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Fig. 1. Optical flow for the backyard and mini cooper scene of the Middlebury optical flow bench-

mark. Optical flow captures the dynamics of a scene by estimating the motion of every pixel

between two frames of an image sequence. The displacement of every pixel is shown as displace-

ment vectors on top of the commonly used flow color scheme (see Figure 5).

Abstract. A look at the Middlebury optical flow benchmark [5] reveals that

nowadays variational methods yield the most accurate optical flow fields between

two image frames. In this work we propose an improvement variant of the original

duality based TV-L1 optical flow algorithm in [31] and provide implementation

details. This formulation can preserve discontinuities in the flow field by employ-

ing total variation (TV) regularization. Furthermore, it offers robustness against

outliers by applying the robust L1 norm in the data fidelity term.

Our contributions are as follows. First, we propose to perform a structure-texture

decomposition of the input images to get rid of violations in the optical flow

constraint due to illumination changes. Second, we propose to integrate a median

filter into the numerical scheme to further increase the robustness to sampling

artefacts in the image data. We experimentally show that very precise and robust

estimation of optical flow can be achieved with a variational approach in real-

time. The numerical scheme and the implementation are described in a detailed

way, which enables reimplementation of this high-end method.
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1 Introduction

The recovery of motion from images (see Figure 1) is a major task of biological and

artificial vision systems. The objective of optical flow methods is to compute a flow field

representing the motion of pixels in two consecutive image frames. Since optical flow

is an highly ill-posed inverse problem, using pure intensity-based constraints results in

an under-determined system of equations, which is known as the aperture problem. In

order to solve this problem some kind of regularization is needed to obtain physically

meaningful displacement fields.

In their seminal work [18], Horn and Schunck studied a variational formulation of

the optical flow problem.

min
u

{∫

Ω

|∇u1|2 + |∇u2|2 dΩ + λ

∫

Ω

(I1(x + u(x)) − I0(x))
2
dΩ

}

. (1)

Here, I0 and I1 is the image pair, u = (u1(x), u2(x))T is the two-dimensional dis-

placement field and λ is a free parameter. The first term (regularization term) penalizes

high variations in u to obtain smooth displacement fields. The second term (data term)

is also known as the optical flow constraint. It assumes, that the intensity values of I0(x)
do not change during its motion to I1(x+u(x)). The free parameter λ weighs between

the data fidelity term and the regularization force. Generally speaking, u registers the

pixels of the source image I0 onto the pixels of the target image I1.

Since the Horn-Schunck model penalizes deviations in a quadratic way, it has two

major limitations. It does not allow for discontinuities in the displacement field, and

it does not handle outliers in the data term robustly. To overcome these limitations,

several models including robust error norms and higher order data terms have been pro-

posed. Since discontinuities in the optical flow appear often in conjunction with high

image gradients, several authors replace the homogeneous regularization in the Horn-

Schunck model with an anisotropic diffusion approach [21, 29]. Others substitute the

squared penalty functions in the Horn-Schunck model with more robust variants. Black

and Anandan [7] apply estimators from robust statistics and obtain a robust and dis-

continuity preserving formulation for the optical flow energy. Aubert et al. [3] analyze

energy functionals for optical flow incorporating an L1 data fidelity term and a general

class of discontinuity preserving regularization forces. Papenberg et al. [22] employ a

differentiable approximation of the TV (resp. L1) norm and formulate a nested iteration

scheme to compute the displacement field.

Most approaches for optical flow computation replace the nonlinear intensity profile

I1(x + u(x)) by a first order Taylor approximation to linearize the problem locally.

Since such approximation is only valid for small displacements, additional techniques

are required to determine the optical flow correctly for large displacements. Scale-space

approaches [1] and coarse-to-fine warping (e.g. [2, 19, 9]) provide solutions to optical

flow estimation with large displacements.

In several applications, such as autonomous robot navigation, it is necessary to cal-

culate displacement fields in real-time. Real-time optical flow techniques typically con-

sider only the data fidelity term to generate displacement fields [12, 25]. One of the

first variational approaches to compute the optical flow in real-time was presented by
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Bruhn et al. [10, 11]. In their work a highly efficient multi-grid approach is employed

to obtain real-time or near real-time performance. The aim of their approach is very

similar to our objective: obtaining robust and discontinuity preserving solutions for op-

tical flow with highly efficient implementations. Nevertheless, we utilize a completely

different solution strategy, namely a duality based TV-L1 optical flow algorithm intro-

duced in [31]. In the following section, we reproduce this approach before we present

some improvements to increase the robustness and flow accuracy.

2 TV-L1 Optical Flow [31]

In the basic setting two image frames I0 and I1 : (Ω ⊆ R
2) → R are given. The objec-

tive is to find the disparity map u : Ω → R
2, which minimizes an image-based error

criterion together with a regularization force. In this work we focus on the plain inten-

sity difference between pixels as the image similarity score. Hence, the target disparity

map u is the minimizer of
∫

Ω

{

λφ (I0(x) − I1(x + u(x))) + ψ(u,∇u, . . .)
}

dx, (2)

where φ (I0(x) − I1(x + u(x))) is the image data fidelity, and ψ(u,∇u, . . .) depicts

the regularization term. The parameter λ weighs between the data fidelity and the regu-

larization force. Selecting φ(x) = x2 and ψ(∇u) = |∇u|2 results in the Horn-Schunck

model [18].

The choice of φ(x) = |x| and ψ(∇u) = |∇u| yields to the following functional

consisting of an L1 data penalty term and total variation regularization:

E =

∫

Ω

{

λ|I0(x) − I1(x + u(x))| + |∇u|
}

dx. (3)

Although Eq. 3 seems to be simple, it offers computational difficulties. The main reason

is that both, the regularization term and the data term, are not continuously differen-

tiable. One approach is to replace φ(x) = |x| and ψ(∇u) = |∇u| with differentiable

approximations, φε(x
2) =

√
x2 + ε2 and ψε(∇u) =

√

|∇u|2 + ε2, and to apply a nu-

merical optimization technique on this slightly modified functional (e.g. [15, 9]).

In [13] Chambolle proposed an efficient and exact numerical scheme to solve the

Rudin-Osher-Fatemi energy [23] for total variation based image denoising. In the fol-

lowing we show how this approach was adopted in [31] to the optical flow case, yielding

a different approach to solve Eq. 3.

2.1 The 1D Stereo Case

In this section we restrict the disparities to be non-zero only in the horizontal direction,

e.g. a normalized stereo image pair is provided. Hence, u(x) reduces to a scalar u(x),
and we use the (sloppy) notation x+u(x) for x+(u(x), 0)T . The following derivation

is based on [4], but adapted to the stereo/optical flow setting. At first, we linearize image

I1 near x + u0, i.e.

I1(x + u) = I1(x + u0) + (u− u0) I
x
1 (x + u0),
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where u0 is a given disparity map and Ix
1 is the derivative of the image intensity I1

wrt. the x-direction. Using the first order Taylor approximation for I1 means, that the

following procedure needs to be embedded into an iterative warping approach to com-

pensate for image nonlinearities. Additionally, a multi-level approach is employed to

allow large disparities between the images.

For fixed u0 and using the linear approximation for I1, the TV-L1 functional (Eq. 3)

now reads as:

E =

∫

Ω

{

λ|u Ix
1 + I1(x + u0) − u0 I

x
1 − I0| + |∇u|

}

dx. (4)

In the following, we denote the current residual I1(x + u0) + (u − u0) I
x
1 − I0 by

ρ(u, u0,x) (or just ρ(u) by omitting the explicit dependency on u0 and x). Moreover,

we introduce an auxiliary variable v and propose to minimize the following convex

approximation of Eq. 4:

Eθ =

∫

Ω

{

|∇u| + 1

2θ
(u− v)2 + λ|ρ(v)|

}

dx , (5)

where θ is a small constant, such that v is a close approximation of u. This convex

minimization problem can be optimized by alternating steps updating either u or v in

every iteration:

1. For v being fixed, solve

min
u

∫

Ω

{

|∇u| + 1

2θ
(u− v)2

}

dx. (6)

This is the total variation based image denoising model of Rudin, Osher and Fatemi [23].
2. For u being fixed, solve

min
v

∫

Ω

{
1

2θ
(u− v)2 + λ |ρ(v)|

}

dx. (7)

This minimization problem can be solved point-wise, since it does not depend on

spatial derivatives of v.

An efficient solution for the first step (Eq. 6) is based on gradient descent and sub-

sequent re-projection using the dual-ROF model [14]. It is based on a dual formulation

of Eq. 6 and yields a globally convergent iterative scheme. Since this algorithm is an

essential part of our method, we reproduce the relevant results from [14]:

Proposition 1 The solution of Eq. (6) is given by

u = v + θ div p. (8)

The dual variable p = [p1, p2] is defined iteratively by

p̃n+1 = p +
τ

θ
(∇ (v + θ div pn)) and (9)

pn+1 =
p̃n+1

max
{
1, |p̃n+1|

} (10)

where p 0 = 0 and the time step τ ≤ 1/4.
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Proposition 2 The solution of the minimization task in Eq. 7 is given by the following

thresholding step:

v = u+







λ θ Ix
1 if ρ(u) < −λ θ (Ix

1 )2

−λ θ Ix
1 if ρ(u) > λθ (Ix

1 )2

−ρ(u)/Ix
1 if |ρ(u)| ≤ λ θ (Ix

1 )2.
(11)

This means, that the image residual ρ(v) is allowed to vanish, if the required step from

u to v is sufficiently small. Otherwise, v makes a bounded step from u, such that the

magnitude of the residual decreases. The proposition above can be shown directly by

analyzing the three possible cases, ρ(v) > 0 (inducing v = u − λ θ Ix
1 ), ρ(v) < 0

(v = u+ λ θ Ix
1 ) and ρ(v) = 0 (v = u− ρ(u)/Ix

1 ).

2.2 Generalization to Higher Dimensions

In this section we extend the method introduced in the previous section to optical flow

estimation, i.e. a N -dimensional displacement map u is determined from two given N -

D images I0 and I1. The first order image residual ρ(u,u0,x) wrt. a given disparity

map u0 is now I1(x+u0)+ 〈∇I1, u−u0〉− I0(x). Additionally, we write ud for the

d-th component of u (d ∈ {1, . . . , N}).

The generalization of Eq. 5 to more dimensions is the following energy:

Eθ =

∫

Ω

{
∑

d

|∇ud| +
∑

d

1

2θ
(ud − vd)

2 + λ|ρ(v)|
}

dx. (12)

Similar to the stereo setting, minimizing this energy can be performed by alternating

optimization steps:

1. For every d and fixed vd, solve

min
ud

∫

Ω

{

|∇ud| +
1

2θ
(ud − vd)

2

}

dx. (13)

This minimization problem is identical to Eq. 6 and can be solved by the same

procedure. Note, that the dual variables are introduced for every dimension, e.g.

Eq. 8 now reads as

ud = vd − θ div pd. (14)

2. For u being fixed, solve

min
v

∑

d

1

2θ
(ud − vd)

2 + λ |ρ(v)| . (15)

The following proposition generalizes the thresholding step from Proposition 2 to higher

dimensions:
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Proposition 3 The solution of the minimization task in Eq. 15 is given by the following

thresholding step:

v = u +







λ θ∇I1 if ρ(u) < −λ θ |∇I1|2
−λ θ∇I1 if ρ(u) > λθ |∇I1|2
−ρ(u)∇I1/|∇I1|2 if |ρ(u)| ≤ λ θ |∇I1|2.

(16)

This proposition essentially states, that the N -dimensional optimization problem can

be reduced to a one-dimensional thresholding step, since v always lies on the line l⊥

going through u with direction ∇I1 (for every x). This can be seen as follows: The first

part in Eq. 15,
∑

d(ud − vd)
2/2θ, is basically the squared distance of v to u, and the

second part, λ |ρ(v)|, is the unsigned distance to the line l : ρ(w) = 0, i.e. I1(x+u0)+
〈∇I1, w−u0〉−I0(x) = 0. If we consider all vµ with a fixed distance µ to u, then the

functional in Eq. 15 is minimized for the vµ closest to the line l (with minimal normal

distance). This is also valid for the true minimizer, hence the optimum for Eq. 15 is

on l⊥. In addition, the one-dimensional thresholding step in gradient direction can be

applied (Proposition 2), resulting in the presented scheme.

3 Increasing Robustness to Illumination Changes

The image data fidelity term φ (I0(x) − I1(x + u(x))) states that the intensity values

of I0(x) do not change during its motion to I1(x + u(x)). For many sequences this

constraint is violated due to sensor noise, illumination changes, reflections, and shad-

ows. Thus, real scenes generally show artifacts that violate the optical flow constraint.

Figure 2 shows an example, where the ground truth flow is used to register two images

from the Middlebury optical flow benchmark data base [5]. Although the two images

are registered at the best using the ground truth flow, the intensity difference image

between the source image and the registered target image reveals the violations of the

optical flow constraint. Some of these regions, showing artifacts of shadow and shading

reflections, are marked by blue circles in the intensity difference image.

(a) Source (b) Target (c) Difference image

Fig. 2. The source and target images of the rubber-whale sequence in the Middlebury optical flow

benchmark have been registered using the ground truth optical flow. Still, intensity value differ-

ences are visible due to sensor noise, reflections, and shadows. The intensity difference image

is encoded from white (no intensity value difference) to black (10% intensity value difference).

Pixels which are visible in a single image due to occlusion are shown in white.
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A physical model of brightness changes was presented in [17], where brightness

change and motion is estimated simultaneous; shading artefacts however have not been

addressed. In [30] and [20] the authors used photometric invariants to cope with bright-

ness changes, which requires color images. A common approach in literature to tackle

illumination changes is to use image gradients besides, or instead of, the plain image

intensity values in the data term [9]. This implies that multiple data fidelity terms have

to be used and images are differentiated twice, which is known to be noisy.

Here we propose a structure-texture decomposition similar to the approach used

in [26] to model the intensity value artifacts due to shading reflections and shadows.

The basic idea behind this splitting technique is that an image can be regarded as a

composition of a structural part, corresponding to the main large objects in the image,

and a textural part, containing fine scale-details [4]. See Figure 3 for an example of

such a structure-texture decomposition, also known as cartoon-texture decomposition.

The expectation is, that shadows show up only in the structural part which includes the

main large objects.

(a) Original (b) Structure part (c) Texture part

Fig. 3. The original image is decomposed into a structural part, corresponding to the main large

objects in the image, and a textural part, containing fine-scale details. All images are scaled into

the same intensity value range after decomposition.

The structure-texture decomposition is accomplished using the total variation based

image denoising model of Rudin, Osher and Fatemi [23]. For the intensity value image

I(x), the structural part is given as the solution of

min
IS

∫

Ω

{

|∇IS | +
1

2θ
(IS − I)2

}

dx. (17)

The textural part IT (x) is then computed as the difference between the original image

and its denoised version, IT (x) = I(x)−IS(x). Figure 4 shows the intensity difference

images between the source image and the registered target image using the ground truth

flow for the original image and its decomposed parts. For most parts the artifacts due

to shadow and shading reflections show up in the original image and the structural part.

The intensity value difference using the textural part, which contains fine-scale details,

is noisier than the intensity value difference in the structural part. These intensity value

differences are mainly due to sensor noise and sampling artifacts while shadow and

shading reflection artifacts have been almost completely removed. This is best visible

in the area of the punched hole of the rotated D-shaped object.



8 A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers

(a) Original (b) Structure part (c) Texture part

Fig. 4. Intensity difference images between the source image and the registered target image using

ground truth optical flow for the original image and its structure-texture decomposed versions

(intensity coding as in Figure 2). Note the presence of shading reflection and shadow artifacts in

the original image and in the structure image.

This observation leads to the assumption that the computation of optical flow using

the textural part of the image is not perturbed by shadow and shading reflection artifacts,

which cover large image regions. To prove this assumption experimentally, we use a

blended version of the textural part, IT (α,x) = I(x)−αIS(x), as input for the optical

flow computation. Figure 5 shows the accuracy for optical flow computation using a

fixed parameter set and varying the blending factor α. The plot reveals that for larger

values of α the accuracy of the optical flow is 30% better than using a small value

for α. This confirms the assumption that removing large perturbations due to shadow

and shading reflections yields better optical flow estimates. In the experiments we set

α = 0.95 and compute the image decomposition as follows:

The original source and target images are scaled into the range [−1, 1] before com-

puting the structure part. We use λROF = 0.125 and 100 iterations of the re-projection

step presented in Proposition 1 to solve Eq. (17). In the CPU implementation, the result-

ing source and target texture images are also equivalently scaled into the range [−1, 1]
prior to optical flow computation.

Fig. 5. The plot shows the optical flow accuracy, measured as the average end point error, using

different α values for the blending of the textural part of the image (same image pair as Figure 3).

The improvement using the textural part for the optical flow computation becomes visible.
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4 Implementation

This section gives details on the employed numerical procedure and on the implemen-

tation for the proposed TV-L1 optical flow approach. Although the discussion in Sec-

tion 2.2 is valid for any image dimension N ≥ 2, the discussion in this Section is

specifically tailored for the case N = 2.

4.1 Numerical Scheme

The generally non-convex energy functional for optical flow (Eq. 3) becomes a con-

vex minimization problem after linearization of the image intensities (Eq. 4). But this

linearization is only valid for small displacements. Hence, the energy minimization pro-

cedure is embedded into a coarse-to-fine approach to avoid convergence to unfavorable

local minima. We employ image pyramids with a down-sampling factor of 2 for this

purpose. The resulting numerical scheme is summarized in Algorithm 1.

Input: Two intensity images I0 and I1

Output: Flow field u from I0 to I1

Preprocess the input images; (Sec. 3)

for L = 0 to max level do

Calculate restricted pyramid images LI0 and LI1;

end

Initialize L
u = 0, L

p = 0, and L = max level;

while L ≥ 0 do

for W = 0 to max warps do

Re-sample coefficients of ρ using LI0, LI1, and L
u; (Warping)

for Out = 0 to max outer iterations do

Solve for L
v via thresholding; (Eq. 16)

for In = 0 to max inner iterations do

Perform one iteration step to solve for L
u; (Prop. 1)

end

Median filter L
u;

end

end

if L > 0 then

Prolongate L
u and L

p to next pyramid level L − 1;

end

end

Algorithm 1: Numerical scheme of the TV-L1 optical flow. In the numerical

scheme, a super-scripted L denotes the pyramid level.
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Beginning with the coarsest level, we solve Eq. 3 at each level of the pyramid and

propagate the solution to the next finer level. This solution is further used to compute

the coefficients of the linear residual function ρ by sampling I0 and I1 using the cor-

responding pyramid levels. Thus, the warping step for I1 takes place every time, the

solution is propagated across pyramid levels. We use additional warps on each level

to get more accurate results. Avoiding poor local minima is not the only advantage of

the coarse-to-fine approach. It turns out, that the filling-in process induced by the regu-

larization occurring in texture-less region is substantially accelerated by a hierarchical

scheme as well. In the following subsections the single steps of the numerical scheme

are outlined and implementation details are provided.

4.2 Pyramid Restriction and Prolongation

The pyramid restriction and prolongation operations for image intensities, flow vectors,

and the dual variable p are quite different. While gray values can simply be averaged,

flow vectors need to be scaled with the scaling factor between the pyramid levels to

yield valid displacement vectors on every pyramid level. In our case we employ image

pyramids with a down-sampling factor of 2.

The restriction operator, which is used for the intensity images is a combination of

a low pass 5 × 5 binomial filter and subsequent down-sampling [24]. That is, odd rows

and columns are removed from the image (note, that such procedure does require the

size of the input image to be a power of 2 times the size of the lowest resolved image).

The mask used is

1

16









1
4
6
4
1









× 1

16

[
1 4 6 4 1

]
=

1

256









1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1









. (18)

The prolongation operator up-samples the image, that is, inserts odd zero rows and

columns, and then applies the 5 × 5 binomial filter multiplied by 4 to it. Here we have

to differentiate between up-sampling of flow vectors u, which have to be multiplied by

a factor of 2 and up-sampling of the dual variable p.

The dual variable p is not multiplied by a factor. Instead, Dirichlet boundary con-

ditions are enforced by first setting the border of the dual variable to 0 and then up-

sampling the dual variable.

4.3 Outer Iteraion: Re-sampling the Data Term Coefficients via Warping

Similarly to the 1D stereo case (Sec. 2.1), the image I1 is linearized using the first order

Taylor approximation near x + u0, where u0 is a given optical flow map:

I1(x + u) = I1(x + u0) + (u + u0)∇I1(x + u0) . (19)

The data fidelity term ρ(u) now reads

ρ(u) = u∇I1(x + u0) + I1(x + u0) − u0∇I1(x + u0) − I0(x)
︸ ︷︷ ︸

c

, (20)
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where the right part, denoted by c, is independent of u, and hence fixed. We use bi-cubic

look-up to calculate the intensity value I1(x + u0) and the derivatives of I1 (bi-linear

lookup on the GPU). The derivatives on the input images are approximated using the

five-point stencil 1

12

[
−1 8 0 −8 1

]
. If the bi-cubic look-up falls onto or outside the

original image boundary, a value of 0 is returned.

Assuming that u0 is a good approximation for u, the optical flow constraint states

that I0(x) ≈ I1(x + u0). Taking this further onto image derivatives, we obtain that

∇I0(x) is a good approximation for ∇I1(x + u0). Note, that replacing ∇I1(x + u0)
with ∇I0(x) implies that no bi-cubic look-up for the image gradients has to be em-

ployed and the computation time can be sped up. However, it turns out that using

blended versions of the derivatives larger flow vectors can be matched and hence better

results are achieved. Figure 6 shows the accuracy for blended versions of the derivative

∇I = (1 − β)∇I1(x + u0) + β∇I0(x) keeping all other parameters fix. Values for β
around 0.5 show the best results in terms of optical flow accuracy. This can be explained

by the fact that both images contribute to the gradient, increasing the redundancy. In our

experiments we use a fixed value of β = 0.4 . A similar approach has been proposed

for symmetric KLT tracking by Birchfield in [6].

Fig. 6. The plot shows the optical flow accuracy, measured as the average end point error, using

different β values for the blending of the gradients from image I0 and I1 (same image pair

as Figure 3). The improvement using a blended version of the gradients for the optical flow

computation becomes visible.

4.4 Inner Iteration: Minimization Procedure of u and v

Within every outer iteration (Proposition 3 followed by Proposition 1), a given num-

ber of fixed-point scheme steps (inner iterations) are perfomed to update all pd (and

therefore u, Proposition 1), followed by a median filtering of u.

The implementation of Proposition 1 uses backward differences to approximate

div p and forward differences for the numerical gradient computation in order to have

mutually adjoint operators [13].

The discrete version of the forward difference gradient (∇u)i,j = ((∇u)1i,j , (∇u)2i,j)
at pixel position (i, j) for a data field of width N and height M is defined as

(∇u)1i,j =

{
ui+1,j − ui,j if i < N
0 if i = N

(21)
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and

(∇u)2i,j =

{
ui,j+1 − ui,j if j < M
0 if j = M

. (22)

The discrete version of the backward differences divergence operator is

(div p)i,j =







p1
i,j − p1

i−1,j if 1 < i < N
p1

i,j if i = 1
−p1

i−1,j if i = N
+







p2
i,j − p2

i,j−1 if 1 < j < M
p2

i,j if j = 1
−p2

i,j−1 if j = M
. (23)

The iterative re-projection scheme to update u using the a quadratic coupling term

with v essentially assumes the differences between v and u to be Gaussian. After up-

dating u, we still find that the solution contains outliers. With the median filtering of

u we discard these outliers successfully. The median filter employed is a 3 × 3 median

filter, which can be efficiently implemented [16].

4.5 Acceleration by Graphics Processing Units

Numerical methods working on regular grids, e.g. rectangular image domains, can be

effectively accelerated by modern graphics processing units (GPUs). We employ the

huge computational power and the parallel processing capabilities of GPUs to obtain a

fully accelerated implementation of our optical flow approach. The GPU-based proce-

dure is essentially a straightforward CUDA implementation of the numerical scheme in

Algorithm 1. We currently use a fixed but tunable number of warps and iterations on

each level in our implementations. Results using both, the CPU version and the GPU-

based optical flow can be found in the next section.

5 Results

In this section we provide three sets of results. The first set quantitatively evaluates the

accuracy increase for the proposed improved optical flow algorithm on the Middlebury

flow benchmark. The benchmark provides a training data set where the ground truth

optical flow is known and an evaluation set used for a comparison against other al-

gorithms in literature. For visualization of the flow vectors we used the color coding

scheme proposed in [5] (See also Figure 5).

Fig. 7. Color coding of the flow vectors: Direction is

coded by hue, length is coded by saturation.
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The second set evaluates real scenes, taken from a moving vehicle. It demonstrates

the performance of the improved optical flow algorithm under different illumination

conditions and under large image motion.

In the third set of results we show optical flow results of our core real-time imple-

mentation (no texture images and no median filter) on a graphics card to evaluate our

algorithm in indoor scenes.

Dimetrodon Grove2 Grove3 Hydrangea RubberWhale Urban2 Urban3 Venus

P
er

fo
rm

a
n

ce

P(GPU) 0.259 0.189 0.757 0.258 0.218 0.652 1.069 0.482

P 0.236 0.190 0.803 0.240 0.302 0.598 0.897 0.486

P-MF(GPU) 0.224 0.173 0.671 0.251 0.183 0.508 0.889 0.433

P-MF 0.202 0.161 0.666 0.236 0.161 0.468 0.679 0.428

P-IT -MF(GPU) 0.186 0.200 0.743 0.186 0.118 0.487 1.026 0.314

P-IT -MF 0.171 0.191 0.730 0.173 0.109 0.390 0.812 0.311

TV-L1-improved 0.190 0.154 0.665 0.147 0.092 0.319 0.630 0.260

Table 1. Evaluation results on the Middlebury training data. The evaluation is splittet into real-

time Performance results and the results of the proposed TV-L1-improved algorithm, employing

additional warps and bi-cubic lookup. The table shows the average end point error of the esti-

mated flow fields. Parameters have been carefully chosen for algorithm comparison (see text for

parameters and run-time).

Algorithm Processor Avg. Accuracy Run-time

P
er

fo
rm

a
n

ce

P(GPU) NVidia R© GeForce R© GTX 285 0.486 0.039 [sec]

P Intel R© CoreTM2 Extreme 3.0GHz 0.468 0.720 [sec]

P-MF(GPU) NVidia R© GeForce R© GTX 285 0.416 0.055 [sec]

P-MF Intel R© CoreTM2 Extreme 3.0GHz 0.375 0.915 [sec]

P-IT -MF(GPU) NVidia R© GeForce R© GTX 285 0.408 0.061 [sec]

P-IT -MF Intel R© CoreTM2 Extreme 3.0GHz 0.361 1.288 [sec]

Table 2. Run-time comparison for the Performance section in Table 1. Using the par-

allel power of a GPU yields performance gain at the cost of accuracy loss. The run-time

is measured on the Grove3 test image (640×480 px).
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5.1 Evaluation on the Middlebury Benchmark

The performance section in Table 1 compares real-time capable implementations for

optical flow. Both, the TV-L1 optical flow algorithm and the image decomposition de-

scribed in Section 3, employ the Rudin-Osher-Fatemi denoising algorithm. This de-

noising step can be efficiently implemented on modern graphics cards, putting up with

small accuracy losses: For parallel processing, the iterative denoising (Proposition 1)

is executed on sub-blocks of the image in parallel, where boundary artifacts may oc-

cur. Hence, high accuracy is exchanged versus run-time performance (see Table 2). The

measured timings do not include the image uploads to video memory and the final vi-

sualization of the obtained displacement field. These times are included in the timings

of the optical flow algorithm for video sequences in Section 5.3.

In all three algorithm settings, P, P-MF, and P-IT -MF, the linearized optical flow

constraints (19) is used as data term. The number of outer iterations is set to one. In the

plain version, algorithm P, 5 inner iterations are used in every warping step. The num-

ber of refinement warps on every pyramid level was set to 25. The parameter settings

are λ = 25 and θ = 0.2. Gray value look-up is bi-linear, as this can be done without

additional costs on modern graphics cards. The image gradient is computed via central

derivatives from the average of both input images.

The P-MF algorithm extends the basic algorithm by an additional Median filter step,

hence 5 iterations of the Proposition 1, followed by a median filter step, are performed

for each warp. The Median filter makes the whole scheme more robust against outliers.

For this reason the influence of the data term, weighted by λ can be increased to λ= 50.
All other parameters are kept fix.

In the third algorithm, P-IT -MF, the textural part of the image is used, as described

in Section 3. Note that for real-time purposes the input images are only scaled into

the range [−1, 1] once, prior to texture extraction, by using the maximum gray value.

For real-time computation the min/max computation in the texture image is quite time-

consuming on a GPU. Again the increase of accuracy at the cost of a longer execution

time can be seen in the quantitative evaluation. It is interesting to note that only the

flow fields for the real scenes within the test set benefit from the image decomposition.

The optical flow for the rendered scenes, Grove and Urban, is actually worse. This is

not surprising as texture-extraction removes some structure information in the images;

such procedure is only beneficial if the images contain illumination artifacts. Because

this is the fact for all natural scenes (which are for obvious reasons more interesting

and challenging), in the remaining experiments the texture-structure decomposition is

performed inherently.

In the settings for the proposed TV-L1-improved algorithm we set the focus on ac-

curacy. For this, we use 35 warps, 5 outer iterations, and 1 inner iteration. We set λ=30
and θ=0.25, and use bi-cubic lookup as well as five-point differences for the gradients.

The result on the test data set are shown in the last row of Table 1. Run-time on the

Grove3 sequence was 3.46 seconds. Figure 8 shows the benchmark results. Currently,

as on October 22nd 2008, there are results of 19 different optical flow algorithms in

the benchmark. Our method outperforms all approaches in terms of angle error and

end point error. Figures 14 and 15 show the obtained results for all eight evaluation

sequences. For most part, the remaining flow errors are due to occlusion artifacts.
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(a) Average angle error on the Middlebury optical flow benchmark.

(b) Average end point error on Middlebury optical flow benchmark.

Fig. 8. Error measurements on the Middlebury optical flow benchmark as on October 22nd 2008.

The proposed method (TV-L1-improved) outperforms other current state-of-the-art methods for

optical flow on the Middlebury optical flow benchmark in both measurement categories, angle

error and end point error.

5.2 Traffic Scenes

The computation of optical flow is important to understand the dynamics of a scene.

We evaluated our optical flow in different scenarios under different illumination condi-

tions (night, day, shadow). Images are taken from a moving vehicle where the camera

monitors the road course ahead.

The first experiment in Figure 9 shows the optical flow computation on an image

sequence with a person running from the right into the driving corridor. Due to illumina-

tion changes in the image (compare the sky region for example) and severe vignetting

artifacts (images intensity decreases circular from the image middle), standard opti-

cal flow computation fails. Using the proposed structure-texture decomposition, a valid

flow estimation is still possible. Note the reflection (note: this is not a shading reflection)

of the moving person on the engine hood which is only visible in the structure-texture

decomposed images. Artifacts due to vignetting and illumination change are not visible

in the structure-texture decomposed images. This demonstrates the increase in robust-

ness for the optical flow computation under illumination changes using the proposed

decomposition of the input images.

A second example in Figure 10 shows a scene at night with reflections on the ground

plane. In the intensity images the scene is very dark and not much structure is visible.

The structure-texture decomposed images reveal much more about the scene. Note,

that this information is also included in the intensity image but most structure in the

original images is visible in the cloud region. The figure shows the optical flow using

the decomposed images. Note the correct flow estimation of the street light on the left

side.
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Fig. 9. Optical flow computation with illumination changes. Due to illumination changes, the op-

tical flow constraint in the two input images (upper left images) is violated and flow computation

on the pixel intensities (left) fails. Using the structure-texture decomposed images (upper right

images), a valid flow estimation is still possible (right side). The optical flow color is saturated

for flow vector length above 15px.

Fig. 10. Computation of optical flow for a night scene. The left images are the original intensity

images. The middle images are the structure-texture decomposed images used for optical flow

computation. The optical flow result is shown on the right, where flow vectors with length above

10px are saturated in the color coding.
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The next two examples demonstrate the accurate optical flow computation for large

displacements. In Figure 11 the image is taken while driving under a bridge on a country

road. Note, that the shadow edge of the bridge is visible in the original images but not

in the decomposed image. The large flow vectors on the reflector post are correctly

matched. Only in the vicinity of the car optical flow is perturbed due to missing texture

on the road surface.

Fig. 11. The scene shows the computation of optical flow with large displacement vectors. The

original input images are shown on the left. The middle images are the blended structure-texture

images. Flow vectors above 20px are color-saturated in the optical flow color image.

Figure 12 shows a scene with shadows on the road. The structure-texture decom-

posed image reveals the structure on the road surface better then the original intensity

images. We have used different scales for the optical flow color scheme to demonstrate

the accuracy of our optical flow algorithm. Although nothing about epipolar geometry

is used in the flow algorithm (as opposed to e. g. [27]), the effect of expansion (and

hence depth) corresponding to flow length becomes visible. Note, that optical flow for

the reflection posts is correctly estimated even for flow length above 8px. Optical flow

is correctly estimated for the road surface up to 30px. The shadows in the scene have

no negative impact on the flow calculation. The engine hood behaves like a mirror and

optical flow on the engine hood is perturbed due to reflections. Although the optical

flow for the engine hood is very much different for flow vectors on the road surface,

this has no negative impact on the estimation of the optical flow for the road surface.

Note the accurate flow discontinuity boundary along the engine hood.
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Fig. 12. Optical flow field for the scene depicted in the upper left with the origi-

nal and structure-texture image. The flow is saturated for flow vector length above

1, 2, 3, 4, 5, 6, 8, 10, 15, 20, 25, 30 pixels from left to right.
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5.3 Real-Time Optical Flow

We provide timing results for our optical flow approach depicted in Table 3. We used

a standard personal computer equipped with a 2.13 GHz Core2-Duo CPU, 2 GB of

main memory and a NVidia GTX280 graphics card. The computer runs a 64-bit Linux

operating system and we used a recent NVidia graphics driver. The timings in Table 3

are given in frames per second for the depicted fixed number of outer iterations on each

level of the image pyramid. We used one warp on each level, the number of fixed point

steps was set to 5. The measured timings include the image uploads to video memory

and the final visualization of the obtained displacement field. The timing results indi-

cate, that real-time performance of 32 frames per second can be achieved at a resolution

of 512 × 512 pixels. Frames from a live video demo application are shown in Figure

13, which continuously reads images from a firewire camera and visualizes the optical

flow for consecutive frames. Note that the entire algorithm (including the building of

the image pyramids) is executed on the GPU. The only part of the host computer is to

upload the images on the GPU. In [11] Bruhn et al. obtained a performance of about

12 frames per second for 160 × 120 images and a variational model very similar to our

TV-L1 model. From this we see that our approach is about 26 times faster. However we

should also note that their approach is computed on the CPU.

Graphics Card: NVidia GTX280

Image resolution 25 Iterations 50 Iterations 100 Iterations

128 × 128 153 81 42

256 × 256 82 44 23

512 × 512 32 17 9

Table 3. Observed frame rates at different image resolutions and with varying number of outer

iterations on our tested hardware.

(a) First frame (b) Second frame (c) Optical flow field

Fig. 13. Captured frames and generated optical flow field using our live video application. The

image resolution is 640 × 480.The performance is about 30 frames per second in this setting.



20 A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers

6 Conclusion and Future Research

We have proposed an improved algorithm for the TV-L1 optical flow method of [31].

We improved the core algorithm using blended versions of the image gradients and a

median filter to reject flow outliers. In this paper, the numerical scheme was outlined

which can efficiently be implemented on either CPUs or modern graphics processing

units. We gave implementation details and showed that the proposed improvements

increase the accuracy of the optical flow estimation.

We additionally proposed to use a blended version of the structure-texture decom-

position, originally proposed for optical flow computation in [26]. The decomposition

of the input image into its structural and textural parts allows to minimize illumination

artifacts due to shadows and shading reflections. We showed that this leads to more

accurate results in the optical flow computation.

Our improved algorithm for TV-L1 optical flow was evaluated on the Middlebury

optical flow benchmark, showing state-of-the-art performance. Our proposed algorithm

is solely based on the image intensities in terms of gray values. Future work includes

the extension of our approach to handle color images as well.

An interesting research area is the extension of the proposed optical flow algorithms

to use multiple data terms. One direct application is the computation of scene flow,

incorporating three data terms [28]. We are currently investigating extensions of the

proposed optical flow method to adopt it to this stereo scene flow case.

The edge preserving nature of total variation can be enhanced, if a suitable weighted

TV-norm/active contour model is applied [8]. Future work will address the incorpora-

tion of such feature for stereo and optical flow estimation.
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Fig. 14. Optical flow results for the army, mequon, schefflera, and wooden sequence of the Mid-

dlebury flow benchmark. The left images show the first input image and the ground truth flow.

The middle image shows the optical flow using the proposed algorithm. The right image shows

the end point error of the flow vector, where black corresponds to large errors.
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Fig. 15. (continued) Optical flow results for the grove, urban, yosemite, and teddy sequence of

the Middlebury flow benchmark. The left images show the first input image and the ground truth

flow. The middle image shows the optical flow using the proposed algorithm. The right image

shows the end point error of the flow vector, where black corresponds to large errors.


