
1 INTRODUCTION 

The Support vector machines (SVMs) [1-2] have 
been proposed on the basis of structural risk 
minimization and the theory of VC bounds. SVMs 
are widely used in artificial intelligence area. For 
binary classification problems, to train a standard 
SVM is to construct two parallel hyper-planes which 
maximize the width between the two classes. It is a 
constrained quadratic programming (QP) problem 
where the number of variables equals to the size of 
dataset. The QP matrix is usually too huge to be 
stored.  

Decomposition methods [3-5] were proposed to 
deal with such difficulties, in which only a subset of 
the whole Lagrange multipliers, which is called 
working set B, is modified and the rest set N is 
regarded as fixed. Chunking [3] uses the fact that 
zero multipliers have no effect on the value of the 
objective function. It keeps every non-zero 
multiplier in B from the previous step, discards the 
zeros and imports the worst multipliers that violate 
the Karush-Kuhn-Tucker (KKT) conditions. When 
all the non-zero multipliers are identified, the last 
step solves the QP problem. Chunking greatly 
reduces the size of the QP matrix, but it cannot 
handle large-scale training because the reduced 
matrix may still be too large. In Osuna’s method [4], 
while there are some violating multipliers in N, any 
of them is replaced with one from B in each step. 
Osuna has proved that moving a multiplier from B to 
N doesn’t change objective function while moving a 
violating multiplier from N to B leads to a strict 
improvement when B is re-optimized. Osuna’s 

algorithm definitely guarantees convergence to the 
global optimal solution. Note that chunking method 
obeys the conditions of Osuna’s theorem, hence it 
converges too. 

Sequential minimal optimization (SMO) [5] 
restricts B to have only two multipliers which can be 
solved analytically and requires no extra matrix 
storage. There are two heuristics for choosing which 
multipliers to be optimized. The first choice 
heuristic concentrates on unbound multipliers that 
are most likely to violate the KKT conditions. Once 
a first Lagrange multiplier is chosen, the second 
choice heuristic chooses the second Lagrange 
multiplier that maximizes the difference value of the 
two prediction errors. But it’s inefficient to re-
compute the threshold value after each step. 

Some researchers focus on how to parallelize 
SMO algorithm to decrease training time, [6] is 
based on the single program multiple data (SPMD) 
model. It splits the whole dataset into smaller 
subsets, and updates each subset’s error array in 
parallel using multiple processors. In cascade SVM 
[7], multiple layers of SVMs work as filters to 
extract support vectors. Two sets of support vectors 
from the previous layer are combined as input for 
next layer. The filtering process continues until only 
one subset is left. All the support vectors from last 
layer are sent back to the first layer to test global 
convergence. Different from the above methods, the 
parallel version of SMO (PSMO) proposed in [8] 
parallelizes the selection of the working set, where 
two violating pairs are chosen and updated 
simultaneously in each step, then the whole set’s 
gradients are updated. The key idea is to reduce time 
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cost by reducing the number of iterations. As the 
stopping criterion in PSMO is the same to the 
traditional SMO, the prediction accuracy is kept. 
Experiments show that PSMO does accelerate the 
training speed in many cases. However, in some 
cases, PSMO makes the training time longer or even 
fails to converge.  

In this paper, we propose an improved version of 
PSMO (called IPSMO) by intelligently choosing 
between single-pair update and multi-pair update in 
each step, depending on which way has larger 
decrement of the objective function. We also expand 
it to a 4-way parallelization. Experiments show that 
using the 2-way parallelization, IPSMO not only 
performs as well as PSMO in the datasets where 
PSMO outperforms SMO, but also solves the 
convergence issues on those datasets for which 
PSMO fails to converge. The advantages of IPSMO 
are more obvious in the 4-way parallelization.  

This paper is organized as follows: the brief 
introduction to SMO is given in Section 2. In 
Section 3, the difference between PSMO and the 
improved version IPSMO is discussed. Detailed 
experiments are shown in Section 4. Finally, Section 
5 concludes this work.  

2 SEQUENTIAL MINIMAL OPTIMIZATION 

Given a binary classification problem with instances 
,  1,...,ix i l  and labels { 1, 1}iy    , the main task in 

the training step of SVM is to solve the following 
quadratic programming problem: 
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Where   is the vector of Lagrange multipliers, 
C restricts the upper bound of all the multipliers and 
K is the kernel function calculating the dot product 
of two samples after mapped to higher dimension 
space. 

The KKT conditions are necessary and sufficient 
conditions for solving the QP problem. According to 
[9], when the optimality holds, for each i , the 
following constraints are satisfied: 
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Eq. (2) can be written as: 
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We define a pair of indices ( , )i j  as a  -violating 
pair if the following constrain holds: 

 ( ),  j ( ) ( (up low i ji I I F F           

The optimality holds if and only if no violating 
pair exists. 

SMO uses first order (i.e., gradient) information 
of Eq. (3) to select the violating pair via “maximal 
violating pair” rule: 
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While LIBSVM [10-11] uses second order 
information to select j  which directly relates to 
decrement of Eq. (1): 
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If , 0i t  , then ,i t  is replaced with a small 

positive number. In our experiment, we also use 
second order information since it is faster than using 
first order information. 

3 THE PROPOSED PARALLEL ALGORITHM 

In this section, our improved parallel version of 
SMO (IPSMO) is proposed. From Eq. (3) we can 
see that the statuses of Lagrange multipliers are 
interacted on each other. Hush [12] has proved that 
SMO-type methods have strict decrease of Eq. (1) 
(i.e., 1( ) ( ),  k k

Q Q k    ) if and only if B is a 

violating pair. PSMO can be regarded as a variation 
of SMO: denote 1 2 2 2( , ) and ( , )up low up lowi j i j  as the first 

and second violating pairs updated in the kth  
iteration, the kth  iteration is kind of two single-pair 
update iterations:   

.1 :k  updates 1 1( , )
up lowi j

   

.2 :k  updates 2 2( , )
up lowi j

   

The update of the whole set’s gradients is delayed 
until .2k  iteration, which makes PSMO not obey 
Hush’s theorem[12] because pair 2 2( , )

up lowi j
   may 

not be a violating pair if we perform iteration .1k  
and .2k  in SMO scenario. IPSMO is proposed to 
guarantee the strict decrease of Eq. (1): it pre-
computes the objective function value in both 
scenarios (single-pair update and multiple-pair 
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update), then chooses the way that makes the value 
decrease more. As Eq. (1) is convex quadratic and 
has feasible region, the value is limited, which 
means IPSMO will definitely converge. Note that 
when there is no multiple-pair update in the training 
period, IPSMO degenerates to SMO. The training 
algorithm of IPSMO is described as follows: 

Algorithm 1. Constructing SVM model via IPSMO 

Input: instances{ ,y } 1,...,i ix i l , constant C, RBF kernel g and 

stopping criteria . 

1. Initialize: Set 0, ( ) 0,  G( ) ( )k k k Q k       and n is the 

maximum number of violating pairs.                 

2. While  -optimality conditions are not satisfied, do 

3. Select n  violating pairs: 

(1) Get the top n indices ( ),t

up upi I  1,...,t n  ,sorted by 

( )t ty G k  in decreasing order. 

(2) For each t

upi , get n candidates , ( ),t m

low low
j I   1,...,m n , 

sorted by , ,

2

, ,
/t m t m

low low
t j t j

b a  in increasing order. 

(3) For 1,..., . 1,...,i n m n   if t

upi  and ,t m

low
j  are not marked, 

mark them and pair ,( , )t t m

up lowi j  is chosen. 

4. For each violating pair ( , ),i j calculate the corresponding 

modifications * *,i j   and *( ),  1,...,
z

G k z l , l is the size of 

training set. 

5. Calculate the decrement value of objective function 
( )Q  in both single-pair and multiple-pair scenario 

respectively, choose the one that ( )Q   decreases more, 

then update ( ),  G( )k k .    

6. End while 

Output:  SVM model 

We perform step 3.2 and step 4 in parallel. Note 
that in step 3.3, some candidate pairs may be 
discarded if t

upi  has already been in other violating 

pairs. In this case, the number of chosen pairs is 
smaller than n .  

4 EXPERIMENTAL RESULTS 

Similar to PSMO, IPSMO is also implemented on 
LIBSVM. In order to compare different algorithms’ 
efficiency purely, tools (i.e., shrinking, caching) that 
can speed up training in LIBSVM are not adopted. 
Experiments are run on personal computers with 
Intel Core I5 processors and 8 GB RAMs.  As 
different SVM parameters such as C  in Eq. (1) and 
kernel parameters such as g  in RBF kernel 

function 
2|| ||

( , ) i jg x x

i jK x x e
  affect training 

performance, to simulate how one trains SVM model 
in practice, Experiments are conducted as the 
following procedure: 

1. “Parameter selection” procedure: for each 
dataset, here we adopt RBF kernel as the kernel 
function and execute grid search strategy to find the 
proper (C,  g) that result in the highest classification 

accuracies. C is selected from set {2 | 5, 3,...,15}i
i                              

and g is selected from {2 | 15, 13,...,3}k
k    . For 

those datasets that do not have a specific testing set, 
we conduct 10-fold cross validation to determine the 
proper pair (C,  g) . To be more specific, we randomly 

divide the whole data set into 10 pieces, iteratively 
choose 9 of the 10 pieces of data for training and the 
rest one piece for testing, then average test 
accuracies, ,(C g )opt opt that corresponds to the highest 

mean accuracy is chosen, shown in Table 2.  
2. “Final training” procedure: Respectively 

construct SVM model via SMO, PSMO and IPSMO 
on each dataset with parameters ,(C g )opt opt , Note that 

the procedure is repeatedly several times to obtain 
the precise training time, results are shown in 
Table1. 

Table 1. Results of SMO, PSMO, IPSMO on benchmark datasets 

 SMO PSMO(2-way) IPSMO(2-way) IPSMO(4-way) 

 iterations time(s) iterations time(s) iterations time(s) iterations time(s) 

australian* 58585 26.53 149585 70.55 37524 17.72 31596 15.50 

breast-cancer* 1628 0.69 885 0.40 851 0.39 521 0.25 

diabetes* 1443 0.66 744 0.37 744 0.37 369 0.19 

german.numer* 358885 284.27 N/A N/A 225209 188.32 193641 167.10 

heart* 11087 1.84 42267 7.61 7288 1.32 7344 1.36 

fourclass* 945 0.39 553 0.23 564 0.25 329 0.15 

mushrooms* 5652 42.46 4780 38.66 3313 26.58 3297 27.42 

letter(scale) 220651 168.87 N/A N/A 115949 94.59 71010 57.65 

splice 2664 3.43 1261 1.66 1309 1.73 614 0.82 

a1a 3432 4.61 2053 2.95 1819 2.61 1271 1.89 

a2a 4135 7.83 1961 3.95 1969 3.99 1248 2.59 

a3a 2298 6.10 1183 3.31 1291 3.65 696 2.01 

a4a 2612 10.31 1257 5.25 1291 5.42 750 3.24 
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From Table 1, we can see that compared with 
SMO, PSMO’s training time reduces greatly in 
breast-cancer, diabetes, etc. In datasets heart and 
australian, PSMO deteriorates otherwise and in 
datasets german.numer and letter, PSMO even fails 
to converge. Generally IPSMO’s training time per 
iteration is a bit more than PSMO’s, which is mainly 
due to the cost in pre-computing the objective 
function value. But IPSMO performs more steadily: 
the training time is generally less than SMO, it also 
solves the convergence issues that exist in PSMO. 
IPSMO (4-way) is generally better than IPSMO (2-
way) in both numbers of iterations and training time, 
because more violating pairs maybe updated in each 
step. 

Table 2. Training parameters adopted on datasets 

dataset size attrs. ,Copt
 gopt  

australian* 690 14 2048 3.05e-05 

breast-cancer* 683 10 2 7.81e-03 

diabetes* 768 8 2 7.81e-03 

geman.numer* 1000 24 32768 3.05e-05 

heart* 270 13 512 3.05e-05 

fourclass* 862 2 0.5 7.81e-03 

mushrooms* 8124 112 32 7.81e-03 

letter(scale) 15000 16 32 7.81e-03 

splice 1000 60 8 7.81e-03 

a1a 1605 123 128 1.95e-03 

a2a 2265 123 8 3.13e-03 

a3a 3185 123 32 1.95e-03 

a4a 4781 123 8 7.81e-03 

these datasets are downloaded from 
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/. Dataset 
denoted by ‘*’ has no specific test set. 

 
Figure 1. These datasets are trained with the usage of IPSMO 
(2-way). The training time is equally split to 100 pieces, any of 
which corresponds to a snapshot. The percent of multiple-pair 
updates tends to be stable as the training goes on. 

5 CONCLUSION 

In this paper, we propose an improved parallel 
version of SMO based on PSMO. Experiments show 
that IPSMO’s performance is more stable than 
PSMO and convergence issues are also solved. In 
the future, there is much work to do. For example: 
what if IPSMO uses more parallels (8-way, 16-way, 
etc.)? Given a specific dataset, how to determine the 
optimal parameter in n -way that can speed up the 
training most? Since multiple violating pairs can be 
updated in each step, the advantages brought from 
advanced algorithms of selecting violating pairs can 
be more obvious. Developing a new selection 
algorithm is also an interesting research area. 
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