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ABSTRACT The ant colony algorithm (ACA) has been widely used for reducing the dimensionality of

hyperspectral remote sensing imagery. However, the ACA suffers from problems of slow convergence and

of local optima (caused by loss of population diversity). This paper proposes an improved ant colony

algorithm (IMACA) based band selection algorithm (IMACA-BS), to overcome the two shortcomings of

the standard ACA. For the former problem, a pre-filter is applied to improve the heuristic desirability of the

ant colony system; the Pearson’s similarity measurement of the degree of redundancy among the selected

bands is taken as one of the terms in the heuristic function, and this further accelerates the convergence of the

IMACA-BS. For the latter problem, a pseudo-random rule and an adaptive information update strategy are,

respectively, introduced to increase the population diversity of the ant colony system. The effectiveness of

the proposed algorithm was evaluated on three public datasets (Indian Pines, Pavia University and Botswana

datasets), and compared with a series of benchmarks. Experimental results demonstrated that the IMACA-

BS consistently achieved the highest overall classification accuracies and significantly outperformed other

benchmarks over all of the three experiments. The proposed IMACA-BS is, therefore, recommended as an

effective alternative for band selection of hyperspectral imagery.

INDEX TERMS Hyperspectral remotely sensed imagery, band selection, ant colony algorithm, artificial

intelligence.

I. INTRODUCTION

Hyperspectral image (HSI) containing hundreds of spec-

tral bands provides abundant spectral information about

on-ground objects. HSI has broad application prospects in a

wide range of fields, among, inter alia, agriculture, forestry,

environment and ecology. However, themassive bands of HSI

pose a great challenge to data processing and analysis [1],
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approving it for publication was Weiping Ding .

leading to the curse of dimensionality phenomena [2]. It is,

therefore, essential to reduce data dimensions to facilitate

the analysis of hyperspectral data. Feature extraction and

feature selection are two kinds of typical data reduction

techniques [3]. Feature extraction techniques (e.g., principal

components analysis), are developed to compress data by

using complex mathematical transformations. Though these

methods may extract useful features from the HSI data sets,

the interpretable primitive physical significance of the data is

often lost in the data transformation process.
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In recent years, feature selection methods have received

increasing attention in light of their reliable performance

in preserving the primitive physical interpretability of the

original data [4]. These methods aim to select a feature subset

with low redundancy and high relevance to the specific task

(e.g., classification) [5]. In general, feature selection meth-

ods can be categorized into three types: unsupervised, semi-

supervised, and supervised [6]. Unsupervised methods select

feature subsets without the assistance of labeled classes.

However, it is very hard for them to achieve promising results

since they may neglect the possible correlation between dif-

ferent features. Semi-supervised methods utilize labeled and

unlabeled samples to maximize the margin between data

points of different classes, but they rely heavily on the number

of labeled samples [7]. In contrast, supervised methods that

select bands with powerful classification capacity under the

supervision of class labels always achieve promising band

selection results [8]. In this paper, we focus on supervised

feature selection methods.

Generally, supervised feature selection consists of three

types of searching strategies. These are exhaustive searches,

sequential searches, and random searches [9]. Exhaustive

searches (such as branch and bound [10]) enumerate all

the possible combinations of features, which always leads

to an unacceptable high time complexity [11]. Sequen-

tial searches, such as sequential forward selection (SFS),

sequential backward selection (SBS), and sequential float-

ing forward selection (SFFS) [12], are also computationally

intensive as well as increasing the number of selected fea-

tures. In comparison, random searches select features ran-

domly and always deliver promising results with relatively

high efficiency. Recently, nature-inspired random search

algorithms have been widely used for feature selection from

HSI data [13], [14], due to their powerful searching capacity

in a high-dimensional space. These include genetic algo-

rithms (GA) [15], clone selection algorithms (CSA) [16],

particle swarm optimization (PSO) [17], and ant lion

optimizer (ALO) [18].

The ant colony algorithm (ACA) is a typical heuristic

search algorithm inspired by natural biological systems.

It simulates the behaviors of real ants in the process of seek-

ing food. Through the cooperation between individual ants,

ACA has the capacity to solve complicated optimization

problems, such as finding the optimal route to food [19]. The

positive feedback mechanism of ACAmay help an ant colony

find the optimal solutions in a short time. ACA has been

used in the field of image processing, pattern recognition, and

feature selection [20]–[22]. These efforts have demonstrated

the ACA as a potentially effective algorithm to solve complex

optimization problems. Recently, ACA was also applied in

feature selection fromHSI data [20], [23]. Nonetheless, some

studies illustrated that the standard ACA was incapable of

solving the NP-hard feature selection problem due to its two

intrinsic flaws [24]. First, the ACA is often slow to converge

on optimal solutions owing to its random initialization strat-

egy. Second, the population diversity of the ant colony may

decrease significantly during the searching process because

of the strong positive feedback via pheromone trails. These

two issues easily trap the standard ACA on local optima in

the process of feature selection.

In this paper, an improved ant colony algorithm (IMACA)

based band selection algorithm (IMACA-BS) is proposed

to select the optimal band subset from the HSI data sets.

In order to accelerate the convergence of the ant colony

system, a pre-filter is introduced to optimize pheromone

initialization of the ant colony system. Pearson’s similarity,

measuring the degree of redundancy among the selected

bands, is employed in the heuristic function. To maintain

the population diversity of the ant colony, a pseudo-random

rule and an adaptive information update strategy are both

employed in the IMACA-BS. The effectiveness of the pro-

posed IMACA-BS was tested on three types of public HSI

datasets and compared with a series of benchmarks, includ-

ing the ACA based band selection algorithm (ACA-BS),

the genetic algorithm-based band selection algorithm

(GA-BS), the particle swarm optimization-based band selec-

tion algorithm (PSO-BS), the hybridization of GA and PSO

based band selection algorithms (GAPSO-BS), the sequential

forward floating selection-based band selection algorithm

(SFFS-BS), and the newly proposed ant lion optimizer-based

band selection method (ALO-BS) [25].

The key innovations of the proposed method can be sum-

marized as: 1) a novel pre-filter is designed and applied for

the first time to accelerate the convergence of the standard

ACA-BS, and 2) an adaptive information update strategy is

introduced to avoid the ant colony being trapped on local

optima. The paper is organized as follows. Section 2 intro-

duces the proposed IMACA-BS in detail. Section 3 presents

the HSI datasets. The experimental results are provided in

Section 4, followed by a discussion in Section 5. The con-

clusions are drawn in Section 6.

II. METHODS

A. CRITERION FUNCTION

The criterion function evaluating the contribution of each

band to classification accuracy is critical to band selec-

tion algorithms. Due to the possible appearance of singular

covariance, some statistical-based criterion functions

(e.g., Bhattacharya distance, Jeffreys–Matusita distance, and

Divergence) are not suitable for band selection. In prac-

tice, the overall classification accuracy (OA) is therefore

employed as the criterion function in band selection algo-

rithms [26], where the band subsets are selected to maximize

the OA. In this research, the support vector machine (SVM)

that always achieves accurate classification results with a

limited number of training samples, was employed and served

as the criterion function for band selection [27].

B. ACA-BASED BAND SELECTION ALGORITHM (ACA-BS)

In the standard ACA, a fully connected undirected weighted

graph G =< B,E > is used to represent the solution space

of the ant colony, where B = {b1, b2, . . . , bn} indicates the
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FIGURE 1. Flow of band selection based on the ant colony algorithm.

graph nodes (each node represents a band of hyperspectral

image), and E = {(bi, bj),bi, bj ∈ B} denotes the edges of

the graph. The edges traveled by the same ant in one iteration

construct a path. VB = {vb1, vb2, . . . , vbm} (a subset of B)

represents the selected band subset (m < n). The major steps

of the ACA for band selection are illustrated in Figure 1.

First, initialize the control parameters and pheromone of the

ant colony system. Second, release a total of Ps (population

size of the ant colony) ants and randomly allocate them to the

graph nodes; each ant selects a band subset independently by

exploring the nodes in sequence using a transition rule. Third,

when selecting m nodes for each ant, calculate the OA of the

band subsets and select or update the optimal one (with the

best OA). Finally, update the pheromone concentration on the

paths, and continue the iterations until the stopping criterion

is met. Two major operations of the ACA-BS, the transition

rule and the update of pheromone, are elaborated in detail

hereafter.

1) TRANSITION RULE

In the ACA-BS, each ant selects the next node by means

of a roulette wheel selection with the probability pbij
(Equation (1)), which is directly proportional to the

pheromone concentration on the edge (bi, bj) and the heuristic

desirability ηij(t) of the next selected node.

pbij =
τij(t)

αηij(t)
β

∑

j/∈tabuk τij(t)
αηij(t)

β
(1)

where α denotes the rate of information accumulation during

the movement of the ants, and β is the heuristic coefficient;

tabuk represents the tabu list of nodes that have been visited

by the ant k; τij(t) and ηij (t) denote the pheromone concen-

tration and heuristic desirability on the edge (bi, bj) at time t ,

respectively. The heuristic desirability can be calculated as:

ηij (t) = Oij (2)

where Oij is the overall classification accuracy achieved by

SVM with bands i and j.

2) UPDATE OF PHEROMONE

In this study, an ant-quantity system proposed by

Dorigo et al. (1999) was adopted to simulate ants’ secretion

behavior in which the amount Q of pheromone secreted

by each ant is a constant [28]. The pheromone concentra-

tion τij on the edge (bi, bj) will change with the time as

follows:

τij(t + 1) = (1 − ρ)τij(t) +

Ps
∑

k=1

1τ kij (3)

where ρ is a volatility coefficient that controls the volatiliza-

tion rate of the pheromone, and 1τ kij is the newly dropped

pheromone by the ant k on the the edge (bi, bj) which can be

calculated as:

1τ kij = Q×
Oij

Omax
(4)

where Omax denotes the maximum OA provided by the SVM

with band i and one of the other n − 1 bands; Q is a

constant.

C. IMPROVED ANT COLONY ALGORITHM-BASED BAND

SELECTION ALGORITHM (IMACA-BS)

In the IMACA-BS, the pheromone on each path is initialized

according to the heuristic desirability between each pair of

nodes by means of a pre-filter. During the searching pro-

cess, the information between the potential node and all

the selected nodes is applied to guide a search ant to make

a state transition with the pseudo-random rule. As well,

an adaptive information strategy is introduced to avoid leav-

ing pheromone only in certain (rather than all) optimal paths

by the searching ants. before presenting the flowchart of the

proposed IMACA-BS, we first elaborate below the pre-filter

and the searching process of the ant colony.

1) PRE-FILTER

The pheromone on the edge (bi, bj) is initialized according

to the heuristic desirability Oij. The overall accuracies with

band i and one of the other n − 1 bands are calculated, and

the p (a user defined number) bands that produce the highest

OAs with band i are selected and denoted as C (Figure 2).

Note that the value of p can be determined according to

statistical result [29], and it is set as n/2 in this research. The

pheromone on the edges between node (band)i and other

n− 1(j) bands can be calculated as follows:

τij(0) =











Oij

Omax
, j ∈ C

Omin

Omax
, otherwise

(5)

where Oij is the OA of SVM with band i and band j, Omax
and Omin represent the maximum and minimum OA provided

by SVM with band i and one of the other n− 1 bands.
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FIGURE 2. The process of pre-filter.

2) SEARCH PROCESS OF ANT COLONY

When the search ant k arrives at band i, it will make a state

transition according to a pseudo-random rule as follows:

S =

{

argmax{τij (t)
α||ηij (t)

β}, q < q0

pkij (t) , q ≥ q0
(6)

where q is a random number uniformly distributed in [0, 1],

and q0 = 1 − e−1/t (t = 1, 2, . . . ,T , T denotes the number

of maximum iterations); pkij(t) denotes the probability for the

k-th ant to select the node j, which can be calculated as

follows:

pkij(t) =











τij(t)
4αt/Tηij(t)

2βt/T

∑

j/∈Ŵk τij(t)4αt/Tηij(t)2βt/T
, j ∈ C

0, otherwise

(7)

To minimize the redundancy of the selected band subset so

as to improve the global search capacity of the proposed

algorithm, the ηij(t) adopted in the proposed IMACA-BS is

determined according to Pearson’s correlation as follows:

ηj(t)
k =

Oij

1 +
∑

s r(s, j)
, ∀s, i ∈ V k (8)

where V k is the band subset visited by the ant k; r(s, j) is

the Pearson’s correlation between the s-th and j-th bands

calculated as:

r (s, j) =

∑

np
(Rbs − R̄bs)(Rbj − R̄bj )

√

∑

np
(Rbs − R̄bs )

2
√

∑

np
(Rbj − R̄bj )

2
(9)

where Rbs and Rbj denote the reflectance value of bands s

and j, respectively; R̄bs and R̄bj are the mean value of bands s

and j, respectively; np is the total number of pixels of the

hyperspectral imagery.

After all ants (with a number of Ps in total) have selected

m bands, update the pheromone on edges as follows:

τij (t + 1)=















(1 − ρ)×τij (t)+

Ps
∑

k=1

1τ kij , j ∈ C

(1 − ρ)×τij (t) , otherwise

(10)

FIGURE 3. Flow of band selection based on the improved ant colony
algorithm.

where 1τ kij denotes the pheromone increment on the edges

from the ant k for population diversity maintenance, which

can be dynamically calculated as follows:

1τ kij =











(Q×
Oij

Omax
)

2t
T +1

, j ∈ C

0, otherwise

(11)

3) STEPS OF THE IMACA-BS

The flowchart of the proposed IMACA-BS algorithm is

demonstrated in Figure 3, with the major steps being detailed

as follows:

Step 1: Initialize the control parameters of the IMACA-BS,

including Q, ρ, α, β, m, Ps, and the number of maximum

iterations T .

Step 2: For each band i, a pre-filter is employed to initialize

the pheromone according to Eq. (5), and set the evolution

generation t as 0.

Step 3: Place Ps search ants on the nodes and let each

ant randomly select an initial position which is subsequently

added into the corresponding tabu list.

Step 4: Transfer the state of the ant k (k = 1, . . . ,Ps)

from node i to j with the transition probability, until

that the number of elements contained in a solution

reaches m.

Step 5: Calculate the OA with the band subsets and mem-

orize the current optimal band subset.

Step 6: Update the pheromone on the paths using the

adaptive pheromone update strategy defined by Eq. (10).

Continue the iterations by repeating step 3-6 until t is equal

to T .

Step 7: Output the band subset with the best OA.
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TABLE 1. Land cover classes and the number of samples from the Indian
dataset.

TABLE 2. Land cover classes and the number of samples from the Pavia
dataset.

III. DATA SOURCE

In our experiment, three public hyperspectral datasets were

employed to test the performance of the proposed algorithm

(IMACA-BS), including the indian pines, pavia university,

and botswana datasets.

Indian Pines Dataset (INDIAN DATASET): The indian

dataset is gathered by airborne visible/infrared imaging

spectrometer (AVIRIS) sensor. It has a spatial extent

of 145 × 145 pixels with a spatial resolution of 20 m. the

dataset consists of 224 original bands over a spectrum range

of 0.4-2.5µm. a total of 200 bands were reserved after dis-

carding the bands that were adversely influenced by moisture

absorption. there were 16 land use/cover types in the ground

truth (Table 1). the number of training, validation and testing

samples for each of the 16 classes collected from the ground

truth map are shown in Table 1.

Pavia University Dataset (Pavia Dataset): The original

pavia dataset, acquired by the reflective optics system imag-

ing spectrometer (ROSIS) sensor, consists of 115 bands in

the spectral region of 0.43-0.86 µm. the dataset has a spatial

resolution of 1.3 m with a spatial extent of 610 × 340 pixels.

the bands influenced by water absorption were removed, and

there were 103 bands remaining in the dataset. in total nine

land use/cover types were identified (Table 2). the number

of training, validation and testing samples of each class are

shown in Table 2.

Botswana Dataset: The original botswana dataset, col-

lected by the hyperion sensor on EO-1 at a 30m pixel

TABLE 3. Land cover classes and the number of samples from the
Botswana dataset.

resolution, contains 242 bands covering a spectral range

of 0.4-2.5 µm. after the elimination of the uncalibrated and

noisy bands that were seriously influenced by water absorp-

tion, 145 bands were remained. The ground truth of the

dataset contained 14 identified classes (Table 3). the num-

ber of training, validation and testing samples are shown

in Table 3.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. EXPERIMENT SETUP

In this experiment, the effectiveness of the proposed algo-

rithm (IMACA-BS) and benchmark comparators includ-

ing ACA-BS, GA-BS, PSO-BS, GAPSO-BS, ALO-BS, and

SFFS-BS, were investigated on the indian pines, pavia

university, and botswana datasets. With the training and val-

idation samples, the SVM classifier was used for the evalua-

tion of the land-cover/use discrimination ability of the band

subsets. The parameters of SVM were optimized using a

5-fold cross-validation. the band selection algorithms were

coded and executed under the MATLAB environment on a pc

(i.e. an intel (r) core (TM) CPU i5-4460 processor (3.20 GHz)

and 8 GBRAM). Each algorithmwas repeatedly run 10 times

on each dataset, and the average OAs of the band subsets

were calculated for different numbers of bands (5, 10, 15,

20, 25, 30, 35, and 40). The McNemar test was employed

to compare and investigate the difference between the results

of the proposed IMACA-BS and of the benchmarks.

Generally, the parameters of the aca-based band selec-

tion algorithm were set according to previous expe-

rience [30], [31]. The parameters of ACA-BS and

IMACA-BS, including the population size ps, the information

heuristic factor α, the desired heuristic factor β, and the

pheromone evaporation factor ρ, exert a strong effect on the

band selection results [32]. Here α and β are two adjustable

parameters controlling the relative influence of pheromone τij
and heuristic desirability ηij, and ρ determines the pheromone

evaporation rate [33].

The parameters of the ACA-BS and IMACA-BS were

optimized by repeating the experiments 10 times, and

the parameter combinations leading to the highest average

OASwere used for band selection. In the process of parameter
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TABLE 4. Optimized parameters of the ACA-BS and IMACA-BS in the
three experiments.

FIGURE 4. The OA of full-bands and the average OAS with different sizes
(5, 10, 15, 20, 25, 30, 35, 40) of band subsets selected from indian dataset
by IMACA-BS, ACA-BS, GA-BS, PSO-BS, GAPSO-BS, ALO-BS, and SFFS-BS.

optimization, a ‘‘grid search’’ approach was adopted: α and

β varied from 1 to 10 with a step of 1, while ρ varied in

the range of [0.1, 0.9] with a step of 0.1. the optimized

parameter combinations of the ACA-BS and IMACA-BS for

the indian pines, pavia university, and botswana datasets are

listed in Table 4.

B. INDIAN PINES EXPERIMENT

The OA of full-bands and the average OAS of the algorithms

using differently sized band subsets (the number of bands m

varies from 5 to 40) are shown in figure 4. as shown in the

figure, the OAs achieved by the band selection algorithms

showed an overall increased accuracy when more bands were

selected for classification. The proposed IMACA-BS always

achieved the greatest OA, whereas the SFFS-BS generally

presented the least value. The other algorithms achieved

comparable OA values. The highest OA was acquired by the

IMACA-BS, up to 76.99% for the case of m = 40; the sec-

ond highest OA was obtained by the GA-BS excluding the

cases of m = 25 and m = 40. In the cases of m = 40, the

average OAs of GAPSO-BS and ACA-BS surpassed that of

the GA-BS. Similarly, for the case of m = 35, the GA-BS

and PSO-BS achieved higher OAs than the GAPSO-BS

and ALO-BS.

For a more detailed comparison of the algorithms, the aver-

age OA AND per-class accuracy in the case of m = 40

are reported in Table 5, with the best OAs for each class

highlighted in boldface. As illustrated in the table,

FIGURE 5. The OA of full-bands and the average OAS with different sizes
(5, 10, 15, 20, 25, 30, 35, 40) of band subsets selected from pavia dataset
by IMACA-BS, ACA-BS, GA-BS, PSO-BS, GAPSO-BS, ALO-BS, and SFFS-BS,
respectively.

the IMACA-BS outperforms other band selection algorithms

in discriminating complex classes. For instance, the most

difficult to distinguish classes, Corn-mintill (class 5) and

Soybean-clean (class 11) that were often misidentified as

Corn (class 3), were better identified with the band subset

selected by the IMACA-BS.

The mcNemar test was further adopted to analyze whether

there is a significant difference in classification accuracy

between the proposed method and benchmarks. The sig-

nificance testing was carried out between the trials of the

IMACA-BS and that of one benchmark with the same order,

for example, the first trial of the IMACA-BS and GA-BS. the

results (i.e. average p-values) of the significance testing are

presented in Table 5. It can be seen from the table that all of

the average p-values were lower than 0.05, demonstrating that

the IMACA-BS achieved significantly better classification

results in comparison with benchmark comparators.

C. PAVIA UNIVERSITY EXPERIMENT

the classification results of the full-bands and the differently

sized band subsets (m = 5, 10, 15, 20, 25, 30, 35, 40)

chosen by the algorithms are illustrated in Figure 5. In the

case of m = 5, the classification accuracy of the selected

band subsets was inferior to that of the full-bands (90.06%).

The average OA achieved by each band selection method

tended to increase with the increase of the band subset size,

and the proposed IMACA-BS always obtained the best OA.

Specifically, in the case of m = 40, the IMACA-BS achieved

the best classification result, with an average OA of 93.78%.

In most cases, the GAPSO-BS produced the second highest

average OA. The performance of SFFS-BS was very close to

the GAPSO-BS, followed by the PSO-BS and GA-BS. The

least OAs were present by ALO-BS and ACA-BS for the case

of m ≤ 20 and m > 20, respectively. The average OA of

ALO-BS surpassed that of PSO-BS, GA-BS, and ACA-BS

for the case of m = 40.
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TABLE 5. The overall accuracy (%), per-class accuracy (%), Kappa coefficients (K ), and the significance testing results (p-value) between the proposed
method and other algorithms in terms of classification accuracy with the Indian dataset (m = 40); class names are in Table 1.

TABLE 6. The overall accuracy (%), per-class accuracy (%), Kappa coefficients (K ), and the significance testing results (p-value) between the proposed
method and other algorithms in terms of classification accuracy with the Pavia university dataset (m = 40); class names are in Table 2.

To further investigate the effectiveness of the band selec-

tion algorithms, the average per-class classification accuracy

and the corresponding standard deviation with the pavia

dataset are presented in Table 6. As shown by the table,

the IMACA-BS outperforms the benchmarks in terms of land

use/cover class discrimination, especially for the complex

classes. For example, the complicated bare soil (class 2) and

meadows (class 5) were better identified by the IMACA-BS

algorithm. the mcnemar test results were summarized and

shown in Table 6. It can be seen that all of the average p-

values were lower than 0.05, indicating that the IMACA-BS

performed significantly better than other algorithms in terms

of classification accuracy.

D. BOTSWANA EXPERIMENT

The classification accuracy with the full-bands and the dif-

ferently sized (m varies over a range of 5-40) band subsets

achieved by the six algorithms were illustrated in Figure 6.

As shown in the figure, the classification accuracy

(OA = 85.26%) with the full-bands was lower than that

of most band selection algorithms for the cases of m > 5.

The average OA achieved by each band selection algorithm

generally increased with the increase in band subset size.

The proposed IMACA-BS always obtained the best accuracy,

while the GAPSO-BS produced the second-best accuracy for

most of the cases (5 < m ≤ 25). The average OAs of the

GA-BS and PSO-BS were close to each other (except for the

cases of m = 25, and m = 30). In contrast, the average OA

of the ALO-BS was the lowest for the cases ofm ≤ 35. In the

case ofm = 40, the IMACA-BS achieved the highest average

OA (reaching up to 91.32%), whereas the ACA-BS obtained

the lowest (only 89.05%).

The average per-class classification accuracy achieved by

the algorithms is summarized in Table 7. The outperformance

of the IMACA-BS is clearly demonstrated by the classi-

fication accuracy at class-level, especially for the Reeds1
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TABLE 7. The overall accuracy (%), per-class accuracy (%), Kappa coefficients (K ), and the significance testing results (p-value) between the proposed
method and other algorithms in terms of classification accuracy with the Botswana university dataset (m = 40); Class names are in Table 3.

FIGURE 6. The OA of full-bands and the average OAS achieved by the
band subsets with different band sizes (5, 10, 15, 20, 25, 30, 35 and 40)
selected from the botswana dataset by the IMACA-BS, ACA-BS, GA-BS,
PSO-BS, GAPSO-BS, ALO-BS, and SFFS-BS, respectively.

classification (class5) which was often misclassified as

Floodplain grasses2 (class 4) and Riparian (class 6).

With the bands selected by the IMACA-BS, the aver-

age classification accuracy of Reeds1 was improved to

76.58%, about a 3-5% increase compared with those of

benchmarks.

Similar to previous experiments, the significance of the dif-

ference between the proposed IMACA-BS and other bench-

marks was tested using the McNemar test at a significance

level of 0.05. The testing results including average p-values

and the standard deviations are presented in Table 7. It can be

seen from the table that all of the average p-values were lower

than the significance level. The classification results achieved

by the IMACA-BSwere, thus, statistically significantly better

than those by other algorithms.

V. DISCUSSION

Band selection is essential for the effective utilization of heav-

ily redundant bands in hyperspectral images (HSI). How-

ever, band selection from HSI data sets is not a trivial

task, considering the huge solution space. The proposed

IMACA-BS method has proved to be superior to the

meta-heuristic ACA-BS, GA-BS, PSO-BS, GAPSO-BS, and

the traditional SFFS over all three experiments. In the

GA-BS, the cross andmutation operations are randomly oper-

ated on candidate solutions, which leads to very slow conver-

gence [34]. In contrast, the PSO-BS converges rapidly due

to the use of the global optimal solution and personal optima

in the process of population evolution [35]. However, such

an evolving strategy may make the solutions resemble each

other. The particle swarm, thus, cannot explore new promis-

ing areas, and suffers from premature convergence [35]. Sim-

ilarly, the traditional SFFS also tends to become trapped

on local optima because of a lack of global observa-

tion on selected feature subsets. Our experiments illustrate

(Tables 5, 6 and 7) that it is difficult to achieve promising

band selection results with these band selection methods.

Though the ACA possesses advantages over the

above-mentioned algorithms in terms of searching mech-

anism (e.g., strong positive feedback), the ACA suffers

from slow convergence and local optima problems (resulting

from loss of population diversity). Improvements are, thus,

necessary to make the ACA suitable to solve the NP-hard

HSI datasets band selection issue. In this research, a novel

improved ant colony algorithm (IMACA) was proposed

for band selection of HSI data. In comparison with the

standard ACA, the IMACA overcomes the two shortcom-

ings (i.e. slow convergence and local optima problems) of

the standard ACA in solving the complicated HSI band

selection problem. For the former, a pre-filter is adopted

to improve the heuristic desirability of the ant colony sys-

tem by reducing the randomness of the search ants at the
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beginning of the search process. Besides, the similarity

(i.e. the degree of redundancy) of the selected bands

is measured and serves as the heuristic function in the

IMACA-BS, which significantly reduces data redundancy.

Such strategies markedly improve the searching efficiency of

the ant colony, and thus significantly accelerate the conver-

gence of the IMACA-BS. For the latter, a pseudo-random rule

was applied to the IMACA-BS, which enables the paths with

limited pheromone concentration to be selected as candidate

solutions with a certain probability. At the same time, an

adaptive information update strategy is employed to update

the pheromone dynamically, which prevents pheromone on

the potential optimal edges being volatilized. As demon-

strated in our previous work, the computational complexity

of the ACA-BS O(Ps×m × n × T × C0) is lower than that

of other benchmarks (i.e. GA-BS, GAPSO-BS, PSO-BS,

and SFFS-BS) [36]. In comparison to the ACA-BS, the

IMACA-BS further decreases the computational complexity

since the number of candidate bands (n) is lowered by using

a pre-filter. Therefore, the proposed method is effective and

efficient for practical usage.

The above-mentioned advantages ensure the proposed

IMACA-BS will always select better band subsets compared

to ACA-BS as well as other benchmarks, including GA-BS,

GAPSO-BS, PSO-BS, and SFFS-BS. As demonstrated in

the three experiments, the IMACA-BS consistently acquired

the band subsets with the highest capacity to separate land

cover classes in most of cases, regardless of the size of band

subsets. With the selected bands, high classification accu-

racies were achieved for most land cover types, especially

for those complicated and confusing land cover classes with

high between-class spectral heterogeneity and similarity, e.g.,

Corn and Corn-mintill in Indian Pines Experiment, Meadows

andBare soil in PaviaUniversity Experiment, andReeds1 and

Riparian in Botswana Experiment. Our experimental results

demonstrate that the proposed IMACA-BS is capable of get-

ting rid of suboptimal solutions and eventually approaching

or reaching the global optimal solution.

The proposed method involves three parameters, each of

which exerts a huge impact on the band selection results.

Herein, a ‘‘grid search’’ approach was employed to achieve

the optimal parameter combinations. Such a strategy enables

the IMACA-BS to achieve encouraging results, but it is

tedious and time-consuming. In contrast, the signal to

noise ratio method (S/N) that can indicate how a solution

changes among experiments [37], might be an alternative

to efficiently search for the optimal parameters [38]–[40],

which deserves further investigations. Although the pro-

posed method considers the degree of redundancy between

candidate band and selected band subsets to accelerate con-

vergence, this might affect the final classification accu-

racy in some cases. Future studies may further improve the

IMACA-BS by directly measuring the contribution of a can-

didate band to classification accuracy in the band selection

process. Finally, it is usually difficult to determine the opti-

mal number of selected bands for band selection algorithms.

Fortunately, deep learning-based methods have become the

new hot topic in a wide range of research fields (e.g. change

detection [41] and transportation mode classification [42]),

owing to their capacity to solve complex issues in an end-

to-end fashion. Deep learning-based band selection methods,

thus, deserve further investigation.

VI. CONCLUSION

In this study, an improved ant colony algorithm

(IMACA-BS) for band selection from a hyperspectral

image (HSI) was proposed, which enables the ant colony

to avoid being trapped on local optima by accelerating the

convergence and maintaining the population diversity. The

effectiveness of the proposed IMACA-BS was tested with

three public HSI data sets (Indian Pines, Pavia University

and Botswana datasets), and compared with benchmark com-

parators using the overall classification accuracy of the SVM.

The experimental results demonstrated that the proposed

IMACA-BS method consistently produced the most accurate

classification results and significantly outperformed the ant

colony algorithm (ACA-BS), the genetic algorithm (GA-BS),

the particle swarm optimization (PSO-BS), the hybridization

of GA and PSO (GAPSO-BS), and the traditional sequential

forward floating selection (SFFS-BS). As well, the proposed

method achieved the greatest classification accuracies for

most of the classes in each experiment, especially for those

complex classes with similar spectral characteristics. The

proposed method is, therefore, suggested to be an alternative

for band selection from HSI data sets.
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