
1 INTRODUCTION

The Support vector machines (SVMs) [1-2] have
been proposed on the basis of structural risk
minimization and the theory of VC bounds. SVMs
are widely used in artificial intelligence area. For
binary classification problems, to train a standard
SVM is to construct two parallel hyper-planes which
maximize the width between the two classes. It is a
constrained quadratic programming (QP) problem
where the number of variables equals to the size of
dataset. The QP matrix is usually too huge to be
stored.

Decomposition methods [3-5] were proposed to
deal with such difficulties, in which only a subset of
the whole Lagrange multipliers, which is called
working set B, is modified and the rest set N is
regarded as fixed. Chunking [3] uses the fact that
zero multipliers have no effect on the value of the
objective function. It keeps every non-zero
multiplier in B from the previous step, discards the
zeros and imports the worst multipliers that violate
the Karush-Kuhn-Tucker (KKT) conditions. When
all the non-zero multipliers are identified, the last
step solves the QP problem. Chunking greatly
reduces the size of the QP matrix, but it cannot
handle large-scale training because the reduced
matrix may still be too large. In Osuna’s method [4],
while there are some violating multipliers in N, any
of them is replaced with one from B in each step.
Osuna has proved that moving a multiplier from B to
N doesn’t change objective function while moving a
violating multiplier from N to B leads to a strict
improvement when B is re-optimized. Osuna’s

algorithm definitely guarantees convergence to the
global optimal solution. Note that chunking method
obeys the conditions of Osuna’s theorem, hence it
converges too.

Sequential minimal optimization (SMO) [5]
restricts B to have only two multipliers which can be
solved analytically and requires no extra matrix
storage. There are two heuristics for choosing which
multipliers to be optimized. The first choice
heuristic concentrates on unbound multipliers that
are most likely to violate the KKT conditions. Once
a first Lagrange multiplier is chosen, the second
choice heuristic chooses the second Lagrange
multiplier that maximizes the difference value of the
two prediction errors. But it’s inefficient to re-
compute the threshold value after each step.

Some researchers focus on how to parallelize
SMO algorithm to decrease training time, [6] is
based on the single program multiple data (SPMD)
model. It splits the whole dataset into smaller
subsets, and updates each subset’s error array in
parallel using multiple processors. In cascade SVM
[7], multiple layers of SVMs work as filters to
extract support vectors. Two sets of support vectors
from the previous layer are combined as input for
next layer. The filtering process continues until only
one subset is left. All the support vectors from last
layer are sent back to the first layer to test global
convergence. Different from the above methods, the
parallel version of SMO (PSMO) proposed in [8]
parallelizes the selection of the working set, where
two violating pairs are chosen and updated
simultaneously in each step, then the whole set’s
gradients are updated. The key idea is to reduce time

An Improved Algorithm for Parallelizing Sequential Minimal
Optimization

C.R. LI & J. GUO
Computer Center, East China Normal University, Shanghai, China

ABSTRACT: In our previous work, a parallelizing sequential minimization optimization was proposed, where
the algorithm was executed successfully but its convergence cannot be guaranteed in some cases. In this
paper, an improved version is proposed, which can avoid falling into the endless loops. In the proposed
method, the multiple violation pairs are selected in each step, and depending on the decrement value of the
objective function, a single-pair update or multiple-pair update is determined. Experimental results show that
the proposed method is more effective than the previous methods. The parallel algorithm is well executed
while the accuracy is maintained and the convergence is completely guaranteed.
KEYWORDS: SVM; SMO; parallel algorithm; convergence

International Conference on Industrial Technology and Management Science (ITMS 2015)

© 2015. The authors - Published by Atlantis Press 1352

cost by reducing the number of iterations. As the
stopping criterion in PSMO is the same to the
traditional SMO, the prediction accuracy is kept.
Experiments show that PSMO does accelerate the
training speed in many cases. However, in some
cases, PSMO makes the training time longer or even
fails to converge.

In this paper, we propose an improved version of
PSMO (called IPSMO) by intelligently choosing
between single-pair update and multi-pair update in
each step, depending on which way has larger
decrement of the objective function. We also expand
it to a 4-way parallelization. Experiments show that
using the 2-way parallelization, IPSMO not only
performs as well as PSMO in the datasets where
PSMO outperforms SMO, but also solves the
convergence issues on those datasets for which
PSMO fails to converge. The advantages of IPSMO
are more obvious in the 4-way parallelization.

This paper is organized as follows: the brief
introduction to SMO is given in Section 2. In
Section 3, the difference between PSMO and the
improved version IPSMO is discussed. Detailed
experiments are shown in Section 4. Finally, Section
5 concludes this work.

2 SEQUENTIAL MINIMAL OPTIMIZATION

Given a binary classification problem with instances
, 1,...,ix i l and labels { 1, 1}iy , the main task in

the training step of SVM is to solve the following
quadratic programming problem:

1 1 1

1
min Q((,)

2

l l l

i i j i j i j

i i j

y y K x x

 (1)

Subject to:

, 0i i C ,
1

0
l

i i

i

y

Where is the vector of Lagrange multipliers,
C restricts the upper bound of all the multipliers and
K is the kernel function calculating the dot product
of two samples after mapped to higher dimension
space.

The KKT conditions are necessary and sufficient
conditions for solving the QP problem. According to
[9], when the optimality holds, for each i , the
following constraints are satisfied:

0, y (b) 0

, y (b) 0

, y (b) 0

i i i

i i i

i i i

F

C F

C F

Where:

1

(
() (y (x ,x) -1)

()

l

i i i i j j j i

ji

Q
F y y y K

 (3)

Eq. (2) can be written as:

max () min ()
lowup

i j
j Ii I

F F

Where:

1, or 1, 0

1, or 1, 0

up t t t t

low t t t t

I t y C y

I t y C y

We define a pair of indices (,)i j as a -violating
pair if the following constrain holds:

 (), j () ((up low i ji I I F F

The optimality holds if and only if no violating
pair exists.

SMO uses first order (i.e., gradient) information
of Eq. (3) to select the violating pair via “maximal
violating pair” rule:

 arg max(() | t I)

arg min(() | t I)

t up
t

t low
t

i F

j F

While LIBSVM [10-11] uses second order
information to select j which directly relates to
decrement of Eq. (1):

2
, , ,

,

, , ,

arg min(/ | t () ())

() (0

(x x) (x x) 2 (x ,x) 0

i t i t low i t
t

i t i t

i t i i t t i t

j b a I F F

b F F

a K K K

If , 0i t , then ,i t is replaced with a small

positive number. In our experiment, we also use
second order information since it is faster than using
first order information.

3 THE PROPOSED PARALLEL ALGORITHM

In this section, our improved parallel version of
SMO (IPSMO) is proposed. From Eq. (3) we can
see that the statuses of Lagrange multipliers are
interacted on each other. Hush [12] has proved that
SMO-type methods have strict decrease of Eq. (1)
(i.e., 1() (), k k

Q Q k) if and only if B is a

violating pair. PSMO can be regarded as a variation
of SMO: denote 1 2 2 2(,) and (,)up low up lowi j i j as the first

and second violating pairs updated in the kth
iteration, the kth iteration is kind of two single-pair
update iterations:

.1 :k updates 1 1(,)
up lowi j

.2 :k updates 2 2(,)
up lowi j

The update of the whole set’s gradients is delayed
until .2k iteration, which makes PSMO not obey
Hush’s theorem[12] because pair 2 2(,)

up lowi j
 may

not be a violating pair if we perform iteration .1k
and .2k in SMO scenario. IPSMO is proposed to
guarantee the strict decrease of Eq. (1): it pre-
computes the objective function value in both
scenarios (single-pair update and multiple-pair

1353

update), then chooses the way that makes the value
decrease more. As Eq. (1) is convex quadratic and
has feasible region, the value is limited, which
means IPSMO will definitely converge. Note that
when there is no multiple-pair update in the training
period, IPSMO degenerates to SMO. The training
algorithm of IPSMO is described as follows:

Algorithm 1. Constructing SVM model via IPSMO

Input: instances{ ,y } 1,...,i ix i l , constant C, RBF kernel g and

stopping criteria .

1. Initialize: Set 0, () 0, G() ()k k k Q k and n is the

maximum number of violating pairs.

2. While -optimality conditions are not satisfied, do

3. Select n violating pairs:

(1) Get the top n indices (),t

up upi I 1,...,t n ,sorted by

()t ty G k in decreasing order.

(2) For each t

upi , get n candidates , (),t m

low low
j I 1,...,m n ,

sorted by , ,

2

, ,
/t m t m

low low
t j t j

b a in increasing order.

(3) For 1,..., . 1,...,i n m n if t

upi and ,t m

low
j are not marked,

mark them and pair ,(,)t t m

up lowi j is chosen.

4. For each violating pair (,),i j calculate the corresponding

modifications * *,i j and *(), 1,...,
z

G k z l , l is the size of

training set.

5. Calculate the decrement value of objective function
()Q in both single-pair and multiple-pair scenario

respectively, choose the one that ()Q decreases more,

then update (), G()k k .

6. End while

Output: SVM model

We perform step 3.2 and step 4 in parallel. Note
that in step 3.3, some candidate pairs may be
discarded if t

upi has already been in other violating

pairs. In this case, the number of chosen pairs is
smaller than n .

4 EXPERIMENTAL RESULTS

Similar to PSMO, IPSMO is also implemented on
LIBSVM. In order to compare different algorithms’
efficiency purely, tools (i.e., shrinking, caching) that
can speed up training in LIBSVM are not adopted.
Experiments are run on personal computers with
Intel Core I5 processors and 8 GB RAMs. As
different SVM parameters such as C in Eq. (1) and
kernel parameters such as g in RBF kernel

function
2|| ||

(,) i jg x x

i jK x x e
 affect training

performance, to simulate how one trains SVM model
in practice, Experiments are conducted as the
following procedure:

1. “Parameter selection” procedure: for each
dataset, here we adopt RBF kernel as the kernel
function and execute grid search strategy to find the
proper (C, g) that result in the highest classification

accuracies. C is selected from set {2 | 5, 3,...,15}i
i

and g is selected from {2 | 15, 13,...,3}k
k . For

those datasets that do not have a specific testing set,
we conduct 10-fold cross validation to determine the
proper pair (C, g) . To be more specific, we randomly

divide the whole data set into 10 pieces, iteratively
choose 9 of the 10 pieces of data for training and the
rest one piece for testing, then average test
accuracies, ,(C g)opt opt that corresponds to the highest

mean accuracy is chosen, shown in Table 2.
2. “Final training” procedure: Respectively

construct SVM model via SMO, PSMO and IPSMO
on each dataset with parameters ,(C g)opt opt , Note that

the procedure is repeatedly several times to obtain
the precise training time, results are shown in
Table1.

Table 1. Results of SMO, PSMO, IPSMO on benchmark datasets

 SMO PSMO(2-way) IPSMO(2-way) IPSMO(4-way)

 iterations time(s) iterations time(s) iterations time(s) iterations time(s)

australian* 58585 26.53 149585 70.55 37524 17.72 31596 15.50

breast-cancer* 1628 0.69 885 0.40 851 0.39 521 0.25

diabetes* 1443 0.66 744 0.37 744 0.37 369 0.19

german.numer* 358885 284.27 N/A N/A 225209 188.32 193641 167.10

heart* 11087 1.84 42267 7.61 7288 1.32 7344 1.36

fourclass* 945 0.39 553 0.23 564 0.25 329 0.15

mushrooms* 5652 42.46 4780 38.66 3313 26.58 3297 27.42

letter(scale) 220651 168.87 N/A N/A 115949 94.59 71010 57.65

splice 2664 3.43 1261 1.66 1309 1.73 614 0.82

a1a 3432 4.61 2053 2.95 1819 2.61 1271 1.89

a2a 4135 7.83 1961 3.95 1969 3.99 1248 2.59

a3a 2298 6.10 1183 3.31 1291 3.65 696 2.01

a4a 2612 10.31 1257 5.25 1291 5.42 750 3.24

1354

From Table 1, we can see that compared with
SMO, PSMO’s training time reduces greatly in
breast-cancer, diabetes, etc. In datasets heart and
australian, PSMO deteriorates otherwise and in
datasets german.numer and letter, PSMO even fails
to converge. Generally IPSMO’s training time per
iteration is a bit more than PSMO’s, which is mainly
due to the cost in pre-computing the objective
function value. But IPSMO performs more steadily:
the training time is generally less than SMO, it also
solves the convergence issues that exist in PSMO.
IPSMO (4-way) is generally better than IPSMO (2-
way) in both numbers of iterations and training time,
because more violating pairs maybe updated in each
step.

Table 2. Training parameters adopted on datasets

dataset size attrs. ,Copt
 gopt

australian* 690 14 2048 3.05e-05

breast-cancer* 683 10 2 7.81e-03

diabetes* 768 8 2 7.81e-03

geman.numer* 1000 24 32768 3.05e-05

heart* 270 13 512 3.05e-05

fourclass* 862 2 0.5 7.81e-03

mushrooms* 8124 112 32 7.81e-03

letter(scale) 15000 16 32 7.81e-03

splice 1000 60 8 7.81e-03

a1a 1605 123 128 1.95e-03

a2a 2265 123 8 3.13e-03

a3a 3185 123 32 1.95e-03

a4a 4781 123 8 7.81e-03

these datasets are downloaded from
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/. Dataset
denoted by ‘*’ has no specific test set.

Figure 1. These datasets are trained with the usage of IPSMO
(2-way). The training time is equally split to 100 pieces, any of
which corresponds to a snapshot. The percent of multiple-pair
updates tends to be stable as the training goes on.

5 CONCLUSION

In this paper, we propose an improved parallel
version of SMO based on PSMO. Experiments show
that IPSMO’s performance is more stable than
PSMO and convergence issues are also solved. In
the future, there is much work to do. For example:
what if IPSMO uses more parallels (8-way, 16-way,
etc.)? Given a specific dataset, how to determine the
optimal parameter in n -way that can speed up the
training most? Since multiple violating pairs can be
updated in each step, the advantages brought from
advanced algorithms of selecting violating pairs can
be more obvious. Developing a new selection
algorithm is also an interesting research area.

REFERENCES

[1] Boser, B. E., Guyon, I. M., & Vapnik, V. N.: A training
algorithm for optimal margin classifiers. In: Proceedings
of the fifth annual workshop on Computational learning
theory, ACM Press.pp.144-152.

[2] Cortes C, Vapnik V. 1995. Support-Vector Networks.
Machine Learning.

[3] Vapnik, V., 1982. Estimation of Dependences Based on
Empirical Data, Springer-Verlag.

[4] Osuna, E., Freund, R., & Girosi, F. 1997. An improved
training algorithm for support vector machines. In: Neural
Networks for Signal Processing [1997] VII. Proceedings
of the 1997 IEEE Workshop, pp. 276-285.

[5] Platt, J. 1998. Sequential minimal optimization: A fast
algorithm for training support vector machines.

[6] Cao, L. J., Keerthi, S. S., Ong, C. J., Zhang, J. Q.,
Periyathamby, U., Fu, X. J., & Lee, H. P. 2006. Parallel
sequential minimal optimization for the training of support
vector machines. In: Neural Networks, IEEE Transactions
on. 17(4), pp.1039-1049.

[7] Graf, H. P., Cosatto, E., Bottou, L., Dourdanovic, I., &
Vapnik, V. 2004. Parallel support vector machines: The
cascade svm. In: Advances in neural information
processing systems, pp. 521-528.

[8] Wang, X., & Guo, J. 2013. An Algorithm for Parallelizing
Sequential Minimal Optimization. In: 20th International
Conference, ICONIP, pp.657-664.

[9] Keerthi, S. S., Shevade, S. K., Bhattacharyya, C., &
Murthy, K. R. K. 2001. Improvements to Platt's SMO
algorithm for SVM classifier design. In: Neural
Computation, 13(3), pp. 637-649.

[10] Fan, R. E., Chen, P. H., & Lin, C. J. 2005. Working set
selection using second order information for training
support vector machines. In: The Journal of Machine
Learning Research, 6, pp.1889-1918.

[11] Chih, C. C., & Lin, C. J. 2011. LIBSVM: a library for
support vector machines. In: ACM Transactions on
Intelligent Systems and Technology (TIST), 2(3), 27.

[12] Hush,D., & Scovel,C. 2003. Polynomial-time
decomposition algorithms for support vector machines. In:
Machine Learning, 51:51–71.

1355

