights in the upstream hidden layers are very smalL 

Consequently, even in the case when inputs to the network are negative, the results 

of theorem 1 generally hold since the weight changes for the hidden layer weights are 

small compared to the weight changes in the output layer weights as discussed in the 

sequeL 

We have also assumed that the network has only one hidden layer. Even in 

in networks with more than one hidden layer, we have observed that the expected 

magnitude of the error signals of the nodes in H L 1 are approximately the same. 

Therefore, in general, we expect that the signs of the weight changes in the second 

hidden layer will be different for exemplars of each class. This leads us to believe 

that theorem 1 will continue to hold for networks with more than one hidden layer. 

Experiments and numerical calculations have supported this observation. 

Theorem 2 Under the asst~mptions of theorem 1, 

VEt(W) · VE2(W) < 0. 
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Proof: The dot product of V E1(W) with V E2(W) is: 

L+l l+I L 

VE1(W) · VE2(W) = L ~wi 1 >~w~ 2 ) + LL~w~~)~w~~} 
s=l r=ls=l 

From theorem 1, we find that in each pair, (~wp>, ~w! 2 >) and (~w~~)~w~~)), one of 

the terms is positive and the other term is negative. Hence the dot product is always 

negative. In geometrical terms, the angle between V E1 (W) and V E 2(W) is greater 

than 90°. D 

Suppose £(·) denotes the expectation with respect to weights W, and t'w (·) 

denotes the conditional expectation with respect tow while w remains fixed. 

Theorem 3 The expected values of the squares of the lengths of the gradient vectors 

satisfy: 

£11V E1(W)II2 n~ 

£11V E2(W)II2 ~ n~ 

Proof: In the following proof sketch, only the leading term of each expected value 

is considered. A more detailed proof is given in the appendix. 

The square of the length of V Ek(W) is: 

s=l r=ls=l 

From lemma 3.a of the appendix, we obtain 

and from lemma 3.b, the expected value of y}~yf.:> with respect tow is approximately 

i· Thus, 

£ (~(~w(k)) 2 )) ~ {2t~k)- 1)2(L + 1) 2 
~ s 256 nk. 

The expected values of (~w~~) 2 are negligible (see lemma 3.a). Hence, 

£(!IV Ek(W)II)2 ~ ( 2 t~k) - 2;;{L + 1) nz; k = 1, 2. 
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(2t<"'> t)2 (L+I) 
Since ; -256 is the same for both values of k, the desired result holds. 0 

Discussion In theorem 3, we have shown that the expected lengths of the gradient 

vectors V Ek(W) are proportional to the sizes of the training sets, nk. This would 

imply that, in general, the length of the gradient vector of the dominant class (class 

2) will he very large when n2 ~ n1 1 • Typically observed V Et(W) and V E2(W) are 

depicted in figure 4. 

VE1(W) 

B 

E 
.· 

O:t (> ~) 

Figure 4: Relationship between gradient vectors V E1(W), V E2(W) and V E(W). 

The length of vector V E 2(W) is much larger than the length ofV E1(W), therefore 

V E(W) ~ V E2(W). 

Theorem 4 (Ostrowski) (7) If v is a unit vector, then there exists a constant A 

such that 

i} W' = W + AV and 

ii}E(W') < E(W) 

if and only ifv is a downhill vector for E(W). 

Standard hackpropagation tells us that AD (refer to figure 4) is the best direction 

to follow to reduce E(W). However, the effect of moving in the direction of AD can 

1Since all weights are uniformly distributed, the variance of the square of length will be small 

and by Chebyshev's inequality [1] the stated result will hold. 
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be measured in terms of AF for E1(W) and AE for E2 (W). But AE points in the 

uphill direction of E 1 (W). Consequently by Ostrowski's theorem, if W is changed 

in the direction AD then E 2(W) will decrease significantly and Et (W) will increase 

significantly. The magnitudes of the changes are proportional to the lengths of AF 

and AE. 

It has been observed that rate of convergence of backpropagation is often very low 

when the output error is high. The reason for this behavior can be explained easily 

by analysis of the error signal for the output node: 

(t- z)z(l - z) 

A large error (It- zl ~ 1) implies that either z ~ 0 or z ~ 1.0. In either case, one 

of the last two terms in the above expression will have a low value and due to this 

reason, the amount of change in weights will be small. 

In summary, we have observed that if W' denotes the new weight vector obtained 

by changing the weight by moving in the direction of AD, E 1(W') the net error of 

the subordinate class and E 2(W'), the net error of the dominant class, then, 

1. After the first iteration, E 1(W') is high and E2(W') is low. 

2. Since E1 (W') is high, the error signals from the output node will have a small 

magnitude and rate of convergence of error is slow. Likewise, since E 2(W') is 

small, the rate of change of E2(W') will be very slow. 

3. Consequently, standard BP will make a major improvement in reducing the net 

error in the first step and will likely get stuck in a slow mode of error reduction. 

In addition to the magnitude of the gradient vector, the actual weight change for 

each weight in the network also depends on the learning rate ~- Since we use a fixed 

learning rate in backpropagation, the usual approach is to find, by trial and error, 

the largest value of ~ which does not cause oscillation. In the context of imbalanced 

training sets, however, we have found that increasing the learning rate does not 

necessarily increase the rate of convergence of net error. 

The reason for this behavior lies in the increase in E 1(W) which occurs in the 

first iteration. By increasing ~, we also increase the value of E 1 (W) after the first 

iteration. As we have noted previously, this causes the rate of convergence of E 1 (W) 

to decrease. Experimental results are summarized in figures 9 and 10. 
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3 Modified backpropagation 

From the results in section 2.2, it is clear that -\7 E(W) does not always point in 

the best direction to minimize error for both classes in a two-class problem. The 

main feature of our modification is to compute a descent vector, v, which points in a 

downhill direction for both classes i.e. v satisfies 

-v · \7 Ek(W) < 0, for k = 1, 2 (7) 

and takes the place of the gradient vector in the backpropagation algorithm: 

W(k + 1) = W(k)- -\v. 

We propose to set the direction of v so that v bisects the angle between -\7 E1 (W) 

and -\7 E2(W): 
-\7 Et (W) -\7 E2(W) 

II- VEt(W)II. v =II- VE2(W)II. v 

(See figure 5). Unless the angle between -\7E1(W) and -\7E2(W) is exactly 180°, 

we are always guaranteed to find a downhill direction for both E1 and E2 • 

VEt(W) 

~ VE2(W) 
~ A~-r-:--------......, C' 

B' 

VE(W) 

Figure 5: Direction of gradient vectors in modified algorithm. 

The above method is not the only choice for computing a suitable descent vector. 

A descent vector can be any vector that makes an angle less than ~ with both AB 
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and AC. The main reason for using the bisector is that it is simple to compute and 

is guaranteed to point in a downhill direction for both classes. 

The proposed algorithm does not suffer from the deficiencies of the standard back

propagation stated previously. Both E1 and E2 continue to follow the downhill path 

at each iteration rapidly. Therefore the proposed algorithm will, in general, be faster. 

Empirical verification of the above observations is presented for three examples in 

section 4. 

Magnitude of proposed descent vector: We have investigated two schemes for 

computing the magnitude of the descent vector v: 

1. Proportional to the means of the magnitudes of '\7 E 1(W) and '\7 E 2(W): 

(8) 

2. Proportional to the same magnitude as would be computed by standard hack

propagation for E(W): 

(9) 

We shall refer to these formulae as method 1 and method 2 respectively. Our experi

ence with examples, described in the next section, indicates that net error converges 

somewhat faster with method 2. 

4 Numerical results 

In this section, we compare the performance of modified backpropagation with stan

dard backpropagation for three different classification problems. We first present 

some details of the three classification problems and then summarize the results in 

figure 8. 

4.1 Example 1 {Grid) 

The patterns in the training set are two dimensional and are uniformly randomly 

generated, with no overlap between the classes. The patterns occur in 25 clusters as 
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Figure 6: Location of classes C1 and C2 for example 1. Dotted lines show that four 

hidden units are sufficient for this problem. 

shown in figure 6. Patterns that belong to the subordinate class, C~, lie within an 

interior cluster. Class C2 , the dominant class, consists of the points in the remaining 

24 clusters. Thus, n 1 = 25 and n2 = 600. 

A single-output network with one hidden layer containing 4 nodes was used for 

this problem. The target value for exemplars in class C1 was 0.9 while the target for 

class C2 was 0.1. \Ve used 4 nodes in the hidden layer since 4 decision surfaces are 

required to separate patterns of class cl from class c2 (shown with dotted lines in 

figure 6). A learning rate of >. = 0.01 was used for all runs. In each experiment, 

training was started from the same randomly generated set of initial weights for the 

standard as well as the modified backpropagation algorithms. 

The average error per exemplar for classes C1 and C2 during a typical training run 

is shown in figure 7 for both standard and modified backpropagation. 

4.2 Example 2 (Speech) 

The data used in this example is for a speech recognition problem and was obtained 

from the UCI repository of machine learning databases and domain theories. The 

input patterns are 10 element floating point vectors representing vowel sounds which 

belong to one of 11 classes. There are 45 exemplars for each class. We have derived 
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Figure 7: Average error per exemplar of dominant (C1 and subordinate C2 classes 

during training (Plots shown a.re for experiment 1 of example 1). Top: Standard 

backpropagation. Middle: Modified backpropagation, method!. Bottom: Modified 

backpropagation, method2. 
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a two-class problem from this 11-class problem: Class C~, the subordinate class, con

tains exemplars for the vowel sound in "hid". Class C2 , the dominant class, contains 

exemplars for the remaining 10 vowel sounds. Thus, we have n1 = 45 and n2 = 450. 

As in the previous examples, the patterns were translated and scaled in order to lie 

within [0, 1]1°. 

A single-output net with one hidden layer of 20 nodes was trained for this prob

lem with the learning rate .\ = 0.01. In each experiment, the same set of random 

initial weights were used for both standard backpropagation as well as the modified 

algorithm. Training was stopped when only three exemplars remained misclassified. 

4.3 Example 3 (Fisher's Iris data) 

In this example, we analyzed the well-known Fisher's Iris data set [4]. Although this 

is actually a three class problem with 50 exemplars for each class, we have converted 

it to a two class problem as follows: Class C1, the subordinate class, consists of the 

exemplars for Iris Versicolor. Class C2, the dominant class, contains exemplars for 

Iris Setosa and Iris Virginica. Thus, n1 = 50 and n2 = 100. The original patterns 

were translated and scaled so as to lie within [0, 1]4• We used a network with one 

hidden layer of 4 nodes and the learning rate .\ was set to be 0.05. In each experiment, 

the same set of random initial weights were used for both standard backpropagation 

as well as modified backpropagation. Training was stopped when only two exemplars 

remained misclassified. 

4.4 Summary of results 

The results of the three experiments are shown in figure 8. In general, we find 

that method 2 is faster than method 1 and both are considerably faster than standard 

backpropagation. The speedup obtained with the modified backpropagation appears 

to be greatest for problems with highly imbalanced training sets, hut even if the 

imbalance ratio is only 2, as in the case of example 3, the average speedup is greater 

than 5. 
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Example Experiment Standard BP Modified BP Speedup 

Method 1 Method 2 Method 1 Method 2 

1 43755 147 116 297.6 377.2 

2 19532 313 869 62.4 22.5 

1 3 23376 252 172 92.8 135.9 

4 22340 388 232 57.6 96.3 

5 21130 337 175 62.7 120.7 

1 2280 170 108 13.4 21.1 

2 2210 237 116 9.3 19.1 

2 3 2340 282 383 8.3 6.1 

4 1910 277 124 6.9 15.4 

5 1960 197 100 9.9 19.6 

1 1500 215 163 6.9 9.2 

2 1390 501 363 2.8 3.8 

3 3 1410 110 466 12.8 3.0 

4 1470 222 260 6.6 5.7 

5 1420 530 273 2.7 5.2 

Figure 8: The number of iterations required for the number of misclassifications to 

decrease to acceptable level. 
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,\ Num. Iter. E~~~) after first iter. 

0.01 43755 0.486510 

0.02 18318 0.726782 

0.03 11160 0.792245 

0.04 8674 0.806312 

0.05 5991 0.809228 

0.055 5416 0.809645 

0.06 5910 0.809836 

0.065 7939 0.809924 

0.07 12588 0.809965 

Figure 9: The effect of varying ,\ for example 1 experiment 1 using standard back

propagation. Column 2: The number of iterations needed for the all exemplars to be 

correctly classified. Column 3: Mean square error for class C1 after the first iteration. 

5 Comparison of execution times 

The standard backpropagation algorithm consists of two steps: 

1. Evaluation of V E(W). 

2. Weight adjustment W' = W + ,\ V E(W). 

In the modified back propagation also, two gradient vectors V E1 (W) and V E2(W) 

are computed but the time to compute these two vectors is exactly equal to the 

amount of time needed to compute E(W). In this step, the only difference between 

the standard and proposed backpropagation is that we need to store two gradient 

vectors. 

The only additional computation in the proposed backpropagation is in evaluat

ing the descent vector with equation 7. The additional overhead for computing the 

descent vector in the proposed algorithm is negligible compared to the time needed 

to compute the gradient vectors. Since our algorithm generally requires far fewer 

iterations for the error to converge, we achieve a good speedup in run times. 
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Num. Iter. 

45000~~~~--~--~--~---r--~--, 
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20000 
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10000 
5000~~~~--_. __ _. __ ~--~--~~ 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 
..\ (Learning rate) 

Figure 10: The influence of..\ on the number of iterations needed to correctly classify 

all exemplars in example 1 experiment 1 using standard backpropagation. 

In example 2 (speech recognition), the actual time taken by standard backpropa

gation is: 

Number of iterations x 495 x 8.2 milliseconds 

on a SUN SPARCserver 490, whereas the time taken by the modified backpropagation 

algorithm is 

Number of iterations x (( 495 x 8.2) + 2.2) milliseconds. 

Thus in the proposed algorithm, it takes only 2.2 milliseconds per iteration to compute 

the descent vector which is negligible compared to the time to compute the gradient 

vectors. 

6 Concluding remarks 

In this paper, we have analyzed the reason for low rates of convergence of backprop

agation for two class problems with imbalanced training sets for two-class problems. 

We then propose a modified version of the standard backpropagation algorithm which 

is significantly faster for such problems. 
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We have observed that although the net error of the dominant class decreases 

in the first iteration of standard backpropagation, the net error of the subordinate 

class actually increases significantly. The subsequent rate of decrease of net error 

of the subordinate class is very low. We show that this phenomenon occurs because 

the gradient vector computed by standard backpropagation for a randomly initialized 

network points in a downhill direction only for the dominant class. 

The main feature of our modification to standard backpropagation is that we 

compute a descent vector which points in a downhill direction for both classes. Hence, 

net errors for both the dominant and subordinate classes are decreased by moving 

the weights in the direction of the descent vector. 

We have compared the performance of standard and modified backpropagation for 

three two-class problems with varying degrees of imbalance in their training sets. The 

speedup obtained with modified backpropagation appears to be greatest for problems 

with highly imbalanced training sets, but even if the imbalance ratio is low, as in 

example 3 (Fisher's Iris data), the average speedup is greater than 5. 

We plan to extend our results to multiclass problems as well. One difficulty that 

we have often encountered in multiclass problems is that even when the average error 

per exemplar is small, the probability of misclassification for one or more classes is 

very high. Another difficulty that we have observed with multiclass problems is the 

extremely low rate of convergence of error. We are currently trying to explain these 

phenomena in a manner similar to that described in this paper. 
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A Appendix 

Since we shall repeatedly encounter complicated functions of random variables, we 

follow the procedure outlined below to find an approximation of their expected values. 

Let g( u) be some function of random variable u. Suppose we wish to obtain 

£ (g( u)) where £( ·) denotes the expected value. Then, using the Taylor's series ex

pansion of g( u) with respect to u up to three terms, about £u = p, we get, 

£(g(u)) Rl £ (g(p) + g'(p) ·(u-p)+ ~(u-p)· g"(p) ·(u-p)) 

- g(p) + ~ ~~g:j(p)£((ui -pi)(uj -pj)) for vector u 
' J 

g(p), the leading term of the right hand side approximates the expected value of 

g( u) when expansion is considered only up to the first two terms. 

A.l Expected values of functions of weight changes 

Lemma 3.a 

&.w [~ws(j,k) ~ws(l,k)] (k) (k) { (2t(k)- 1)2 
- Yi,JJ Y1.s 64 

1 L+t } 
- '"' [(2t(k) - 1)2 ((y(~))2 + (y(~))2) - y<~>y(k)] 

64 X 12 ~ J,l 1•1 1,, J,• 
,=1 

x(k)xl(k) 
£w [~w(j,k) ~w(l,k)] = J,r ,r (2t(k)- 1? 

s,r s,r 192 

Proof: To establish (3.a), we follow the procedure outlined previously and in addi

tion, we use £(w ) = 0, £(wD = ! and £(w8 w8 •) = 0. These equalities holds because 

theWs are stochastically independent random variables uniformly distributed between 

(-1, 1]. They~~} are constants when expectation is taken with respect tow . 

If we confine our attention only to the leading terms, 
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£,.. ~w~i,k) ~w~l,k) y y [ ] (k) (k) { (2t(k) - 1)2 } 

- ~ ~ - j,• I,• 64 

£,.. [~w(i,k) ~w(l,k)] - 0 - .,, .,, 

0 

The following lemma helps obtain the expectations of the above values with respect 

to the hidden layer weights: 

Lemma3.b 

Proof: The proof for lemma 3.b is similar to that of the previous lemma including 

e(w.) = 0, £( w:,,) = l, and £( w.,,w.,,,) = 0 for similar reasons. Once again, the first 

terms on the r.h.s. of each expression gives the leading term; e.g. ew(YJ,~>YJ~) = ~· 

0 

Theorem 3: The ratio of the expected square length of the gradient vector satisfies 

where 

and 
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n - ,.2 

e - _!_ (f: Jlx; 1l 2 x~k)) . x(k) 
nk i=l 

Ct { (2t(k)- 1)2 (80 + 12L- £2) + (L + 4)2} 
- 96 192 

C2 {(2t(k) -1)2 (L + 16)- ((2tCk) -1)2 + 1) (L2 + 4L)} 
- 48 1152 

c3 -
{ (2t<•> - 1)2 

2 L } 
- 1152 (L + 6L) + 1152 

c4 - {L(L-1)} 
27648 

Cs {-(2t(k) -1)2L(L -1)} -
27648 

Proof: Let us consider E(IIV E~;(W)II 2 ). 

IIV Ek(W)II2 - (Vw (k), Vw(k)) · (Vw (k), Vw(k)) 

L+l 1+1 L 

- L:(~wik>? + E L:(dw!~}? 
8=1 r=l8=l 

where ~w(k) = "'~! 1 ~w(j,k) and ~w(k) = "'~! 1 ~w(i,k) hence 
8 i.JJ- 8 r,8 i.JJ- r,8 ' 

We first take the conditional expectation of each term over w keeping w fixed. These 

values are obtained from lemma. 3.a.. In the next step, we find the expectation of these 

values over w using lemma. 3.b and substitution in equation (10) and a. lengthy but 

straightforward simplification 2 gives: 

2The simplification was verified using the MACSYMA system. 
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Note: Coefficients C4 and C5 are negligible for two reasons: 

(a) The denominators are very small; 

(b) if all x~~J are between 0 and 1 then their higher order terms keep getting smaller 

and smaller as the power increases. 

Hence A1 ~ A2. 
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