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Abstract In this paper, an improved algorithm for the

extraction of respiration signal from the electrocardiogram

(ECG) in home healthcare is proposed. The whole system

consists of two-lead electrocardiogram acquisition using

conductive textile electrodes located in bed, baseline fluc-

tuation elimination, R-wave detection, adjustment of

sudden change in R-wave area using moving average, and

optimal lead selection. In order to solve the problems of

previous algorithms for the ECG-derived respiration (EDR)

signal acquisition, we are proposing a method for the

optimal lead selection. An optimal EDR signal among the

three EDR signals derived from each lead (and arctangent

of their ratio) is selected by estimating the instantaneous

frequency using the Hilbert transform, and then choosing

the signal with minimum variation of the instantaneous

frequency. The proposed algorithm was tested on 15 male

subjects, and we obtained satisfactory respiration signals

that showed high correlation (r2 [ 0.8) with the signal

acquired from the chest-belt respiration sensor.
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1 Introduction

Recently, the average life span has lengthened by elevation

of the GNP, improvement of quality of life, advancement

of medical science, etc. As a consequence, many advanced

countries can be said to have aging societies. As a result of

this, concern has been expressed about the quality of

medical care that elderly residents receive in residential

and nursing homes [20]. It is so-called home healthcare.

The most important requirements of home healthcare are

that they be nonintrusive and noninvasive. Therefore,

devices for telemedicine, more exactly, remote monitoring

of physiological or daily living signs should be carried out

with these considerations as follows: (1) no pain or burden

must be imposed to acquire information on health condi-

tion and (2) no discomfort must be added either [19].

Another consideration should be given for extraction of

qualified data as not only are the sites where measuring

occurs individual residences, but also operators who con-

trol the system are just ordinary persons. This study is

proposing a method which measures ECG with two elec-

trodes made of conductive textile located on the bed in

order to minimize the restriction on subjects and extract

ECG-derived respiration (EDR) from the obtained ECG. In

order to measure the ECG conventionally, electrodes with

adhesive electrolyte, absorption electrodes for the chest,

tong-shaped electrodes for the limbs and cables are used.

Such electrodes and cables might make subjects feel

stressed. In contrast, the conductive textile can realize

long-term ECG measurement without any inconvenience

while sleeping. When using the conductive textile as an

electrode, there are three major types of electrode

arrangements generally recommended; the first type con-

sists of a pillow electrode, lower limb electrode on the bed

and isolated electrode beneath the seat as Ishijima
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published [6]. The second type has three electrodes for the

head, body, and leg to measure ECG and respiration as

Ishijima also used [7, 8, 16]. The last one forms the basic

setting with three input ECGs by arranging electrodes on

both the shoulders and legs in bed [22]. These arrange-

ments are designed to minimize noise by operating the

driving circuit on the right leg or grounding the amplifier

and the human body. Nevertheless, there are some disad-

vantages in that three electrodes are required, and

especially subjects have to remove their clothing from the

upper body in the second and third cases. In this study, we

designed the system using only two electrodes located

either in the part of pillow and leg (similar to lead III) or

right and left shoulder (similar to lead I).

It is widely accepted that among several methods to

measure EDR, the method proposed by Moody and others,

which uses the arctangent of the ratio of two leads, is better

than other methods based on single-lead type [13, 14] and

previous work has established that the variation of the

angle of mean electrical axis reflects the respiratory pat-

terns [17] and the angle of the mean electrical axis of the

heart correlates well with respiration [2]. However, in

recent research, it has been established that single-lead

estimates are more robust than methods based on the mean

electrical axis [15]. Actually the effects of respiration on

ECG modulation depend on subjects’ personal respiration

characteristics (whether thoracic respiration or abdominal

respiration), location of heart and magnitude of rotation.

Moreover, since lead I and lead III are not orthogonal [4],

the results can be lower than the ECG-derived respiration

through single-lead in some cases. Besides, since the

position of the electrodes on the thorax determines the

polarity and amplitude of the ECG events (that is, the

position of the leads determine the plane in which the

depolarization wave signal is measured) [1], this study

using relatively wider and bigger electrodes could use the

single-lead approach. Thus, we have to select one value

among lead I, lead III, and arctangent product as the ECG-

derived respiration on the basis of similarity to actual

respiration signal. This process should be conducted

through automatic algorithm without the researcher’s using

their naked eye.

The study proposes a new ECG based respiration

extraction algorithm consisting of ECG measurement with

leads I and III from the conductive textiles, removal of

baseline wandering using median filter, R-wave detection,

variation modification using moving average and optimal

lead selection. In order to resolve the problem with optimal

lead selection for extracting EDR, it was considered that

respiration signal frequency does not vary unexpectedly

and the EDR, which is obtained from an inappropriate lead,

shows abnormally large frequency variation. Based on this,

it is reasonable to use the estimation of respiration

frequency as a method to select a proper lead. There are

many methods for the selection based on frequency vari-

ation such as time-frequency analysis. Nevertheless,

considering that respiration signal is a narrow band signal,

the study invented an optimal lead selection with relatively

small computation load by estimating instantaneous fre-

quency by Hilbert transform and calculating the variation

within target section. In order to evaluate the proposed

selection method, the EDR signals and the variation of

thoracic circumference, which was measured simulta-

neously with ECG, were compared. According to the

results on 15 subjects, respiration signals with high corre-

lation coefficient over 0.8 could be automatically derived.

The proposed algorithm in the study also has some

advantages, in that, it shows rapid operation time because it

uses a fixed data window when calculating the area for

ECG-derived respiration extraction, and it produces signals

more similar to real respiration signals by applying moving

average to the calculated area. Additionally, EDR can be

treated to have the same sampling frequency by using

cubic-spline interpolation, and consequently, the conven-

tional respiration signal can be used instead, for several

experiments such as respiration analysis based on time

series and signal processing based also on frequency.

A primary goal in this study is to improve and validate

performance of one segment of home-healthcare monitor-

ing which is applied on bed.

2 Methodology

ECG signals (lead I and lead III) were acquired simulta-

neously on bed using conductive textiles; including

adhesive electrode ECG (lead I) for comparison. Thoracic

belt respiration signal using RSP100C (Biopac) were

acquired simultaneously with ECG signal. As mentioned

earlier, EDR signals extracted from two single-lead ECG

(not adhesive electrode ECG), respectively, have a signif-

icant characteristic which is subject-dependent signal, that

is, quality of final EDR signals are determined by which

ECG leads are used. Therefore, we have to decide which

lead signal of ECG reflects well on respiratory effort. For

this, Hilbert transform was applied to extract instantaneous

frequency. The reason for taking instantaneous frequency

is that it is a very good discriminator between well-derived

EDR and not. Fifteen healthy male subjects (not people

with diseases such as sleep apnea or periodic breathing)

whose mean age was 25.6 ± 1.9 (mean ± SD) years,

mean height was 175.3 ± 4.7 cm, mean weight was

69.2 ± 4.4 kg and BMI was 23.9 ± 2.8 kg/m2, volun-

teered for the study. All subjects gave informed consents to

participate and an internal Ethics Committee approved the

experimental protocol. LabVIEW 8.2 was used for deriving
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EDR and extracting instantaneous frequency. Respiration

signal obtained from a thoracic belt was also measured to

verify EDR. All the signals were collected at the sampling

rate of 360 Hz using an amplifier circuit made by us.

2.1 ECG measurement

The test subject was placed on bed in the supine position.

The acquisition procedures performed simultaneously on

bed as in Fig. 1. Figure 1 shows the type I configuration of

conductive textiles in bed, the other case that the solid line

conductive textiles (75 cm 9 41 cm) are located in right-

and left-hand sides of the body so that lead I analogous

signal is produced. The type III represents one case of

using the dotted line conductive textile as a pillow

(103 cm 9 50 cm) and a sheet (149 cm 9 41 cm) located

in lower body so that this type produces lead III analogous

ECG signal. Ag coated textile can be more conductive

depending on moisture in the skin and it is not necessary to

replace it frequently. Moreover, subjects were satisfied

with the feeling of this textile during the experiment.

Besides, it can be used for a long time (over 1 year) with

gentle cleaning.

We acquired the ECG signal from subjects on bed

during 6 h at night; in this study, all subjects were wearing

cloths (knee pants and running shirt) and in the supine

position. A subject’s body position can be fixed supine,

prone or on the side for simultaneous measurement. If a

subject’s signal had a large motion artifact, we could not

use that data, but if it had a small motion artifact, we could

use data through interpolation method. Fig. 2a shows ECG

signal measured with conventional adhesive electrodes

(Ag/AgCl) in lead I, b shows ECG signal measured with

conductive textile in type I and c shows ECG signal

measured with conductive textile in type III in turn. There

was no significant difference between conductive textiles

and general electrodes. The contact between the skin and

electrode can make noise like that in Fig. 2b. However,

almost signals are appropriatly following signal processing.

On average, 84.2% of the ECG data was usable throughout

the experiment.

2.2 Extraction algorithm of ECG-derived respiration

signal

The whole algorithm consists of pre-processing for

removal of power-line noise using notch filter and baseline

wandering using median filter, R-wave detection from

ECG and area calculation, moving average operation of

each area within QRS complex and cubic-spline interpo-

lation, polynomial regression processing for removal of DC

or low-frequency of the derived respiration signals, and

optimal lead selection between type I and type III by cal-

culating the instantaneous frequency and its variation using

Hilbert transform. Figure 3 shows the overall flow-chart of

the proposed algorithm.

2.2.1 Signal preprocessing

When extracting respiration signal from ECG, 50/60 Hz

power-line noise and baseline wandering in ECG might be

the most serious noise sources in EDR signal extraction.

For eliminating power-line noise, we used a 50/60 Hz

notch filter. For baseline wander, a high-pass filter, which

is widely used for removal of baseline fluctuation, distorts

the original signals, and can change the ECG modulation

by respiration. Unfortunately, removal of baseline using

wavelet and cubic-spline method is slower than median

filtering method. Thus, the median filter was used to

remove the baseline wandering since its signal distortion is

low and its operation speed is fast. The details in the

median filtering are as follows: first of all, a certain length

of window is applied to input signal and all samples in the

window are sorted in order of ascending or descending.

Fig. 1 ECG measurement set-up in accordance with conductive

textile arrangement. Configuration of measuring lead III-analogy

ECG signals using the dotted line conductive textiles and configu-

ration of measuring lead I-analogy ECG signals using the solid line
conductive textiles
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Then, the median of the sorted series is determined. In this

study, we had the use of 200 points window, which was

determined through empirical trial and error. Figure 4

demonstrates that power-line noise and baseline wandering

can be effectively removed by notch and median filtering.

Figure 4a shows ECG signals including power-line noise

and baseline wandering, b shows baseline wandering

waveform by median filtering, and c shows ECG signals

without power-line noise and baseline wandering by notch

filtration and a–b, respectively.

2.2.2 R-wave detection and area calculation

Following the removal of 50/60 Hz and baseline noise, R-

waves from both of the type are detected. In this study,

wavelet-based peak detection is used for finding R-waves

[9, 10, 5]. Although a wide variety of wavelets are avail-

able, not all are appropriate for wavelet-based peak

detection. We used the biorthogonal 3.1 wavelet to perform

R-wave detection. Also, multiresolution analysis is useful

for identifying peaks and valleys of noisy signals, and this

method makes wavelet-based peak detection more accurate

and robust than threshold or curve fitting based peak

detection methods.

ECG-derived respiration is based on the notion that the

ECG is modulated by respiration frequency. The modula-

tion is attributable to the change in heart location by

respiration and the relative displacement of skin electrode

based on the heart. There are three conventional signal

Fig. 2 Two electrodes ECG

amplifier outputs through each

type of the conductive textiles

and the adhesive electrodes

simultaneously. a The ECG

signal from adhesive electrodes

in type I. b The ECG signal

from conductive textile in type

I. c The ECG signal from

conductive textile in type III

Fig. 3 Procedure of extracting ECG-derived respiration
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processing methods to extract respiration signals from ECG

in association with window; first, independent lead method

with fixed QRS data window; second, independent lead

method with variable QRS data window; third, dependant

lead method with variable data window [3]. As for the first

one, the window width against lead I and the width against

lead III are independent. In this case, following the

detection of R-and Q-waves at each lead, the fixed length

of the window is determined by doubling the average

length of the Q- and R-waves. As for the second one, Q-,

R- and S- waves are detected by each lead on every

heartbeat, and the length of Q- and S-waves are used as the

width of window. As for the last one, Q-, R- and S-waves

are detected by one of the two leads, and the length of the

Q- and the S-waves are equally applied to the other lead as

variable window width. The work of Mazzanti et al. [19]

proposed automatic optimal lead(s) selection from multiple

lead systems and calculates the EDR-waves from QRS-area

variations. The study tried to integrate the strengths of the

three methods, so fixed QRS data window and dependant

lead method were selected. This method uses the same data

windows for every lead and defines the width of window as

the double of the average length of Q- and R-waves, which

is independent on the length of each QRS complex section.

It is advantageous in that the operation speed is enhanced

and near uniform EDR signals can be extracted at every

ECG lead. Actually, when we use the fixed window, we

can process using average through before and behind beat

if ectopic beat do not occur often during signal acquisition.

However, if irregular premature ventricular contraction

(PVC) occur often, measurement of EDR is impossible.

Once the R-wave detection on each lead is complete,

partial area is calculated using the fixed data window with

the detected R-waves. The slopes of the QRS complexes

are of relatively high frequency, so almost no noise is

included there. Generally, high sensitivity is recommended

for the data window at stable state [21]. Thus, the length of

data window was fixed at 60 ms through empirical trial and

error, and the area closed by the width of the data window

centered the R-waves. The error by a fixed window can

occur but it seldom does during experimentation. After

calculating area within the specified windowed data, those

Fig. 4 Preprocess of the ECG

signal from conductive textile.

a Original ECG signal.

b Extracted baseline waveform.

c Preprocessed ECG signal

eliminated both power-line

noise and baseline wander
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results were rearranged to corresponding R-waves which

we call R-wave time-index. This study did not consider

using the T-wave amplitude for deriving the EDR. Figure 5

shows the details of the process mentioned above.

2.2.3 Moving average and interpolation

When extracting respiration signals, we should consider the

precision of respiration frequency and the clear discrimi-

nation between inspiration and expiration from

reconstructing EDR. A two-point moving average was used

to make such inspiration and expiration re-location by

means of adjusting the maximum and the minimum values.

The calculated area was found using two-point moving

average following the corresponding R-waves were arran-

ged on the time axis. The frequency band of respiration

was generally \1 Hz showing 0.05–0.7 Hz, which indi-

cates that the signal was extremely slow. One cycle of

respiration (one inspiration and expiration) was derived

from ECG corresponding to 4–10 heartbeats. Therefore,

linear interpolation is good in signal reconstruction speed,

but cannot build the waveform similar to real respiration

signal. In order to reconstruct such data, cubic-spline

interpolation was used in the study. If a data set of original

signals, yi = f(xi), i = 0, 1,..., n - 1, the output of the cubic

spline interpolation at a given interval [xi, xi+1], y can be

written as follows:

y ¼ Ayi þ Byi þ 1þ Cy00i þ Dy00i þ 1 ð1Þ

Coefficients A, B, C, and D are as follows:

A ¼ xiþ1 � x

xiþ1 � xi
; B ¼ 1� A;

C ¼ 1

6
A3 � A
� �

xiþ1 � xið Þ2;

D ¼ 1

6
B3 � B
� �

xiþ1 � xið Þ2

ð2Þ

where x should be x0 B x B xn - 1. Signals were interpo-

lated at 360 Hz, which are the same as sampling frequency

of ECG signal and the thoracic belt respiration signal.

Figure 6a–e shows ECG signal with peaks detected, R-

Fig. 5 An example of

procedure for calculating

consecutive windowed ECG

segment centered at R-wave. a
Original ECG including power-

line noise. b Preprocessed ECG

with 60 ms-fixed window

centered at R-wave. c
Arrangement of calculated area

of specified interval to R-wave

time-index
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wave time index arrangement of calculated interval area,

linear interpolation of moving averaged signal, cubic-

spline interpolation of moving averaged signal and respi-

ration signal using thoracic belt, respectively. Actually, a

phase difference exists between the EDR and the thoracic

respiration. However, its difference was small, so this study

did not consider it in correlation calculations.

2.3 Optimal lead selection by Hilbert transform

In terms of EDR extraction, it is obvious that taking arc-

tangent for the ratio of two leads (types in this study) is not

always the best method. Therefore this study had to choose

one as an extraction method among type I, type III, and

arctangent of type I and type III. For this, it was considered

Fig. 6 Representation of each

processed signal for extracting

EDR signal and comparison

with respiration signal using

thoracic belt. a ECG signal with

peaks detected. b R-wave time-

index arrangement of calculated

interval area. c Linear

interpolation of moving

averaged signal. d Cubic-spline

interpolation of moving

averaged signal. e Respiration

signal using thoracic belt
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that respiration signal frequency does not vary unexpect-

edly and the EDR, which is obtained from an inappropriate

lead shows abnormally large frequency variation in con-

trast with an appropriated one. In this study, we propose an

optimal lead selection method, which estimates instanta-

neous frequency by Hilbert transform, considering

respiration signal is of narrow band, and calculates the

variation within a specific section.

This process consists of two parts, preprocessing and

instantaneous frequency estimation by Hilbert transform.

The preprocessing should be conducted since R-waves,

used to calculate the area, reflect respiration and body

movement, and it is necessary to remove very low-fre-

quencies including DC for precise results by Hilbert

transform. In the study, The DC and drift factors were

removed by using fifth polynomial regression.

Hilbert transform was used to get the instantaneous

frequency of the derived respiration signal. Instantaneous

frequency is based on recent time-frequency analysis with

the analytic signal [18]. Most signals in nature consist of

real number parts only. Thus, Hilbert transform is taken to

construct imaginary part as a quadrature phase necessary

for analytic signal. The analytic signal of yi(n), a complex

signal, is expressed as follow:

~yiðnÞ ¼ yiðnÞ þ jŷiðnÞ; for n ¼ 1; . . .;N ð3Þ

where ŷiðnÞ is the Hilbert transform of yi(n). Using a sign

function, the discrete Fourier transform of the analytic

signal is given by

~YðlÞ ¼ 1þ signðlÞ½ �YðlÞ: ð4Þ

Therefore, ~yiðnÞ is obtained by the inverse discrete Fourier

transform, setting the Fourier transform as follow;

~YðlÞ ¼ 0 for l\0
~YðlÞ ¼ 2YðlÞ for l� 0

: ð5Þ

The instantaneous frequency is defined as

fiðnÞ ¼
1

2p
h0iðnÞ; for n ¼ 1; . . .;N ð6Þ

where h0iðnÞ is the first order difference of the instantaneous

phase and hiðnÞ with respect to the local time index. hiðnÞ
is therefore given by

hiðnÞ ¼ tan�1 ŷiðnÞ
yiðnÞ

� �
ð7Þ

The minimum value among the variations, which is stan-

dard deviation (SD), within the instantaneous frequency

section determined by taking Hilbert transform with EDR

signal, was selected as the optimal EDR respiration. Fig-

ure 7 shows EDR signals and variation of the respiration

frequency estimated by using Hilbert transform. Figure 7

indicates that the EDR by type III with small variation of

instantaneous frequency is optimal. Note that the solid line

and dashed line in Fig. 7a, c show EDR signal and thoracic

belt signal, respectively. In order to compensate for the

differing amplitude of heart rate variability among different

subjects, the amplitudes are then normalized [12].

3 Results

The validity of the algorithm was demonstrated by identi-

fying that the correlation between the derived signal selected

by the algorithm and the respiration signal measured by the

thoracic belt method was high compared with others.

Fig. 7 ECG-derived respiration

(EDR) signals and variation of

the respiration frequency

estimated by using Hilbert

transform. All of signals are

normalized. a EDR (solid line)

and thoracic belt (dashed line)

from type I. b Instantaneous

frequency of EDR shown in a. c
EDR (solid line) and thoracic

belt (dashed line) from type III.

d Instantaneous frequency of

EDR shown in c with smaller

variation
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3.1 Evaluation of ECG-derived respiration

In order to evaluate the similarity between EDR signals and

real respiration signals, the correlation coefficient was

calculated by comparing the respiration signals measured

by thoracic belt method, which is widely used for respi-

ration measurement.

Figure 8 compares the EDR signals extracted by each

type (type I and type III) and the thoracic belt respiration

signals as real respiration. Figure 8a is a typical example

that all EDR signals from type I and type III reflect res-

piration well, b is the EDR from type I reflecting

respiration effort better than EDR type III, and c is the

other way around of b.

Table 1 shows respiration rates which were computed

from thoracic belt signals (as a reference), EDR type I and

EDR type III, and also correlation coefficients between

reference respiration signals and each EDR signal with

whole data (about 6 h). In most cases, we can see all EDR

and real respiration signals are almost identical in terms of

respiration rate. This means the intrathoracic impedance

variation caused by respiration effort transfers to the skin

electrode without loss.

In the case of normal ECG as shown in Fig. 8, it was

identified that EDR signal and real respiration signal are

similar to each other, so that the new method is more

sensitive than the conventional one. Moreover, it was also

indentified an apnea signal during sleep (subject D) as

shown in Fig. 9. However, as for subject K, some of the

respiration data was lost because there were many partial

missing beats, where QRS complex section and T-waves

are not available except P-waves, and consequently, pre-

cise respiration signals were not derived.

3.2 Evaluation of optimal type selection algorithm

As shown in Table 1, the difference of respiration rate was

not distinctive regardless of which one was used between

Fig. 8 Typical examples of EDR signal patterns for each case (solid
line EDR, dashed line actual respiration). All of signals are

normalized. a EDR from both type I and type III reflects respiration

effort well. b EDR from type I reflects respiration effort well. c EDR

from type III reflects respiration effort well

Table 1 Quantitative comparison of signals between thoracic belt

method and EDR

Subject Respiration rate/min (bpm) Correlation

coefficient
Thoracic belt method EDR signal

Type I Type III Type I Type III

A 21.2 21.2 21.2 0.93 0.43

B 16.1 16.3 18.4 0.85 0.44

C 16.3 16.3 17.0 0.82 0.27

D 18.2 18.2 22.6 0.92 0.31

E 17.3 17.9 17.3 0.39 0.87

F 12.1 8.4 12.1 0.61 0.83

G 9.9 9.9 8.2 0.91 0.30

H 16.4 16.4 16.4 0.87 0.90

I 15.2 15.2 13.5 0.81 0.57

J 14.6 14.6 9.7 0.80 0.16

K 25.6 23.2 25.6 0.31 0.33

L 12.3 12.3 12.3 0.87 0.80

M 6.2 8.1 6.2 0.30 0.95

N 18.3 11.1 18.3 0.39 0.82

O 17.3 17.3 16.6 0.87 0.83
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type I and type III. Accordingly, there are many difficulties

in selecting optimal signals on frequency domain. As

expected, the frequency analysis based on Hilbert trans-

form made it possible to select EDR signal similar to real

respiration which had remained stable with constant rate in

most subjects. Fig. 10 shows correlation coefficients

between thoracic belt signals and EDR signals and standard

deviations of variations of instantaneous frequency for

each EDR.

In most cases, it was found that the instantaneous fre-

quency variation is small if the correlation coefficient,

between the respiration signals directly measured and the

derived respiration signals, is high. Therefore, the EDR

derived by the proposed algorithm was proved to be suit-

able for respiration signal extraction. If conventional

method only (no selecting lead) is used, high-correlative

respiration signal could not always be obtained. To put it

clearly, lead selection by instantaneous frequency estima-

tion based on Hilbert transform can give more significant

signal than conventional method. However, as for subject

K mentioned above, it failed to detect a proper lead, which

would derive the optimal respiration signals due to the

distortion of the derived respiration signals caused by the

abnormal ECG.

4 Discussion

The purpose of the study is to improve the existing method

for extracting ECG-derived respiration signal and develop

a new algorithm which shows excellent performance under

varying conditions by which instantaneous frequency

estimation based on Hilbert transform automatically selects

the appropriate signal among the extracted respiration

signals from each type of configuration on conductive

textiles. In order to improve the ECG-derived respiration

signals, we modified the conventional method with multi-

ple leads. Compared to the previous studies on EDR

extraction methods, the EDR extracted by single-lead has

been underestimated. To put it in another way, this study

can obtain respiration signals with better characteristics by

single-lead depending on subject. According to the cur-

rently reported study on EDR extraction, the conventional

method, which calculates the area of QRS complex and

takes arctangent for the ratio between them, provided lead I

and III meet at right angles, was still used. However, leads

I and III are not actually orthogonal (a VF meeting lead I at

right angles) and arctangent product does not always mean

the optimal EDR since the location of the heart is different

for each subject. Additionally, the respiration modulation is

dependent on the respiration pattern of the subject. As for

thoracic respiration, the respiration modulation is active in

ECG lead I, while the respiration modulation is distinctive

in ECG lead III as for abdominal respiration. Thus, we

have to choose the optimal derived respiration based on

quantitative method. Besides, using a fixed QRS data

window, dependent lead method and operating the moving

average of the results, clear discrimination between inspi-

ration and expiration could be achieved.

The proposed algorithm was applied to the ECG signals

from 15 subjects and then, the respiration signals were

measured on bed in home environment. According to the

results, EDR signals showed over a correlation of more

than 0.8 with actual respiration signals from thoracic belt.

Based on this, the algorithm was implemented; in detail,

instantaneous frequency estimation based on Hilbert

transform automatically selects the appropriate respiration

signal among the extracted signals by means of selecting

the minimum value among the deviations of instantaneous

frequency variation. It was found that the deviation of

instantaneous frequency was lowest in EDR signals with

high-correlation with real respiration signals, and the

validity of this algorithm was identified. The algorithm was

tested with 15 subjects and complete respiration signals

were obtained from 14 subjects.

Since there is no extra sensor and no hardware required

for ECG-derived respiration extraction, it is a useful

method for long-term home monitoring of sleep, and fur-

ther makes it possible to measure respiration signals as well

as ECG and heart rate variation using a Holter ECG

machine. However, the EDR signals are thoroughly

dependant on ECG, so that specific ECG caused by a

certain disease can disturb the precise ECG-derived respi-

ration extraction. In the case of a partial dropped beat, for

example, the respiration data at the defects was not

obtained, and consequently, precise reconstruction of res-

piration signals failed. The problem can probably be solved

Fig. 9 A case that an apnea occurred during sleep (solid line EDR,

dashed line actual respiration). Those of signals are normalized

156 Med Bio Eng Comput (2008) 46:147–158

123



by inserting an average template value into the defects and

more studies on this should be conducted.

5 Conclusion

In this work we proposed an improved algorithm, which

can extract EDR better than the conventional method and

automatically select the optimal derived respiration signal

in two different types of conductive textile positioning.

EDR signals by proposed algorithm showed a high-corre-

lation with actual respiration signals. We considered that

this study shall be useful in fields of home healthcare.
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