
BIOINFORMATICS ORIGINAL PAPER Vol. 21 no. 7 2005, pages 1203–1210
doi:10.1093/bioinformatics/bti127

Systems biology

An improved algorithm for stoichiometric network
analysis: theory and applications
R. Urbanczik∗ and C. Wagner∗
Institute of Pharmacology, University of Bern, Friedbuehlstrasse 49, CH-3010 Bern, Switzerland

Received on August 23, 2004; revised on October 11, 2004; accepted on October 20, 2004

Advance Access publication November 11, 2004

ABSTRACT
Motivation: Genome scale analysis of the metabolic network of a
microorganism is a major challenge in bioinformatics. The combinat-
orial explosion, which occurs during the construction of elementary
fluxes (non-redundant pathways) requires sophisticated and efficient
algorithms to tackle the problem.
Results: Mathematically, the calculation of elementary fluxes
amounts to characterizing the space of solutions to a mixed system of
linear equalities, given by the stoichiometry matrix, and linear inequal-
ities, arising from the irreversibility of some or all of the reactions
in the network. Previous approaches to this problem have iteratively
solved for the equalities while satisfying the inequalities throughout
the process. In an extension of previous work, here we consider
the complementary approach and derive an algorithm which satis-
fies the inequalities one by one while staying in the space of solution
of the equality constraints. Benchmarks on different subnetworks of
the central carbon metabolism of Escherichia coli show that this new
approach yields a significant reduction in the execution time of the
calculation. This reduction arises since the odds that an intermediate
elementary flux already fulfills an additional inequality are larger than
when having to satisfy an additional equality constraint.
Availability: The code is available upon request.
Supplementary information: Pseudo code and a Mathematica
implementation of the algorithm is on the OUP server.
Contact: robert.urbanczik@pki.unibe.ch; clemens.wagner@pki.
unibe.ch

1 INTRODUCTION
Due to recent advances in genomics the reconstruction of metabolic
networks of microorganisms has become feasible. This rebuilding
task can be solved using biochemical knowledge and information
from genetic databases. However, the analysis of such large-scale
systems remains a major challenge in computational biology.

Metabolic networks are assumed to operate in the steady state, so
that no accumulation of species occur in the system. The station-
ary state condition allows for detecting routes in the system, which
are inherently coupled due to the stoichiometric constraints. These
so-called elementary fluxes represent non-redundant subnetworks
of the system, which either properly connect inputs to outputs or
represent internal cycles.

The convex analysis of biochemical networks was founded in the
seminal paper by Clarke (1980). Although his main focus was on
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the stability of systems, in this work he outlined the theoretical basis
of the stoichiometric network analysis. In the biochemical systems
he considered, all reactions are unidirectional by splitting revers-
ible reactions into forward and reverse velocities. In this case all
admissible steady states of the system form a convex cone in the
semi-positive orthant of the flow space. The normalized generat-
ing vectors of this current cone, which lie on its edges, are named
extremal currents. These extremal currents have the property that
they are as simple as possible. However, the determination of simple
routes in chemical networks does not require the semi-positivity con-
dition. As shown in Schuster et al. (2002) reversible reactions can
also be taken into account and the dimension of the space of flows
need not be augmented artificially as in Clarke’s approach. There-
fore, simple pathways can also contain negative entries when the
flow of a reaction runs against its initially assumed direction. But
these simple fluxes do not necessarily lie on the edges of the flux
cone and were thus called elementary. Thus, extremal currents and
elementary fluxes are in general elements of different vector spaces
(except when all reactions are irreversible).

Several different algorithms have been proposed to determine the
extremal currents of a chemical reaction systems (Clarke, 1980;
Happel and Sellers, 1982; von Hohenbalken et al., 1987). However,
large-scale systems meet the problem of combinatorial explosion and
these methods are not applicable to metabolic networks of micro-
organisms. Recently, Schuster et al. (2002) presented an algorithm,
which can be applied to larger systems. In the irreversible case the
method has a simple geometrical interpretation since each row of
the stoichiometry matrix represents a hyperplane and the mutual
intersection of these hyperplanes, which divide the semi-positive
orthant, shapes the cone of the system. One starts with the edges of
the semi-positive orthant and after processing a hyperplane three sets
of intersection points are obtained—first, points that lie in the interior
of the current cone, second, points on the edges of the final cone and,
third, points that are on an edge now but will be chopped off when
cutting with the next hyperplane. The achievement of Schuster et al.
(Schuster and Hoefer, 1991; Heinrich and Schuster, 1996; Schuster
et al., 2002) was to infer simple rules to eliminate the first set of
points which also work in the presence of reversible reactions. This
reduces the computational expenditure and makes the elementary
flux analysis of large networks feasible.

The convex analysis of metabolic networks has found interesting
applications in biotechnology. (Edwards and Palsson, 2000) recon-
structed the major part of the metabolic map of Escherichia coli.
They determined the feasible metabolic states of the in silico system
and used a target function to optimize growth. In an experiment
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performed in parallel the bacterium indeed undergoes adaptive
evolution to achieve the predicted growth (Ibarra et al., 2002). In
a different study, Stelling et al. (2002) investigated the central car-
bon metabolism of wild-type and mutated E.coli and calculated the
elementary fluxes for subnetworks utilizing representative substrates
(acetate, succinate, glycerol, glucose). Based on this, they determ-
ined in silico the survival rate when a set of enzymes is knocked out
and verified it in the bacterium. In the majority of cases the computa-
tional and the experimental outcome coincides nicely. Extending this
work, in Klamt and Stelling (2002) it was also possible to determine
the elementary fluxes when the subnetworks were combined by using
a reduced stoichiometry matrix of 31 species and 51 reactions. This
calculation, however, required approximately 50 h computing time.
Therefore, more efficient algorithms are needed in order to process
complete networks of higher organisms.

We have recently presented an algorithm, which determines the
elementary fluxes via a linear combination of null-space basis vec-
tors of the stoichiometry matrix (Wagner, 2004). Since all of the flows
considered by this method already lie in the intersection of all hyper-
planes, this has the advantage that the computation is performed in
a proper subspace of the whole space of flows. We exploited the
special representation of the null-space matrix, which can be always
put into the form that the identity matrix appears in the lower part.
Starting with the basis vectors, the current polytope is then obtained,
from linear combinations of pairs of fluxes which cancel at least
one flow.

In contrast to this earlier phenomenological work, we here present
a mathematically rigorous analysis of this approach. Further, the
analysis shows that one does not have to wait till the very end of
the calculation with enforcing the irreversibility constraints, but that
these can be used to prune the set of possible solution during the
course of the iteration. This results in an exponential reduction in
both the space and time complexity of the procedure. In order to
demonstrate the benefits of the new algorithm we benchmark it on
some of the networks used in the above mentioned previous study
(Klamt and Stelling, 2002).

Our analysis builds on quite a few basic properties of elementary
fluxes and their relationship to polyhedral cones. While some of these
have already been established before (Schuster et al., 2002; Wagner,
2004), to keep the presentation self-contained, we shall start from
scratch, formally stating even simple properties as mathematical
propositions—proofs to all proposition are given in the Appendix. To
make the technical presentation starting with Section 3 more access-
ible, the next section gives a rough sketch of the basic strategies used
in Schuster’s and in the new null-space algorithm.

2 TWO STRATEGIES
In a metabolic network linking m species by n reactions with the
stoichiometry given via the m by n matrix N , a flow x through
the reactions changes the concentration of the species by Nx. In a
steady state, there can be no accumulation of species, so Nx = 0,
and, further, the flow xi through any irreversible reaction i must be
positive. We assume that nr of the n reactions are reversible and that
they come first in the numbering of the reactions. So any steady-
state flux has to satisfy the following system of linear equalities and
inequalities:

Nx = 0 and xi ≥ 0 for i = nr + 1, . . . , n. (1)

The set of solutions of the system is a cone which is invariant under
elementary operations on the rows of N. Using such operations N
can be transformed into a matrix where the first d ≤ m rows are
linearly independent and the remaining rows vanish. In the sequel,
we assume that this simplification of the problem has already been
carried out, so d = m and, in particular, N is of full rank.

The goal of stoichiometric network analysis is to gain a complete
overview over the possible steady-state behavior, by computing a
small generating set for the solutions of Equation (1). For nr > 0
there are different notions of what a suitable generating set is and
we shall discuss some of these in the next section. In this section,
to focus on the main ideas, we shall assume nr = 0 since in this
case the notions are equivalent and coincide with standard ideas of
convex analysis. A generating set E is obtained by picking one non-
zero vector from each edge, i.e. one-dimensional face, of the cone
of solutions. Then, any solution of (1) is a linear combination of
vectors in E with non-negative scalar coefficients, and such linear
combinations always yield solutions of (1).

To compute this generating set, we denote by Ni , i = 1, . . . , m,
the row vectors of N. For m′ ≤ m then consider the system

x ≥ 0 and Nix = 0 for i = 1, . . . , m′. (2)

For m′ = m the system is equivalent to (1) since we have assumed
nr = 0. But it is very simple to find a generating set for (2) if m′ = 0.
Then the vectors of the standard basis of R

n lie on the edges of the
cone x ≥ 0. So all one has do is to figure out a way to compute
the edges of the m′ + 1 case from those of the m′ problem. Now, as
a simple consequence of standard dimension arguments in convex
analysis (Rockafellar, 1970) one finds that:

(a) Any edge vector x of the m′ problem which happens to satisfy
the new constraint Nm′+1x = 0 lies on an edge of the m′ + 1
problem.

(b) Any other edge of the m′+1 problem can be written as a linear
combination of two edges of the m′ problem.

Hence, to obtain the new edges for m′ + 1 we have to consider all
pairs of old edges and check whether a vector x ≥ 0 which is a linear
combination of the pair can satisfy Nm′+1x = 0. In this manner, we
obtain a list of candidates, and any new edge is found among this
list. However, the list will also contain many vectors which do not lie
on an edge of the m′ + 1 problem. So one has to separate the wheat
from the chaff, and quite a few approaches to this task have been
discussed in the literature (von Hohenbalken et al., 1987; Schuster
et al., 2002).

The algorithm sketched above exploits the fact that (1) is trivial if
one first ignores the equality constraints. Starting with such a solu-
tion, we then satisfy the equality constraints one by one. But (1) is
also trivial if one ignores the inequality constraints. So we can con-
sider the dual approach of ignoring them first and then satisfying the
inequality constraints one by one.

To this end, let K be a full rank n by n − m matrix satisfying
NK = 0. Then the vectors of the form Kβ, with β ∈ R

n−m are the
solution of the system Nx = 0. Hence, we consider the system of
inequalities

Kβ ≥ 0 , (3)

and the mapping β → Kβ yields a one-to-one correspondence
between the solution of (3) and the solutions of (1).
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The inequalities in (3) become particular simple, if we chose K
such that an n − m by n − m sub-matrix of K is the identity matrix.
For brevity, let us assume that in fact the last n − m rows of K form
this identity matrix. Then the last n − m inequalities in Equation (3)
simply read β ≥ 0. We further denote by Ki , i = 1, . . . , m the first
rows of K and then, similarly to the first approach, for m′ ≤ m, we
study the system

β ≥ 0 and Kiβ ≥ 0 for i = 1, . . . , m′ . (4)

Again, due to the specific form of K, for m′ = m the system is
equivalent to (3) and it is trivial for m′ = 0. In the latter case the
standard basis of R

n−m gives the edges of the cone β ≥ 0. For
the induction step, similarly to the primal approach, any edge of the
m′-problem which satisfies the new constraint Km′+1β ≥ 0 is a new
edge. The other edges of the m′ + 1 cone are linear combinations of
two edges of the old problem. Again, in calculating these new edges
from pairs of old edges we have to separate the wheat from the chaff
and one will expect that the approaches used in the primal problem
can be adapted to the present situation.

3 ELEMENTARY FLUXES
We now turn to the general case that some reactions can be reversible,
nr ≥ 0, and first introduce a name for the set of solutions of the system
(1) by defining

F(N, nr) = {
x ∈ R

c(N) | Nx = 0 and xj ≥ 0 if j > nr
}

,

where c(N) denotes the number of columns of N. Of course c(N)

just equals n here. But we will also use matrices of different shapes
later on.

An x ∈ F(N, nr) will be called reversible iff xj = 0 for j>nr , in
this case also −x ∈ F(N, nr). We shall often need to consider the set
of zeroes of a vector x and set S(x) = {j | xj = 0}. We shall say that
a non-zero vector y is simpler than a vector x of same dimensionality
if and only if S(y) ⊃ S(x).

We are now in a position to introduce the basic concept: a non-zero
vector x ∈ F(N, nr) is elementary in F(N, nr) if and only if there is
no simpler vector in F(N, nr), i.e. there is no y ∈ F(N, nr)/{0} with
S(y) ⊃ S(x). We shall often use phrases such as ‘x is elementary’ or
‘x is an elementary flux’ when the cone we are referring to is obvious
from the context.

Many important properties of elementary fluxes derive from the
following two simple propositions.

Proposition 1. If a non-zero x ∈ F(N, nr) is not elementary, we
can find simpler vectors y, z ∈ F(N, nr) such that x = y + z.

Proposition 2. Assume that x is elementary and Ny = 0 for some
vector y ∈ R

n/{0}. Then S(x) ⊆ S(y) implies x = λy.

As a corollary to Proposition 2 we obtain that elementary fluxes
are characterized by their zero-sets in the following sense.

Proposition 3. If x and y are elementary, S(x) = S(y) implies
x = λy. If, in addition, x is irreversible, λ > 0.

As a consequence of Propostion 1 any non-elementary x ∈
F(N, nr)/{0} can be decomposed as a sum of elementary elements
yk with S(x) ⊂ S(yk). Hence, in the case nr = 0 the elementary
fluxes lie on the edges of the cone F(N, 0).

Due to the above decomposition property, elementary fluxes can be
used to construct generating sets for F(N, nr). We shall call a subset
E of F(N, nr) an elementary cover of F(N, nr), if and only if

(a) For any elementary x there is a y in E with x = λy, and λ is
positive for irreversible x.

(b) If y1 and y2 are different elements of E: S(y1) 
⊆ S(y2).

While according to the above definition F(N, nr) can have more than
one elementary cover any two covers are of course closely related.
If E′ is also an elementary cover, then x ∈ E′ implies that a multiple
λx of x lies in E and, in particular, E′ and E have the same number
of elements.

It is important to note that one can sensibly define more parsimo-
nious descriptions of F(N, nr) than an elementary cover. We shall
call a subset G of F(N, nr) an generating set if

F(N, nr) =



∑
y∈G

λyy | λy ≥ 0 if y is irreversible


 .

While an elementary cover obviously is a generating set, it will in
general not be the smallest generating set if nr > 0. Indeed, an
advantage of the null-space algorithm presented below is that as an
intermediate result in the computation of an elementary cover, we
find a smallest generating set.

But, as already proven before in a different manner by Schuster
et al. (2002), any non-elementary x ∈ F(N, nr)/{0} can be decom-
posed as a linear combination of the fluxes in an elementary cover
such that each elementary flux occurring in the decomposition is
simpler than x (and the scalar pre-factor is positive if the flux is
irreversible). Hence, the concept of an elementary cover is uniquely
suited to answer some functional questions about biochemical net-
works. For example, assume we want to block reaction j , e.g.
because it produces some undesirable output, but that it is easier
to block reaction i. Now, in the steady state, blocking i will be
tantamount to blocking j if for any x ∈ F(N, nr) the following
conditions holds: xi = 0 implies xj = 0. But having found an ele-
mentary cover it suffices to check whether the condition holds for
all x ∈ E because any other steady state can be decomposed into
simpler elementary fluxes. Of course, in case blocking i is not suf-
ficient to impede j , we can go on to ask whether j is blocked if in
addition to i we block some reaction i ′. Then we just have to check
if xi = x ′

i = 0 implies xj = 0 for all x ∈ E.
To round off this section, we give a simple criterion to check

directly whether a flux is elementary.

Proposition 4. Assume that x ∈ F(N, nr)/{0}. Then x is ele-
mentary if and only if the sub-matrix of N formed by its columns νi

with i 
∈ S(x) is of rank equal to: n − card S(x) − 1.

4 ELEMENTARY FLUXES AND CONE EDGES
If some reactions are reversible the concept of an elementary flux
does not have a simple interpretation in terms of purely geometric
properties of F(N, nr). But, by considering the equivalent system
obtained by treating any reversible reaction as two irreversible ones,
we do arrive at a simple geometric interpretation in an extended
space.

It will be convenient to write N in block form as N = (Nr Nir)

where Nr is the m by nr sub-matrix of reversible reactions and Nir
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represent the irreversible reactions. Likewise we decompose a vector
x in R

n as x = ( xr
xir

)
where of course xr has nr rows. To treat a

reversible reaction as a pair of irreversible ones we set N̂ = (Nr Nir −
Nr) and decompose vectors in R

n+nr as
( xrp

xir
xrn

)
where both xrp and

xrn have nr rows. A solution to the irreversible problem given by
N̂ easily yields a solution to the partly reversible problem given by
(N, nr). Indeed, one immediately sees that the linear mapping

ψ


xrp

xir

xrn


 =

(
xrp − xrn

xir

)
(5)

maps the cone F(N̂, 0) into F(N, nr). On the other hand, by setting

φ

(
xr

xir

)
=


 pos(xr)

xir

pos(−xr)


 with pos(y)i = yi + |yi |

2
(6)

for y ∈ R
nr , we obtain a mapping from F(N, nr) into F(N̂, 0).

Obviously ψ(φ(x)) = x and thus ψ in fact maps F(N̂, 0) onto
F(N, nr).

We now turn to the relationship between the elementary fluxes of
F(N̂, 0), which are just the edges of this cone, and elementary fluxes

F(N, nr). Assume that an x̂ ∈ F(N̂, 0) is of the form x̂ =
(

e
0
e

)
.

Then ψ(x̂) is zero and thus not elementary in F(N , nr). But, if
e has exactly one non-zero entry and if this entry is positive, one

easily sees that x̂ =
(

e
0
e

)
is an elementary flux in F(N̂, 0). We call

such a flux a spurious cycle, since it amounts to running the same
reaction forwards and backwards. The following proposition shows
the elementary fluxes of F(N̂, 0), which are not spurious cycles,
correspond one to one to those of F(N, nr).

Proposition 5. If x is elementary in F(N, nr), φ(x) is elementary
in F(N̂, 0). If x̂ is elementary in F(N̂, 0), �(x̂) is elementary in
F(N, nr) unless x̂ is a spurious cycle.

5 SCHUSTER’S ALGORITHM
Schuster’s algorithm uses as starting point that the standard basis of
R

n is an elementary cover if there are no equality constraints and
then proceeds by satisfying the equality constraints one by one. So,
assume that in addition to being in F(N, nr) a vector x should satisfy
an equality constraint cx = 0 for some n-dimensional row vector c.
We can then define the augmented matrix N+ = ( N

c

)
and in terms of

this matrix say that x should lie in F(N+, nr). The next proposition
shows how to obtain fluxes elementary in F(N+, nr) from those in
F(N, nr).

Proposition 6.

(a) Any x which is elementary in F(N, nr) and happens to lie in
F(N+, nr), is also elementary in F(N+, nr).

(b) If x is elementary in F(N+, nr), we can find y1 and y2, ele-
mentary in F(N, nr), such that x = y1 + y2. Furthermore
S(x) = S(y1) ∩ S(y2).

This proposition provides the theoretical basis of Schuster’s
algorithm for computing elementary covers. Assuming we already
have an elementary cover E of F(N, nr) we basically have to do
the following to find a cover E+ of F(N+, nr). Considering all pairs

(y1, y2) of elements of E, check if there is a ty1,y2 , non-negative if
y2 is irreversible, such that c(y1 + ty1,y2y2) = 0. From all such pairs

construct the list Ẽ+ of the y1 + ty1,y2y2. If for any z1 in Ẽ+ there is

a z2 with S(z1) ⊆ S(z2), remove z1 from Ẽ+. The finally resulting
E+ is an elementary cover of F(N+, nr).

There are few embellishments to this basic procedure. First note
that in principle Proposition 4 allows us to check directly if a flux
in Ẽ+ is elementary. Now, calculating the rank of the sub-matrix
needed for the test is computationally too expensive to be useful.
But we know that a z ∈ Ẽ+ must fail this test if z has too many non-
zero elements. In particular, if card S(z) < n − m − 2, z cannot be
elementary in F(N+, nr). This yields a simple way to weed out many
of the candidates before carrying out the above subset tests. While
pre-screening the candidates in this manner is not part of the original
version of Schuster’s algorithm, the benchmark results given below
indicate that this can substantially reduce the number of candidates
which have to be considered further. In any case, the computational
overhead of this simple inspection of the single candidates is negli-
gible compared to the quadratic cost entailed by checking whether
S(z1) ⊆ S(z2) holds for any pair.

A second point is that the floating point operations needed to
compute y1 + ty1,y2y2 are quite time consuming. But, in check-
ing for being elementary, we just need S(y1 + ty1,y2y2). Obviously
S(y1 + ty1,y2y2) ⊇ S(y1) ∩ S(y2) and from Proposition 6 we know
that this relation holds as an equality if y1+ty1,y2y2 is indeed element-
ary. But this means that, for the purpose of carrying out the above
tests, we may simply assume that S(y1 + ty1,y2y2) = S(y1) ∩ S(y2)

because we can only err on the safe side: any non-elementary vec-
tor in Ẽ+ will be removed a fortiori, and such a vector will never
erroneously cause an elementary flux to be deleted from Ẽ+. By vir-
tualizing the generation of candidates in this manner, we just have
to compute y1 + ty1,y2y2 if this yields a new elementary flux. For
all the other candidates one only has to calculate set intersections,
which can be efficiently implemented by using packed bitmaps.

6 THE NULL-SPACE ALGORITHM
As in the introduction, let K be a kernel matrix of N, i.e. K is an n

by n − m matrix of full rank with NK = 0. Let Kj , j = 1, . . . , n be
the row vectors of K.

With K and nr we can associate the cone

C(K, nr) ={
β ∈ R

c(K) | Kj β ≥ 0, for j = nr + 1, . . . , r(K)
}

where r(K) and c(K) denote the number of rows and, respectively,
columns of K, here n and n − m.

Since the mapping β → Kβ yields a bijection from C(K, nr)

onto F(N, nr) we call C(K, nr) a coordinate system for F(N, nr).
The mapping is also a bijection of the edges of C(K, nr) onto the
edges of F(N, nr) and, if nr = 0 the latter are just the elementary
fluxes. Unfortunately for nr > 0 one cannot determine if Kβ is an
elementary flux by inspecting the location of β in C(K, nr).

We are thus forced to introduce the following somewhat round-
about definition: β ∈ R

n−m is an elementary coordinate w.r.t. (K, nr)

if Kβ is elementary in F(N, nr). Note that this definition does indeed
make sense, because for any regular m by n matrix with N′K = 0, we
have F(N′, nr) = F(N, nr). Also, if β is an elementary coordinate
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w.r.t. (K, nr), this does indeed mean that β is an element of C(K, nr).
Further, we shall call a row vector Kl irreversible if l > nr .

Now consider augmenting K by a irreversible row vector k+ and
let K+ be the n + 1 by n − m matrix K+ = ( K

k+
)
. The following

two propositions then deal with the transition from the (K, nr) to the
(K+, nr) system.

Proposition 7. If β ∈ C(K+, nr) is elementary w.r.t to (K, nr) it
is also elementary w.r.t. (K+, nr).

Proposition 8. Assume that β is an elementary coordinate w.r.t to
(K+, nr) but not an elementary coordinate w.r.t. to (K, nr). Then:

(a) k+β = 0.

(b) β = β1 + β2, where β1 and β2 are elementary coordinates
w.r.t to (K, nr). Further S(Kβ) = S(Kβ1) ∩ S(Kβ2).

We next deal with adding a reversible row vector, so consider the

matrix K∗ =
(

k∗
K

)
obtained by prepending a row k∗ to K. We are

now interested in the transition from the (K, nr) to the (K∗, nr + 1)

system. Note that while C(K∗, nr + 1) = C(K, nr), a coordinate
elementary w.r.t. (K∗, nr + 1) may not be elementary w.r.t. (K, nr).
Nevertheless, the following two propositions describing how to go
from (K, nr) to (K∗, nr + 1) are very similar to the above statements
(Propositions 7 and 8) for the (K, nr) to (K+, nr) transition.

Proposition 9. If β is elementary w.r.t to (K, nr) it is also
elementary w.r.t. (K∗, nr + 1).

Proposition 10. Assume that β is an elementary coordinate w.r.t
to (K∗, nr + 1) but not an elementary coordinate w.r.t. to (K, nr).
Then:

(a) k∗β = 0.

(b) β = β1 + β2, where β1 and β2 are elementary coordinates
w.r.t to (K, nr). Further S(Kβ) = S(Kβ1) ∩ S(Kβ2).

The preceeding analysis provides us with an alternative algorithm
to calculate the elementary cover of F(N, nr).

In analogy to our previous definitions, we call a set of elementary
coordinates E an elementary cover w.r.t to (K, nr), if KE is an ele-
mentary cover of F(N, nr). We shall assume that the kernel matrix K
is such that for a subset of rows with indices j1, . . . , jn−m the matrix
K0 = (Kj1 , . . . , Kjn−m

) is the identity matrix. This can always be
achieved by elementary operations on the columns of K which do
not change the image of K.

Our starting point is an elementary cover E for (K0, u0) where u0

is the number of reversible rows in K0, i.e. the number of indices
jl ≤ nr . Since K0 is the identity matrix, the vectors of the standard
basis of R

n−m can simply be used for E. We next augment K0 by a
new row from K, obtaining the system (K1, u1) where u1 = u0 + 1,
if the new row is reversible, and u1 = u0 if it is reversible. Using
Propositions 7–10 we pick the appropriate elements of E and linear
combinations of two of these elements to obtain a candidate set Ẽ,
such that a subset of Ẽ forms an elementary cover w.r.t (K1, u). Thus
all we need to do to obtain this cover is to weed out the redundant
coordinates in Ẽ. Again, this can be done by removing from Ẽ, one
after another, any β for which S(K1α) ⊆ S(K1β) for some α in
Ẽ/{β}. Having thus obtained an elementary cover for (K1, u1), we
can add further rows by re-applying the above prescription until we
have a cover for (K, nr).

Note that essentially the same embellishments to the basic loop of
this procedure are possible as in Schuster’s algorithm. We can pre-
check that card S(Kiβ) is sufficiently large for a candidate β and,
based on Propositions 8 and 10, we can also virtualize the generation
of candidates.

The main difference between this procedure and the early version
presented in Wagner (2004) is that now just the cover of F(N, nr) is
computed. In cases where nr < m, and these seem to be the norm for
metabolic networks, the early version first found a cover of F(N, m)

and then removed fluxes which violate one of the p = m − nr irre-
versibility constraints to obtain a cover of F(N, nr). Generically, one
will expect the cover of F(N, m) to be larger than the one of F(N, nr)

by a factor of some 2p , with the corresponding performance penalty.
Other differences include: (a) The intermediate elementarity tests
are more strict since at the i-th stage they operate on the n − m + i

dimensional vectors Kiβ instead of the final Kβ. (b) The virtualiza-
tion of the candidate generation. (c) Pre-checking that card S(Kiβ)

is sufficiently large.

7 PERFORMANCE COMPARISON
While the main purpose of this section is to compare the performance
of the two algorithms, a few words on the choice of representation
of the problem are in order. For Schuster’s algorithm, while the final
cover is invariant to elementary operation on the rows of N, this
is not true for the intermediate covers generated by the algorithm.
Hence, we first transform N to a matrix N′ such that a permutation
of N′ is in row-reduced echelon form. This will tend to increase the
number of zeroes in the matrix and help to reduce the size of the inter-
mediate covers. Also, we chose the permutation such that the number
of zeroes per row of N′ decreases with the row number, since this
helps to keep the intermediate covers small in the initial stages of the
algorithm.

For null-space, we choose K such that a permutation of KT is
in row-reduced echelon form. The permutation is chosen such that
as many rows as possible of the diagonal sub-matrix of K are irre-
versible, and we process any remaining irreversible rows before the
reversible ones. Then, on the one hand, the intermediate cover we
obtain after having processed all of the irreversible rows, yields the
coordinates of a minimal generating set of F(N, nr). On the other
hand, when processing a reversible row the size of the intermediate
cover cannot decrease. So, when processing the reversible rows in
the last iterations of the algorithm, we know that the intermediate
covers we are generating are not larger than the final cover.

It is important to note that the above considerations do not uniquely
define the representation. Hence, the observed performance of the
algorithms will still depend on trivia such as the numbering of
the reactions but it seems difficult to remove this arbitrariness in
a sensible way.

We benchmarked the algorithms on the central carbon metabolism
of E.coli and on three sub-networks thereof. The reduced stoi-
chiometry matrices used are the ones described in more detail in
Klamt and Stelling (2002). They consist of 45–51 reactions, 18 of
which are reversible, involving 29–30 metabolites.

The comparison of computation times, summarized in Figure 1,
show that null-space is by a substantial factor faster than Schuster’s
algorithm. There is even indication in the plot that this factor might
increase somewhat with the size of the final cover, but this could be
just accidental.
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Fig. 1. Double logarithmic plot of the execution time of the two algorithms
versus the final cover size, showing an approximately quadratic increase of
the former with the latter. The upper curve is for Schuster’s algorithm; the
lower one for null-space. The four networks (in order of increasing cover
size) are: succinate, glycerol, glucose and E.coli. The algorithms are basically
implemented in Matlab but the operations on the packed bitmaps were written
in C. The computation times are for our workstation with a 2.66 GHz P4 CPU
and 1 GB of RAM. The values for our implementation of Schuster’s algorithm
are compatible with the ones reported in Klamt and Stelling (2002). Inset:
Performance of null-space when the algorithm is just computing a minimal
generating set. The CPU time (s) is plotted against the size of the minimal
generating set for, in this order, succinate, glycerol, glucose and E.coli.

Succinate Glycerol Glucose E. coli

103
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Fig. 2. Logarithmic bar chart showing the sum of the sizes of the intermediate
covers generated by the two algorithms. The white bars are for Schuster’s
algorithm; the grey bars for null-space.

There does not seem to be one single factor quantitatively explain-
ing the observed differences in computation time. In some cases, the
intermediate covers generated by Schuster’s algorithm are larger, as
shown in Figure 2. Indeed, for the glycerol and glucose networks
the last intermediate cover computed by Schuster’s algorithm is lar-
ger than the final one. This cannot happen for null-space since, in
the final stages, we are processing reversible rows. But even when
there is only a small difference in the sizes of the intermediate cov-
ers, there is a marked difference in the way these are generated. As
shown in Figure 3, Schuster’s algorithm consistently generates more
candidates than null-space. This is rather intuitive since Schuster’s
algorithm at each iteration will keep fewer vectors from the old
cover, testing for an equality and not an inequality, and thus, as also
shown in Figure 3, has to compute more replacements. For the three
subnetworks the differences in the number of generated candidates

Succinate Glycerol Glucose E. coli

104

106

108

1010

Fig. 3. Logarithmic bar chart showing the number of candidates generated by
the two algorithms. The white bars are for Schuster’s algorithm; the grey bars
for null-space. The outermost bars refer to the total number of candidates. The
middle bars show the number of candidates which pass the test for sufficiently
many zeroes. The innermost bars give the number of candidates passing all
test which are at some point added to a new cover.

seem sufficient to account for the difference in computation time
observed in Figure 1. However, for the entire network E.coli this
difference is smaller, albeit still marked. While even in this case
null-space generates only half as many candidates than Schuster’s
algorithm, another factor is also at work: For null-space, a smal-
ler fraction of candidates pass the simple test for sufficiently many
zeroes and have to be checked by the more involved subset tests
(cf. Fig. 3).

8 DISCUSSION
We have presented the null-space algorithm to calculate elementary
fluxes of a chemical reaction system together with a rigorous math-
ematical derivation of this procedure. Benchmark results show that
our procedure is faster, upto 20 times, than Schuster’s algorithm,
which to date has been the state of the art approach to this problem.

Our basic idea is to sculpt a simplex spanned by basis vectors of the
null-space by intersecting it with half-spaces to satisfy the irrevers-
ibility constraints. This is in contrast to previous approaches which
work in the full space of flows and intersect the unit simplex in
this space with hyperplanes to satisfy the stoichiometric constraints.
Compared to these, the null-space approach has the advantage of
reducing the dimensionality of the problem from the outset. Further,
when intersecting with a hyperplane as in Schuster’s procedure, the
space spanned by the surviving points generically is of only zero
measure in the space spanned by the original points. But typically,
this will not be the case when intersecting with a half-space. Thus
one will expect far more points to be retained from one iteration to
the next in the null-space algorithm than in Schuster’s procedure. In
the presence of reversible reactions this advantage is even greater,
since then for null-space all elements of the old cover become part of
the new cover. Since both algorithms need m iterations and the size
of the final cover is the same, the fact that null-space retains more ele-
ments should result in fewer candidates being generated and thus in
a faster computation. The results of the previous section confirm this
expectation and show that the reduction in the number of candidates
qualitatively explains the observed speedup.

But even when using null-space, for the most complex network
we considered the computational demands are substantial due to the
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unavoidable fact that there are very many fluxes in the final ele-
mentary cover. In contrast to this, as shown in the inset of Figure 1,
just computing a generating set is computationally trivial even in
the worst case we studied. Hence, when attempting to extend this
style of analysis to genome scale networks, one will have to care-
fully consider whether the exhaustive description provided by an
elementary cover is really needed or if one can make do with
the more parsimonious description of the flux cone provided by a
generating set.
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APPENDIX
Proof of Proposition 1. Since x is not elementary there is a sim-

pler ỹ ∈ F(N, nr). We are done if we can find a t > 0 such that:
z = x − t ỹ is in F(N, nr) and S(z) ⊃ S(x).

Case 1: ỹ is irreversible. For t choose the minimal value in
{xi/ỹi | i > nr , ỹi > 0}.

Case 2: ỹ is reversible. For t choose the minimal positive value
in {xi/ỹi | i ≤ nr , ỹi 
= 0}. If there is no positive value,
replace ỹ with −ỹ.

Proof of Proposition 2. Because S(x) ⊆ S(y), a linear combina-
tion x+ty is in F(N , nr) even for non-zero t as long as t is sufficiently
small. Also, we can find a t with the property xj + tyj = 0 for
some j /∈ S(x). If, in addition, t is of minimal magnitude with this
property we have x + ty ∈ F(N , nr) and S(x) ⊂ S(x + ty). Since
x is elementary, x + ty = 0 and the rest is obvious.

Proof of Proposition 3. Direct consequence of Proposition 2.

Proof of Proposition 4. A direct consequence of Proposition 2 is
that for x ∈ F(N, nr) the following two statements are equivalent.

I. x is elementary.

II. The set of solutions y of the linear system of equations Ny =
0, S(y) ⊇ S(x) is a one-dimensional space.

Now, statement II is obviously equivalent to the rank condition
given in the proposition.

Proof of Proposition 5. We first set:

F̃nr (N)

= {x̂ ∈ F(N̂, 0) | x̂i x̂i+c(N) = 0 for i = 1, . . . , nr}. (7)

Now φ(F (N, nr)) = F̃nr (N) and for x̂ ∈ F̃nr (N) we have φ(ψ(x̂)) =
x̂. Furthermore, any elementary flux of F(N̂, 0) which is not a
spurious cycle must lie in F̃nr (N).

Hence Proposition 5 is equivalent to the statement: x is elementary
in F(N, nr) if and only if φ(x) is elementary in F(N̂, 0). This state-
ment is a direct consequence of Proposition 4 because the matrices
involved in the rank test for x and φ(x) are—up to sign changes of
the columns—the same.

Proof of Proposition 6. (a) This is obvious. For (b), first note that
we are done if x is elementary in F(N, nr). Otherwise, decompose
x as x = ∑

k ỹk , with all ỹk elementary in F(N, nr) and simpler
than x. The ỹk cannot lie in F(N+, nr) because x is elementary in
F(N+, nr), thus tk = cỹk 
= 0, for all k. Because the tk have to
sum to zero since cx = 0, we can find i, j such that ti tj < 0.
Now set x̃ = |ti |yj + |tj |yi . So cx̃ = 0 and x̃ is in F(N+, nr). By
construction S(x̃) ⊇ S(x) and since x is elementary in F(N+, nr),
we have S(x̃) = S(x). So λx̃ = x, proving the first part of 5b.

We still need to show that S(x) = S(y1) ∩ S(y2). Otherwise,
there is an index i ≤ nr with y1

i = −y2
i 
= 0. We now consider

the equivalent irreversible problem discussed in Proposition 5 and
denote by N̂+ the matrix associated to (N+, nr) in this problem.

For x̂ = φ(y1) + φ(y2) the condition y1
i = −y2

i 
= 0 implies
x̂i = x̂i+n > 0. This means that x̂ does not lie in F̃nr (N̂+), in
contradiction to the fact that x = ψ(x̂) is elementary in F(N+, nr).

Proof of Proposition 7. Consider any α ∈ C(K+, nr) satisfying
S(K+β) ⊆ S(K+α). Then S(Kβ) ⊆ S(Kα) but this inclusion can-
not be strict since β is elementary w.r.t to (K, nr). So S(Kβ) =
S(Kα) and by Proposition 2 this implies that α = λβ and thus
S(K+β) = S(K+α).

Proof of Proposition 8. (a) The premise guarantees the existence
of an α ∈ C(K, nr) with S(Kα) ⊃ S(Kβ) and that S(K+α) 
⊃
S(K+β). Hence k+β = 0.

(b) By decomposing Kβ into elementary fluxes in F(N, nr), we
see that β can be written as β = ∑

l β
l where the βl are elementary

coordinates w.r.t. (K, nr) satisfying S(Kβ) ⊂ S(Kβl). For brevity
we set tl = k+βl . We cannot have t l = 0 even for a single l, because
this would mean S(K+β) ⊂ S(K+βl). However, by the preceeding
proposition k+β = 0, so we can find indices i and j with ti tj < 0.
Then, setting β̃ = |tj |βi + |ti |βj as usual, we have S(K+β) ⊆
S(K+β̃) and this proves the first part of (b).
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We still need to show S(Kβ) = S(Kβ1) ∩ S(Kβ2). Denote by
N+ a full rank m by n + 1 matrix with N+K+ = 0 and by N̂+
the matrix of the irreversible problem associated with (N+, nr). The
analogs for the augmented system to the mappings ψ and φ defined
in Equations (5) and (6) will be denoted by ψ+ and φ+ since they
map forth and back between n + 1 + nr dimensional F(N̂+, 0) and
the n + 1 dimensional F(N+, nr).

Now, assuming S(Kβ) ⊃ S(Kβ1) ∩ S(Kβ2) there is an i with
Kiβ

1 = −Kiβ
2 
= 0, thus φ(Kβ1) + φ(Kβ2) cannot not lie in

F̃nr (N̂), defined in Equation (7). We then also have s = φ+(K+β1)+
φ+(K+β2) 
∈ F̃nr (N̂

+), contradicting the fact that K+β = ψ+(s) is
elementary in F(N+, nr).

Proof of Propositions 9 and 10. The proofs of (9), (10a) as well as
the first part of (10b) are verbatim the same as for the corresponding

statements of the (K, nr) to (K+, nr) transition (Proposition 7 and 8)
if one makes the substitutions: (K+, nr) becomes (K∗, nr + 1), K+
becomes K∗ and k+ becomes k∗.

Also, to prove the second part of (10b), i.e. S(Kβ) = S(Kβ1) ∩
S(Kβ2), we can argue analogously as in Proposition (8): denote by
N∗ a full rank m by n+1 matrix with N∗K∗ = 0 and by N̂∗ the matrix
of the irreversible problem associated with (N∗, nr +1). The analogs
for the augmented system to the mappings defined in Equations (5)
and (6) will be denoted by ψ∗ and φ∗. They map forth and back
between n+2 +nr dimensional F(N̂∗, 0) and the n+1 dimensional
F(N∗, nr + 1).

Again, assuming there is an i with Kiβ
1 = −Kiβ

2 
= 0, implies
φ(Kβ1) + φ(Kβ2) 
∈ F̃nr (N̂). We then also have s = φ∗(K∗β1) +
φ∗(K∗β2) 
∈ F̃nr+1(N̂∗), contradicting the fact that K∗β = ψ∗(s) is
elementary in F(N∗, nr + 1).
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