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Abstract—Wireless sensor networks (WSNs) are one of the 
most essential technologies in the 21st century due to their 
increase in various application areas and can be deployed in 
areas where cable and power supply are difficult to use. 
However, sensor nodes that form these networks are energy-
constrained because they are powered by non-rechargeable small 
batteries. Thus, it is imperative to design a routing protocol that 
is energy efficient and reliable to extend network lifetime 
utilization. In this article, we propose an improved ant colony 
optimization algorithm: a technique for extending wireless sensor 
networks lifetime utilization called AMACO. We present a new 
clustering method to avoid the overhead that is usually involved 
during the election of cluster heads in the previous approaches 
and energy holes within the network. Moreover, fog computing is 
integrated into the scheme due to its ability to optimize the 
limited power source of WSNs and to scale up to the 
requirements of the Internet of Things applications. All the data 
packets received by the fog nodes are transmitted to the cloud for 
further analysis and storage. An improved ant colony 
optimization (ACO) algorithm is used to construct optimal paths 
between the cluster heads and fog nodes for a reliable end-to-end 
data packets delivery. The simulation results show that the 
network lifetime in AMACO increased by 22.0%, 30.7%, and 
32.0% in comparison with EBAR, IACO-MS, and RRDLA 
before the first node dies (FND) respectively. It increased by 
15.2%, 18.4%, and 33.5% in comparison with EBAR, IACO-MS, 
and RRDLA before half nodes die (HND) respectively. Finally, it 
increased by 28.2%, 24.9%, and 58.9% in comparison with 
EBAR, IACO-MS, and RRDLA before the last node dies (LND) 
respectively. 

Keywords—Sensor nodes; advanced nodes; fog nodes; data 
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I. INTRODUCTION 
Wireless sensor networks (WSNs) are one of the new 

technologies of the 21st century. A WSN is a group of 
spatially dispersed sensor nodes, which are interconnected 
through wireless communication. Sensor nodes jointly 
measure environmental conditions in an area of interest [1]. 
Recent improvements in wireless communication and camera 
sensors technologies have brought about the design of a new 
kind of sensor networks called “visual sensor networks 
VSNs”. These networks can provide multi-perspective visual 

data which may be highly valuable for many types of 
monitoring applications. Although, VSNs developed from 
WSNs; they have extended the range of WSNs applications in 
health assistance, vehicular networks, Internet of Things, 
detection and prediction of natural calamities, smart cities, 
industrial, video surveillance for security systems such as 
pipeline monitoring, home automation, immersive 
entertainment oil, gas exploration, and real-time crop 
monitoring [2-3]. Conversely, in contrast to conventional 
WSNs, VSNs require more energy consumption, high 
bandwidth, high packet loss rate, and more processing 
capability to process sensed data and deliver them to a base 
station. Sensor nodes are usually deployed on large-scale in 
the area of interest and generate large volumes of data. 
However, they have many challenges in terms of data 
reliability and communication due to the limited capabilities 
of the individual nodes. It is expected that sensed data 
generated by the nodes are reliably delivered at the destination 
node for processing and storage. Sensor nodes are expected to 
remain functional for a longer period while providing a 
continuous stream of image data. These nodes are powered by 
small batteries and their life is dependent on the amount of 
initial power loaded onto the batteries and to the way they are 
dissipated during network operation. A sensor node dissipates 
energy during data acquisition, formatting, pre-processing, 
and data forwarding [4]. Thus, data transmission is the main 
energy consumption of a sensor node [5]. Therefore, there is a 
need to minimize sensor nodes' energy consumption to extend 
the network lifetime. 

A. The Significance of the Routing Protocol for Wireless 
Sensor Networks 
The nodes relay their sensed data towards the base station 

through their neighbouring nodes [6]. Data routing in WSNs is 
very important unlike transitional networks based on the 
following features [7-8]: 

• Power to the WSNs is usually provided by small 
batteries. 

• Traffic pattern in WSNs is many-to-one data 
transmission. 

• Scalability in WSNs to the large scale of distribution. 
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• The ability of the WSNs to quickly adjust itself to 
change in the topology is considered its responsiveness. 

• Each sensor node transmits data to its neighbouring 
node. 

Designing an efficient, trustworthy routing protocol, and 
provisioning quality of service (QoS) for data routing in 
WSNs is a challenging task due to resource-constraints of 
sensor nodes, dynamic nature of the networks, and mode of 
the transmission medium. Several approaches have been 
proposed in the literature based on data routing to meet the 
QoS requirements [9-10]. Most of the proposed routing 
protocols for WSNs are based on the single-path routing 
algorithm, where each source node transmits its sensed data to 
the base station through a single path. Although, single-path 
routing approach is simple because it can be implemented 
with minimum computational complexity and scalability but 
there is no adequate consideration of traffic load-balance or 
reliability along the selected paths [11-12]. It is simple 
because paths between source nodes and the base station can 
be constructed in a short time. Similarly, it is scalable because 
as the number of sensor nodes becomes large, the method and 
complexity to create paths between the source nodes and the 
base station do not change [13]. 

Conversely, a multi-path routing protocol transmits copies 
of the sensed data to the base station through different paths. 
This addresses the throughput, load balancing, reliability, and 
security challenges of the single-path routing protocol [11, 
14]. In the event of the main path being unavailable due to the 
low energy of individual sensor nodes or congestion, other 
less congested paths of the network will be used for data 
transmission. This increases the throughput of a network by 
transmitting sensed data in parallel through many paths and 
delivering the entire data at the destination with the 
expectation of achieving high throughput, reliability, and low 
data packets loss rate [10]. Many multipath routing protocols 
have been developed in the literature to ensure load balancing, 
congestion avoidance, fault-tolerance, and QoS [11, 15-16]. 

Braided multipath routing techniques have been proposed 
to relax the requirement for node disjointedness with the 
expectation of addressing the energy issues of node disjoint 
paths [17]. This scheme creates a backup node for every 
sensor node on the primary path. If a node in the main route 
fails, the backup node is used to connect other nodes. 
However, this routing protocol still builds around reliability 
requirements only, disregarding the throughput maximization 
and energy efficiency. Therefore, to achieve reliable wireless 
communications in WSNs, there is a need to have a reliable 
routing protocol. 

Continuous developments in wireless communication and 
the Internet of Things (IoT) technologies have enabled WSNs 
to transmit raw sensed data to the cloud for processing, 
analysis, and storage. Cloud computing is considered as a 
promising solution to provide applications with elastic 
resources and deliver services to end-users at a low cost. 
However, cloud computing has its drawbacks and cannot 
solve all WSNs routing challenges [18]. 

Moreover, if sensor nodes are to transmit directly to the 
cloud, the process will need a high bandwidth network and 
quickly dissipates sensor nodes’ energy [19]. Some 
applications such as real-time streaming, health care data, real-
time gaming, and augmented reality are too latency-sensitive 
to be deployed directly to the cloud. Similarly, in large scale 
sensor networks, sensor nodes have to constantly sense and 
transmit a huge amount of data. The processing of such data 
needs extra efforts and time, which dissipates more energy 
from the sensor nodes. In addition, sensor nodes are resource-
constrained, they can neither perform complex analytical 
computations nor machine learning tasks. Therefore, instead 
of sensor nodes to transmit directly to the cloud, a new 
technology called fog computing can be deployed at the edge 
of the network to provide cloud services closer in a sense [20-
21]. The main aim of integrating fog into the WSNs is to 
improve their reliability and minimize the redundancies 
associated with data transmission to the cloud for processing. 

Fog computing is composed of networking devices such as 
gateways, routers, proxy servers, set-top boxes. These devices 
store frequently used the information to provide the services to 
edge users [22]. They have higher processing capability and 
storage than typical sensor nodes. The devices can be placed 
between WSNs and cloud computing to receive, process, and 
temporarily store the sensed data. This technique will greatly 
conserve sensor nodes’ energy consumption because the nodes 
will only need to transmit through a short distance. It can 
efficiently reduce the amount of bandwidth that is required 
due to its ability to minimize the needed back and forth 
communication with the cloud and the various sensors [23]. 
The term “fog computing” was developed by Cisco to 
overcome limitations in cloud computing [24-25]. It consists 
of fog nodes (FNs) which provide resources at the edge of the 
network. They play an important role in the overall working of 
fog computing as they aggregate the data from source nodes 
for processing. They act as decentralized local access, thus 
reducing the dependency on the cloud platform for analyzing 
the sensed data. This new technology offers several benefits to 
end users including efficient network bandwidth usage, data 
security, fewer bottlenecks, the solving of high latency on the 
network, increased reliability of transmitted sensed data, and a 
higher speed of analysis [26]. Fogging can effectively string 
everything together without reducing the overall performance 
of the processes or devices. Leveraging the advantages of this 
new technology, we integrate fog computing into the proposed 
scheme to address some of the constraints of WSNs. 

Sensor nodes are resource-constrained in terms of power 
and communication bandwidth [27]. As a consequence, 
reducing the energy dissipation of an individual sensor node is 
a critical issue for WSNs. Ant colony optimization (ACO) 
algorithm has been applied in WSNs to find optimal paths to 
save energy consumption during transmission. However, the 
algorithm is prone to converge at local optima. Therefore, we 
propose an improved ACO algorithm that can be applied to 
construct the optimal paths between layer 1 and layer 2 of the 
proposed scheme architecture in Fig. 1 for efficient and 
reliable data transfer. 
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Fig. 1. Proposed Scheme Architecture. 

ACO is developed by Dorigo [28]. The idea is based on 
the natural behaviour of real ants in their colonies and to 
emulate the cooperative behaviour of an ant colony, which 
discovers the shortest path to a food source. The behaviour of 
real ants and sensor nodes share similar attributes. Thus, the 
algorithm has been applied to solve many routing problems in 
WSNs [29-31]. 

B. Contributions 
This research investigates existing routing protocols for 

WSNs in terms of their reliable performance and proposes a 
new routing protocol. In this paper, we present an energy-
efficient routing scheme combined with clustering and fog 
nodes technology. We develop a model to partition the 
network into different clusters. An algorithm is designed to 
distribute evenly advanced nodes within the network and 
assign only one advanced node (cluster head) to each cluster. 
We developed a model based on the distance and the residual 
energy of a node to associate it to a cluster head, this enables 
the nodes to communicate with their associated cluster head 
using a single or multi-hop communication following the 
optimal energy consumption. An improved ACO algorithm is 
designed to construct optimal and efficient paths between the 
cluster heads and the fog nodes to minimize the total number 
of broadcast transmission between layer 1 and layer 2 of the 
proposed architecture. Thus extending the life cycle of the 
WSNs, and effectively improving network congestion and 
minimizing the average delay. Finally, through numerous 
performance comparisons, we show the effectiveness of our 
approach for the proposed routing in WSNs. 

The rest of the paper is organized as follows: Section II 
presents some related work. Section III presents the 
assumptions and system models. The proposed scheme is 
presented in Section IV. Section V presents the analysis and 
simulation results for different scenarios. Lastly, the 
conclusion and our future research directions are presented in 
Section VI. 

II. RELATED WORK 
In recent years, many routing techniques have been 

proposed to minimize energy consumption in WSNs. 
Multipath routing techniques are one of the most prominent 
and efficient routing schemes developed for WSNs. By 
leveraging the many routing paths, multipath routing can 
improve the reliability for end-to-end data transmission, 
minimize energy consumption and transmission delay. The 

following are some of the multipath routing protocols that 
have been proposed for WSNs. 

Radi et al. [32] proposed an interference-minimized 
multipath routing protocol for WSNs. The scheme aims to 
discover a sufficient number of minimum interfering paths 
with high QoS between source nodes and base stations. The 
approach consists of three phases: i) initialization phase; 
ii) path establishment phase; iii) data packet transmission 
phase. These phases control the traffic rate of each constructed 
path. Performance evaluations of the proposed method show 
improvements in terms of packet reception ratio, packet 
delivery latency, and energy consumption. 

However, the authors did not explain in detail how the 
clusters are formed. They only use an assumption for the 
formation of the clusters. 

Deepa and Suguna [33] proposed Optimized QoS-based 
Clustering with Multipath Routing Protocol (OQoS-CMRP) 
for WSNs. The authors applied improved particle swarm 
optimization (PSO)-based clustering algorithm to form 
clusters within the network. Also, they used the Single Sink-
All Destination algorithm to determine near-optimal multi-hop 
routing path from the sink to sensor nodes in order to choose 
the next-hop neighbour nodes and Round-robin Paths 
Selection algorithm is used for sending sensed data to the sink. 
Performance evaluations of the proposed scheme show that it 
performs better in terms of energy conservation, transmission 
delay, and communication overhead than selected related 
algorithms. 

But, in this approach, a lot of energy get consumed 
because re-clustering and re-routing happen every time, when 
residual energy of a node goes below a particular threshold. 

Sharma and Jena [34] suggested a cluster-based multipath 
routing protocol for WSNs (CMRP), which uses both the 
multipath and clustering methods to decrease the energy 
consumption of the sensor nodes and increase data packets 
reliability. The idea centres on the reduction of individual 
sensor nodes load by assigning more responsibility to the 
destination node. The performance evaluations show that 
CMRP is more energy-efficient and reliable compared to 
existing protocols. 

However, the clustering scheme in the approach is not 
scalable enough to facilitate cluster maintenance, therefore it 
can result in domino effects. 

Gupta and Jha [35] proposed integrated clustering and 
routing protocol for WSNs using an improved cuckoo and 
harmony search based metaheuristic techniques. The approach 
uses a novel multi-objective function for uniform distribution 
of cluster head nodes and a modified harmony search based 
routing protocol is used for routing of a data packet from 
cluster heads to the sink node. The performance of the 
proposed protocol is evaluated using metrics such as average 
energy consumption, number of dead nodes, number of alive 
nodes, and network lifetime. The evaluation results show 
significant improvement over the state-of-art protocols. 

However, the authors failed to explain how the clusters are 
formed and cluster heads selected. There is a high possibility 
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that cluster heads are selected from one side of the network 
and thus results in energy holes. 

An energy-efficient algorithm for reliable routing of 
WSNs based on distributed learning automaton (RRDLA) 
algorithm is proposed in [11]. The author models the scheme 
as a multi-constrained optimal path problem. The scheme 
exploits the features of distributed learning automaton (DLA) 
to determine the smallest number of sensor nodes to maintain 
the desired QoS requirements. The scheme considered many 
QoS routing metrics which include end-to-end reliability, 
throughput, and delay to select an optimal path in the network. 
The evaluation results show that the proposed scheme 
performs better than related proposed algorithms in terms of 
energy efficiency, throughput, and end-to-end delay. 

An improved ant colony optimization-based approach with 
a mobile sink (IACO-MS) is proposed to solve the energy hole 
problem in WSNs [36]. The approach divided the network into 
different clusters and each cluster has only one cluster head 
(CH). The conventional ACO algorithms construct paths 
between the CHs while the mobile sink node finds an optimal 
mobility path to communicate with CHs under the improved 
ACO algorithm. The authors claimed that the sink mobility 
approach can be used to solve many routing problems in 
WSNs such as hot spots problem, reduction in energy 
consumption of the whole network, and improve the network 
in terms of transmission latency and network throughput 
compared to conventional routing algorithms. 

However, the approach is compared with only one 
approach and it may not be efficient if it is compared with two 
or three existing approaches. 

Krishnan et al. [37] stated that existing clustering with 
static sink approaches for WSNs creates an energy hole 
problem and untimely death of sensor nodes leads to data 
packets loss. The authors proposed a novel dynamic clustering 
approach with PSO-based mobile data collectors for 
information gathering to solve these problems. The 
performance evaluations show that the proposed scheme 
performs better in terms of reducing energy consumption for 
sensor nodes, improving throughput, and extending the 
network lifetime compared with the existing schemes. 

However, this approach is only implemented on a small 
number of sensor nodes. It may not be energy-efficient if the 
network size is large. 

Arjunan and Sujatha [38] proposed a lifetime 
maximization of WSNs using fuzzy-based unequal clustering 
and ACO based routing hybrid protocol. The protocol consists 
of three phases: CH phase, inter-cluster routing phase, and 
cluster maintenance phase, and it aims to eliminate hot spot 
problems and prolong the network lifetime. The Fuzzy logic 
part of the approach chooses CHs efficiently and splits the 
network into different clusters based on the distance to its 
neighbouring nodes, residual energy, node degree, node 
centrality, and distance to the base station (BS). Thereafter, it 
uses the ACO algorithm based on a hybrid routing protocol to 
construct optimal paths between the CHs and BS. The authors 
employed a threshold concept to transmit or intimate sudden 
changes in the environment in addition to periodic data 

transmission. Finally, the cluster maintenance phase is used to 
uniformly distribute the traffic load. The performance 
evaluation results show that the scheme solves hot spot 
problems, efficiently balances the energy consumption among 
all sensor nodes, and prolongs network lifetime. 

However, this approach requires a significant amount of 
overhead energy. 

Li et al. [39] proposed an energy-efficient load balancing 
ant-based routing algorithm (EBAR) for WSNs. The approach 
adopted the following methods - a pseudo-random path 
discovery algorithm and an improved pheromone trail 
algorithm. The pseudo-random path discovery algorithm 
based on a greedy algorithm is used to optimize the route 
establishment and the pheromone trail is used to balance the 
energy consumption of the sensor nodes. The proposed 
scheme exploits an energy-based opportunistic broadcast 
scheme to minimize the energy consumption of sensor nodes 
caused by the control overhead. The authors used metrics such 
as energy efficiency, energy consumption, and predicted 
network lifetime to evaluate the proposed scheme. The 
performance results show that EBAR performs better 
compared to selected related work. 

However, the approach is based on static network and 
cannot be applied in a scenario with multiple base stations. 

III. ASSUMPTIONS AND SYSTEM MODELS 
In this section, we present the assumptions and system 

models for the proposed scheme in detail. 

A. Assumptions 
• The initial energy of all sensor nodes is equal. 

• Each sensor node in the network is both a transmitting 
node and a source node. 

• Data centres in cloud computing are final destinations 
for sensed data. 

• The network topology is static after the nodes have been 
deployed in the network area. 

• Data centres power sources are unlimited. 

• The coordinates of the sensor nodes are known. 

• The medium access control (MAC) layer provides the 
facility to determine link quality such as the packet 
reception ratio (PRR). 

• Every node knows the PRR of its neighbouring nodes. 

B. Network Model 
In this paper, N sensor nodes are randomly distributed in a 

M x M network area as shown in Fig. 2. All sensor nodes 
deployed in a target area can be represented as a set of nodes 
{𝑛1, … ,𝑛𝑣 },  where 𝑛𝑖  denotes node 𝑖  for all 𝑖 = 1,2, … . . , 𝑣 . 
Every node has a sensing range (𝑅𝑆) that allows it to monitor 
the events in the area of deployment and a transmission range 
(𝑟) which allows it to communicate with other nodes within 
the network such that the nodes 𝑛𝑖 ,𝑛𝑗 ∊ 𝑁, and 𝑛𝑖  ≠  𝑛𝑗. 
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Fig. 2. Network Model. 

MAC sub-layer is part of the Data Link layer in WSN's 
protocol stack. The energy consumption of sensor nodes is 
greatly affected by the MAC protocol which controls the node 
radio functionalities [40]. The reliability of links quality is 
obtained using the PRR. 

We model the routing problem a s  an undirected graph 
𝐺 = (𝑁, 𝐿), where 𝑁 is a set of sensor nodes and 𝐿 denotes the 
set of two-way edges that link two sensor nodes such that each 
link is contained in 𝐺 for all 𝑤𝑖 ,𝑤𝑗 ∊ 𝐿. 

We assume that nodes 𝑛𝑖  a n d  𝑛𝑗 can communicate with 
each other if and only if the distance between them is less than 
or equal to the sensor node transmission range. The Euclidean 
distance 𝑑𝑛𝑖,𝑛𝑗 = 𝐷  between two nodes is expressed as 
follows. 

𝐷 = �(𝑥𝑖 − 𝑥𝑗)2 +  (𝑦𝑖 − 𝑦𝑗)2            (1) 

where (𝑥𝑖 ,𝑦𝑖) is the coordinate of node 𝑖  such that 
𝑛𝑖 = (𝑥𝑖 ,𝑦𝑖), 𝑛𝑗 = (𝑥𝑗 ,𝑦𝑗). 

Node 𝑛𝑗 is a neighbour of node 𝑛𝑖 if it can be expressed as 
follows 

𝑛𝑗 = � 𝑛𝑗 such that (𝑛𝑖 ,𝑛𝑗) ∈ 𝑁,𝐷 ≤ 𝑟�           (2) 

C. Energy Model 
Each sensor node in a WSN has a radio communication 

subsystem consisting of transmitter/receiver electronics, 
antennae, and an amplifier [40]. We adopt the radio energy 
model presented in [41]. The energy of the transmitter 𝐸𝑇𝑥 can 
be determined by these equations based on their transmission 
distance with a neighbouring node or a cluster head. We 
assumed two models as shown in Equation (3) for data packets 
transmission. A free space model is used if the distance 
between two communicating nodes is less than a threshold 
distance value 𝑑0 , otherwise, a multi-path fading model is 
used to compute the energy consumption of the node. The 
models are presented as follows. 

𝐸𝑇𝑥(𝑙,𝑑) =  �
𝑞 ∗ 𝐸𝑒𝑙𝑒𝑐 +  𝑞 ∗ 𝜀𝑓𝑠 ∗  𝑑2, if d < d0
𝑞 ∗ 𝐸𝑒𝑙𝑒𝑐 + 𝑞 ∗ 𝜖𝑎𝑚𝑝 ∗  𝑑4, if d ≥ d0

          (3) 

and the energy consumed by a node to receive a 𝑞 − 𝑏𝑖𝑡 of 
sensed data from a node is expressed as follows. 

𝐸𝑅𝑥(𝑞) = 𝑞 ∗ 𝐸𝑒𝑙𝑒𝑐               (4) 

where 𝐸𝑒𝑙𝑒𝑐  is the electronic energy that depends on 
factors such as the spreading of the signal, modulation, and 
digital coding. Friss free space is denoted as 𝜀𝑓𝑠  and 
𝜖𝑎𝑚𝑝  denotes multi-path fading which depends on the 
transmitter amplifier model, 𝑑  is the distance between the 
nodes. 

The threshold distance value 𝑑0 is determined as follows. 

𝑑0 =  � 𝜀𝑓𝑠 
𝜖𝑎𝑚𝑝

�
1
2
              (5) 

D. Sensor Node Coverage Area 
A sensor node can only sense the environment and 

perceive the event if and only if the event is within its 
transmission range as shown in Fig. 3. A target node is said to 
be covered if it is contained in the sensing area (𝑆𝐴) of a 
sensor node. The network area is partitioned into 25 grids and 
𝑆𝐴  is an area of a circle 𝑆𝐴 = ᴨ𝑟2. The probability of target 
(𝑃𝐵) detection in a grid of the network area is expressed as 
𝑃𝐵 =  𝑆𝐴

𝑀2. Thus, the probability (𝑃𝑇) for detecting a target by 
at least a sensor node in the network area is expressed as 
follows. 

𝑃𝑇 = 1 − (1 − 𝑃𝐵)𝑁             (6) 

where 𝑅 denotes an average transmission range of a sensor 
node, 𝑅𝑚𝑎𝑥 denotes maximum transmission range of a sensor 
node, and 𝑑𝑟 is a small increment in 𝑟. 

The probability that a sensor node 𝑛𝑖  senses an event 
within its transmission range can be expressed as:  

𝑃𝐵(𝑟) = 𝑃 �𝑋𝜎  + 𝛾 + 10𝛷𝑙𝑜𝑔10 �
𝑟
𝑅
� �           (7) 

 
Fig. 3. Sensing Area for a Sensor Node Coverage. 
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where 𝑋𝜎 connotes a zero-mean, Gaussian random variable 
(measured in decibels) with standard deviation σ (in decibels), 
𝛾 is a random variable that connotes Rayleigh fading to model 
the multiple path effects in propagation path and 𝛷  denotes 
path loss exponent [42]. Thus, 𝑃𝐵(𝑟)  can be expressed as 
follows. 

𝑃𝐵(𝑟) =

∫ ∫ 1
�2𝜋𝜎2

𝑒�−�
𝑥2

2𝜎2� ��∞
10𝛷𝑙𝑜𝑔10�

𝑟
𝑅�−𝑦

∞
0

𝑦
𝛻2
𝑒�−�

𝑦2
2𝛻2
� ��𝑑𝑥𝑑𝑦      (8) 

= ∫ 𝐶 �
10𝛷𝑙𝑜𝑔10�

𝑟
𝑅�−𝑦

𝜎
�∞

0
𝑦
𝛻2
𝑒�−�

𝑦2
2𝛻2
� ��𝑑𝑦           (9) 

Applying the numerical integration of the Gauss–Laguerre 
∫ 𝑒−𝑥∞
0 𝑓(𝑥)𝑑𝑥, the detection probability can be expressed as: 

𝑃𝐵(𝑟) = 𝐶 �
10𝛷𝑙𝑜𝑔10�

𝑟
𝑅�−𝛻√2

𝜎
�          (10) 

Thus, the probability that a sensor node detects a target 
node placed at a particular point of the network area 𝑀2 
denoted as 𝐴 can be expressed as: 

𝑃𝐵(𝑟) =  2
𝐴 ∫ 𝑃𝐵(𝑟) ∗ 𝜋𝑟𝑑𝑟𝑅𝑚𝑎𝑥

𝑟=0           (11) 

Substituting (10) into (11), the probability that a sensor 
node sensed a target in the specified area of the network can 
be expressed as follows. 

𝑃𝐵(𝑟) =  2
𝐴 ∫ 𝐶 �

10𝛷𝑙𝑜𝑔10�
𝑟
𝑅�−𝛻√2

𝜎
� ∗ 𝜋𝑟𝑑𝑟𝑅𝑚𝑎𝑥

𝑟=0         (12) 

E. Coverage Rate Computation 
A target node B  at point 𝑔�𝑥𝐵,𝑦𝐵�  is within the 

transmission radius of the node 𝑛𝑖,  if its sensing rate 𝑟𝑡(𝑛𝑖, B) 
is within the coverage of 𝑛𝑖 as: 

𝑟𝑡(𝑛𝑖, B) = �1,𝐷(𝑛𝑖, B) ≤ 𝑟
0,𝐷(𝑛𝑖, B) ≥ 𝑟          (13) 

where 𝐷(𝑛𝑖, B)  denotes the distance between the target 
node and node 𝑛𝑖.  The probability that the target node 𝐵 can 
be covered by nodes in 𝑁 is presented as follows. 

𝑟𝑡(𝑁,𝐵) =  ∏ [1 − 𝑟𝑡(𝑛𝑖 ,𝐵)]𝑛𝑖∈𝑁           (14) 

Thus, the coverage rate (𝐶𝑡 ) of the target area can be 
computed as follows. 

𝐶𝑡 = ∑  𝑟𝑡(𝑁,𝐵)𝐵∈𝑈
𝑈

            (15) 

IV. OUR PROPOSED AMACO SCHEME 
The architecture of the proposed scheme is composed of 

three layers: Layer 1- WSNs, layer 2- fog nodes, and layer 3- 
remote cloud storage as shown in Fig. 1. 

Layer 1-WSNs: This layer consists of various types of 
sensor nodes connected through wireless technologies and are 
randomly distributed in the network area. The layer consists of 
two types of nodes: normal sensor nodes (NS) and advanced 

nodes (NA). These nodes are given specific responsibility to 
perform within the network. Each sensor node monitors its 
area, obtain sensed data, and transmits it to a neighbouring 
node so as to achieve a global detection objective. 

Advanced nodes are included in the architecture to avoid 
overhead during cluster formation and support various types 
of nodes for improving routing capability. The advanced 
nodes are responsible to receive, aggregate, and retransmit 
sensed data received from the normal sensor nodes. They have 
more processing power and energy source than normal sensor 
nodes. 

Layer 2–Fog computing: Layer 2 consists of fog nodes 
with high computing, storage, and network connectivity. They 
receive data from advanced nodes, aggregate, analyse the data 
so that only the essential data gets forwarded further to the 
cloud, and decreases the bandwidth used [43]. Besides, 
sensitive data can be processed at these fog nodes. 

Layer 3–Cloud computing: This is the uppermost part of 
our architecture. Pre-processed data is transmitted from fog 
nodes to the cloud for extensive processing and analysis using 
cloud computing platforms and storage is done in data centres. 
The cloud can process and store a large amount of data being 
transmitted from the lower layers. Many security issues such 
as data integrity, data authentication, privacy are addressed at 
this layer [44]. 

A. Clustering 
Wireless sensors networks are usually composed of a large 

number of low-cost sensor nodes connected through a wireless 
network that sense data to be relayed to the data centres 
through multi-hop wireless transmission. Many methods have 
been proposed in the literature to reduce the traffic into the 
network. Clustering algorithms have been used to minimize 
communication distance among the nodes to conserve their 
limited energy. It involves dividing the network into different 
groups (clusters) and select a node as the group leader (cluster 
head) for each cluster in the network. 

Our main aim for clustering is to minimize each sensor 
node transmission distance to save its energy. In addition, it 
eliminates energy holes problems within the network. 

B. Setup Phase 
During the setup phase, sensor nodes are randomly 

distributed into the network area as shown in Fig. 2. Each 
node exchanges its information with neighbouring nodes. 
Unlike in previous approaches, in which normal nodes are 
selected as CHs using various algorithms. In our scheme, 
advanced nodes (NA) are added to the network and they 
automatically become cluster heads (CHs) due to their higher 
specifications in terms of energy source, transmission range, 
and computational power than normal nodes. Algorithm 1 is 
used to evenly distribute the NA and the desired number A_N 
represented as K of NA in the network is determined as 
follows. 

𝐴𝑁 =  ��𝑁𝑝𝑒𝑟 ∗ 𝑁�           (16) 
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where 𝑁𝑝𝑒𝑟  is the percentage of NA and 𝑁 is the number of 
sensor nodes. 

Algorithm 1. Algorithm to distribute advanced nodes evenly 
within the network 

Begin 
1: Given the set of 𝑁𝐴 = {𝑁𝐴1,𝑁𝐴2, … . . ,𝑁𝐴𝐾}  

2: Initialization: 𝑥(𝑘) = 𝑦(𝑘) = 0; 
3: Input: use Equation (16) to compute desired number of 𝑁𝐴;  

4: for 𝑘 = 1:𝐾 // 𝐾 is 𝐴𝑁 
5: 𝑥(𝑘) = rand(1,1) *𝐴;  
6: 𝑦(𝑘) = rand(1,1) * 𝐴; // 𝐴 = 𝐿𝑒𝑛𝑔ℎ𝑡 𝑎𝑛𝑑 𝑊𝑖𝑑𝑡ℎ of the 

network 
7: Voronoi ((𝑥(𝑘), 𝑦(𝑘))  
8: end for  
9: Determine the center of the network 
10: for Row = 1: 𝐿𝑦 
11: for Col = 1: 𝐿𝑥 
10:  𝑂𝑥 = ( 𝐶𝑜𝑙 − 1) ∗ 0.5;  
12:  𝑂𝑦 = ( 𝑅𝑜𝑤 − 1) ∗ 0.5; 
13:  𝐶𝑡𝑟( 𝑅𝑜𝑤,  𝐶𝑜𝑙) = ( 𝑂𝑥,  𝑂𝑦); 
14: end for  
15: end for  
16: 𝑟𝑒𝑡𝑢𝑟𝑛  𝐶𝑡𝑟( 𝑅𝑜𝑤 ,  𝐶𝑜𝑙) ; 
End 

C. Intra-Cluster Communication 
Now the advanced nodes (CHs) have been distributed 

evenly within the network, next we divide the network into 
different clusters. We assume that the number of advanced 
nodes is equal to the number of clusters. Long-distance 
transmission usually dissipates the energy of a sensor node 
and shortens the network lifetime. Thus, a node determines the 
cluster it is to join by selecting a CH that is within its radio 
transmission range in which the received signal strength (RSS) 
is strongest. A Boolean variable  𝑋𝑖𝑗  is used to denote whether 
a node 𝑖 is belongs to 𝑁𝐴

𝑗 to form a cluster as follows. 

 𝑋𝑖𝑗 =  �
1, if node 𝑖 close to NA

j  
 ∀𝑖, 𝑗: 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝐾

0, Otherwise 
         (17) 

where N denotes the number of nodes and 𝐾 is the number 
of advanced nodes. In the proposed scheme, energy 
consumption for a sensor node to transmit to its associated 
advanced node NA

j  is calculated as follows. 

𝐸1�𝑛𝑖 , NA
j � =

�
𝑞 ∗ 𝐸𝑒𝑙𝑒𝑐 + 𝑞 ∗ 𝜀𝑓𝑠 ∗  𝑑�𝑛𝑖, NA

j �
2

, if 𝑑�𝑛𝑖 , NA
j � < d0 

𝑞 ∗ 𝐸𝑒𝑙𝑒𝑐 + 𝑞 ∗ 𝜖𝑎𝑚𝑝 ∗ 𝑑�𝑛𝑖, NA
j �

4
, if 𝑑�𝑛𝑖 , NA

j � ≥ d0
       (18) 

 

Moreover, if a node is far from its leader, it will transmit to 
the CH through a neighbouring node 𝑛𝑗.  The energy 
consumption for data transmission can be expressed as 
follows. 

𝐸2�𝑛𝑖 ,𝑛𝑗, NA
j � = 𝐸𝑇𝑥 �𝑞,𝑑�𝑛𝑖,𝑛𝑗�� + 𝐸𝑅𝑥(𝑞)

+ 𝐸𝑇𝑥 �𝑞,𝑑�𝑛𝑗 , NA
j �� 

 = 3𝑞𝐸𝑒𝑙𝑒𝑐 + 𝜀𝑓𝑠 𝑑�𝑛𝑖 ,𝑛𝑗�
2 + 𝜀𝑓𝑠 𝑑�𝑛𝑗 , , NA

j �
2
        (19) 

D. Average Packet Delay 
The average packet delay ( 𝐷𝑝𝑐𝑡𝑘) is the average interval 

between data packets transmitted at the source node 𝑛𝑖  and 
delivered at the destination node 𝑛𝑗 o r  NA

j  for a given period 
of data transmission and expressed as follows. 

 𝐷𝑝𝑐𝑡𝑘 =  
∑ ∑ 𝑛𝑖�𝑡𝑖𝑗

𝑑𝑒𝑝𝑎𝑡.− 𝑡𝑖𝑗
𝑎𝑟𝑟𝑖𝑎𝑙�𝑁

𝑖=1
𝐾
𝑗=1

∑ 𝑞𝑗𝐾
𝑗=1

           (20) 

where 𝑡𝑖𝑗𝑎𝑟𝑟𝑖𝑎𝑙  is the time it takes data packets to arrive at 
the next node media access control (MAC) layer and 𝑡𝑖𝑗

𝑑𝑒𝑝𝑎𝑡. is 
the time it takes the data packets to be delivered at the next 
node MAC sublayer. 

E. Data Packets End-to-End Reliability 
In the proposed scheme, medium access control (MAC) 

layer is used to estimate the routing paths quality, that is, the 
packet reception ratio (PRR), every node knows the PRR of its 
neighbouring nodes. In a multi-path transmission, the 
probability of successful data packets delivery (DPD) to the 
CH through m-hop of a path 𝑜  between two neighbouring 
nodes can be expressed as follows. 

𝑃𝐷𝑅 = ∐ 𝑃𝑟�(𝑛𝑖,𝑛𝑗�∀(𝑛𝑖,𝑛𝑗)∈𝑜           (21) 

where 𝑃𝐷𝑅 denotes the data packets delivery ratio. Based 
on the value of PDR and the number of data packets 
transmitted 𝐻𝑠𝑒𝑛𝑡 , we can compute the number of data packets 
successfully delivered 𝐻𝑠𝑢𝑐𝑐𝑒𝑠𝑠 to the CH as follows. 

𝐻𝑠𝑢𝑐𝑐𝑒𝑠𝑠 =  𝐻𝑠𝑒𝑛𝑡 ∗ 𝑃𝐷𝑅           (22) 

F. Improved ACO Algorithm 
In this section, we use an improved ACO algorithm to 

construct an efficient and reliable path for inter-cluster 
communication between the advanced nodes in layer 1 and 
fog nodes in layer 2 of the proposed architecture. 

Both advanced nodes and fog communicate through 
wireless medium and many routing paths exist between these 
nodes but not all are efficient and reliable for data packet 
transmission. Therefore, it is necessary to construct efficient 
and reliable paths through which the advanced nodes would 
transmit their aggregated data to the fog nodes for processing 
and temporary storage. Algorithm 2 is developed to construct 
optimal and reliable paths for data transmission between the 
advanced node 𝑁𝐴 and fog node 𝑁𝐹 . ACO algorithm has been 
used in WSNs to construct shortest paths, thus save energy 
consumption in the network. However, this algorithm 
converges slowly and leads to local optima. 

ACO is a branch of optimization modelled algorithms 
based on the behaviour of real ants in a colony and is a 
subclass of computational intelligence (IC) paradigms that aid 
in determining optimal solutions to optimization problems 
[30]. 
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The idea comes from the foraging behaviour of ants in 
their colony when searching for food. They first randomly 
explore the surrounding area and deposit a chemical substance 
called pheromone on their paths as they search for food, 
forming pheromone trails. The pheromone trails can be sensed 
by other ants in the colony and enhance the pheromone 
deposited on the paths. They tend to choose a path marked by 
strong concentrations of pheromone. This traditional ACO 
algorithm does not distinguish between the different types of 
data packets transmitted over the network. All data packets are 
sent in the same way to a destination; this algorithm is mainly 
designed to find the shortest path between the source nodes 
and destination node. On the other hand, WSNs in the IoT 
environment has to support multimedia data transmission, 
requiring a different level of quality of service (QoS). This 
work provides three different QoSs. 

Guaranteed service ( 𝑄𝑠_1):  𝑄𝑠_1 provides safe end-to-end 
delay guarantees. It guarantees that data packets will reach the 
destination node at the right time with zero data packets loss. 

Control load-balance service  ( 𝑄𝑠2) :  𝑄𝑠_2  service is 
applied where there is a possibility that delay will happen and 
when there is congestion in the network, the  𝑄𝑠_2 can provide 
a service just as if there was no congestion in the network. 

Best-effort service (𝑄𝑠_3): This an Internet delivery service 
where the network does not provide any guarantees on the 
time delay limit the data packets will be delivered in the 
network. 

If a link  𝑙𝑢 ∈  𝐸 denotes a single hop between a source (an 
advanced) node and destination (fog) node, then the multi-
hop, 𝑇𝑝𝑎𝑡ℎ, is the sum of the hops the nodes and expressed as 
follows. 

𝑇𝑝𝑎𝑡ℎ =  ∑ (𝑙𝑢)𝑤
𝑢=1            (23) 

Equation (23) shows that the fewer 𝑇𝑝𝑎𝑡ℎ , the nearer it is to 
the fog node. 𝑅(𝑖, 𝑗)  is used to represent the relationship 
between a node (𝑖) and receiver node (𝑗) as shown in equation 
(24). 

𝑅(𝑖, 𝑗) =  �
 1 𝑖𝑓 𝑙𝑢  ∈  𝑇𝑓(𝑖) 
−1 𝑖𝑓 𝑙𝑢  ∈  𝑇𝑟(𝑖)

0, 𝑜𝑡ℎ𝑒𝑟𝑠 
          (24) 

where 𝑇𝑓(𝑖) and 𝑇𝑟(𝑖) denote forward link and reverse link 
respectively of the node 𝑖. 

It is assumed that the success transmission rates of all the 
links between the advanced nodes and fog nodes are all 100%. 
If the data packets transmission success rate is less than 10%, 
then the advanced node has low communication performance. 
However, if the data packets transmission rate is more than 
90%, then it has high communication performance. 

G. Local Pheromone update 
Pheromone is very important in the performance of the 

ACO algorithm. It is used for updating both local and global 
trails in traditional ACO. It makes the paths visited by ants to 
depend on the objective value. Modification made to the 
traditional ACO algorithm is presented as follows. The choice 

of constructing an optimal path between the source node and 
the receiver node is made based on the probability decision 
rule in equation (25). 

𝑐 =  �arg max
𝑗=1,2,..,𝑚

��𝜆𝑘𝑗
 𝑄𝑠_𝑎�

𝛼
∗ �𝜂𝑘𝑗

 𝑄𝑠_𝑎�
𝛽
∗ 𝑅(𝑘, 𝑗),  ⍴ ≤  ⍴𝑜

𝐶, ⍴ >  ⍴𝑜  
  (25) 

𝐶 =  

⎩
⎪
⎨

⎪
⎧�𝜆𝑘𝑗

 𝑄𝑠_𝑎�
𝛼
∗ �𝜂𝑘𝑗

 𝑄𝑠_𝑎�
𝛽
∗ 𝑅(𝑘, 𝑗) 

∑ �𝜆𝑘𝑗
 𝑄𝑠_𝑎�

𝛼
∗ �𝜂𝑘𝑗

 𝑄𝑠_𝑎�
𝛽

𝑗∈𝑇𝑝𝑎𝑡ℎ,

, 𝑗 ∈ allowed𝑢

 0, 𝑗 ∉ allowed𝑢

 

where 𝜆𝑘𝑗
 𝑄𝑠_𝑎  is the amount of pheromone deposited on the 

path, 𝜂𝑘𝑗
 𝑄𝑠_𝑎  represents the local heuristic value of the path 

between the sender node and the receiver node, 𝑎 denotes the 
QoS type, α and β are control parameters used to regulate the 
concentration of the pheromone trail and the heuristic value 
respectively. The ⍴ is a random variable range between 0 and 
1 (i.e [0, 1]) and ⍴𝑜  (0 ≤  𝑞𝑜 ≤ 1  ) is a given parameter. 
𝑗 ∈ allowed𝑢 for all 𝑢 = 1,2,3, … . ,𝑤 are paths that can be 
selected by node 𝑘 in the next step. 

H. Global Pheromone updating Rule 
Once the communication paths between nodes have been 

constructed by the search ants, equation (22) is used to choose 
an optimal path. 

𝑍𝑂
 𝑄𝑠_𝑎 = 𝑚𝑎𝑥 ��𝑍𝑝𝑎𝑡ℎ

 𝑄𝑠_𝑎�
𝑢
�           (26) 

where �𝑍𝑝𝑎𝑡ℎ
 𝑄𝑠_𝑎�

𝑢
is the path utility value. 𝛥𝜆𝑘𝑗

 𝑄𝑠_𝑎  is the 
pheromone increment on the path between the advanced node 
𝑘 and fog node 𝑗. Pheromone is updated between the nodes as 
follows. 

𝛥𝜆𝑘𝑗
 𝑄𝑠_𝑎 = �

𝜛∗𝑍𝑝𝑎𝑡ℎ
 𝑄𝑠_𝑎

𝑇𝑝𝑎𝑡ℎ
, 𝑗 ∈ allowed𝑢

 0,  𝑗 ∉ allowed𝑢
          (27) 

where 𝜛 is an adjustment coefficient, 𝑇𝑝𝑎𝑡ℎ  denotes path 
length. Equation (24) is a pheromone update rule for the 
forward ants used to create the paths between the advanced 
nodes and the fog nodes. 

I. Pheromone Deterioration 
Advanced nodes will use the optimal paths constructed to 

transmit their data packets to the fog nodes. However, 
continuous data packets transmission along the optimal paths 
will lead to (a) congestion along the paths (b) inability to 
discover other paths. These two points cannot be overlooked 
in a dynamic network because (i) an optimal path may become 
non-optimal if it is congested; (ii) It may also lead to loss of 
data packets due to network failure or energy holes problem. 
To overcome these challenges, pheromone control is used as a 
measure to reduce the impact of earlier experience and 
encourages the search for alternative paths that were non-
optimal through evaporation. For a constant ⍴ of pheromone 
deterioration (decay), the pheromone concentration on the 
path usually varies with time 𝑡 and expressed as follows: 
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𝜆𝑘𝑗
 𝑄𝑠_𝑎(𝑡) = 𝜆0

 𝑄𝑠_𝑎𝑒−⍴𝑡             (28) 

where 𝜆0
 𝑄𝑠_𝑎  denotes the initial pheromone concentration. 

If ⍴𝑡 is much less than 1 (i.e ⍴𝑡 ≪ 1) then. 

𝜆𝑘𝑗
 𝑄𝑠_𝑎(𝑡) ≈  𝜆0

 𝑄𝑠_𝑎(1 − ⍴𝑡) 

If the time increment is 1, then the evaporation can be 
approximated as follows. 

𝜆𝑘𝑗
 𝑄𝑠_𝑎(𝑡+1) ← (1 −  ⍴)𝜆𝑘𝑗

 𝑄𝑠_𝑎𝑡          (29) 

Thus, the general pheromone update formula can be 
expressed as:  

𝜆𝑘𝑗
 𝑄𝑠_𝑎(𝑡+1) = (1 −  ⍴)𝜆𝑘𝑗

 𝑄𝑠_𝑎𝑡 +  𝛥𝜆𝑘𝑗
 𝑄𝑠_𝑎𝑡         (30) 

where ⍴  denotes the rate of pheromone evaporation; its 
value ranges between 0 and 1. The increment 𝜆𝑘𝑗

 𝑄𝑠_𝑎𝑡 is the 
amount of pheromone deposited at time 𝑡 along with path 𝑘 
and 𝑗. 

 Algorithm 2. Construction of optimal path based on 
improved ACO algorithm 

 Begin 
 Input: Advanced nodes ( 𝑁𝐴) 
 Output: Construct an optimal path between  𝑁𝐴  and 

 𝑁𝐹  
1: Initialize 𝜆𝑘𝑗

 𝑄𝑠_𝑎 and 𝑎 ← 1  
2: While termination conditions are not met do 
3:  𝑎 ← 𝑎 + 1 
4: for 𝑘 = 1 to 𝐾  
5:  𝑘 is positioned at 𝐹𝐿 
6:  𝐹(𝑘)  ← 𝐹𝐿 
8:  𝑅𝑘  ←  ∅ ; 𝜑𝑘  ←  ∅ 
9:  While 𝐹(𝑘)  ≠  𝐹𝐿 do 

10:  if C(𝐹(𝑘)) - 𝜑𝑘  ≠  ∅ then 
11:  Choose (𝐹(𝑗) from C(𝐹(𝑘)) - 𝜑𝑘 to move based on 

the probabilistic transition rule in equation ( 25) 
12: 𝑅𝑘  ← 𝑅𝑘⋃{𝐹(𝑖)}; 𝜑𝑘  ← 𝜑𝑘⋃{𝐹(𝑖)}; 𝑘 ← j 
13:  else  
14:  Back to the previous-hop of 𝐹(𝑘) 
15: end if  
16: end while 
17: Compute the paths between the nodes using equation 

(24) 
18: Determine the value of 𝑍𝑂

 𝑄𝑠_𝑎 using equation (26) 
19: end for 
20: Update the number of pheromone values using 

equation (27)  
21: Compare the values of solutions obtained 
22: end while 
23: Return the optimal solution 
24: Choose the best solution as the output  
25: End 

V. PERFORMANCE EVALUATION 
To evaluate the performance of the proposed scheme, the 

AMACO algorithm is compared with three related algorithms 
namely RRDLA, IACO-MS, and EBAR. The following 
metrics are used to measure the performance of these 
algorithms: network lifetime, the sum of energy consumption, 
the average number of hops, packet delivery ratio, and success 
rate. Network Simulator- 2 (NS-2) is used to perform the 
experiment and 200 sensor nodes are randomly distributed in a 
100 * 100 m2 network area. We set the initial energy of each 
sensor node to 0.5J and other relevant parameters are 
presented in Table I. 

A. Network Lifetime 
The network lifetime 𝑡𝑁 can be defined as: 

𝑡𝑁 =
sum of the initial energy of all the sensor nodes

 total energy dissipated in one round 
 

The proposed scheme is implemented to determine the 
network lifetime as shown in Fig. 4. The network consists of 
200 nodes randomly distributed and 5 advanced nodes are 
uniformly distributed within the network. The proposed and 
three other selected schemes were implemented and run for 
1200 rounds. All the schemes dissipate their energy slowly as 
the simulation time increases. The result shows that the 
proposed, AMACO, has more number of alive nodes than 
EBAR, IACO-MS, and RRDLA. The first node dies (FND) at 
263rd round in RRDLA, at 268th round in IACO-MS, at 
302nd round in EBAR, and 387th round in AMACO. 
Similarly, the last node dies (LND) at 391th, 714th, 683th, and 
951th in RRDLA, IACO-MS, EBAR, and AMACO 
respectively. In all the scenarios, AMACO had the highest 
number of alive nodes and better performance in the network 
lifetime compared to RRDLA, IACO-MS, and EBAR. The 
reason is that during intra-cluster communication, sensor 
nodes are only responsible for sensing and short distance 
transmission which conserve their limited energy. 
Additionally, inter-cluster communication in AMACO only 
CHs (advanced nodes) communication with fog nodes and 
transmit through optimal paths. 

TABLE I. SIMULATION PARAMETERS AND THEIR VALUES 

Parameters Values 
Network area 100 x 100 m2 
Initial energy of nodes 0.5 – 2.0J 
Number of nodes 200 

Energy consumption for sending unit of data 0.01J 
Transmission range 75m 

Number of Advanced nodes 5 

Path loss exponent (𝛷) 4 

Multipath component (𝛻) 0 dB to 10dB 

Standard deviation (𝑋𝜎𝜎)  0 dB to 12dB 

Energy consumption on circuit ((𝐸𝑒𝑙𝑒𝑐) 50 nJ/bit 
Free-space model (𝜀𝑓𝑠) 10 pJ/bit/m2 
Multi-path model (𝜖𝑎𝑚𝑝) 0.0013 pJ/bit/m4 

Data packet size 500 bytes 
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Fig. 4. Nodes Alive Against the Number of Rounds. 

B. Comparison of the Network Lifetime 
The network lifetime is one of the important metrics of 

WSNs. The energy of a sensor node is mostly consumed on 
data transmission during network operation. If the limited 
energy of these nodes is completely exhausted, energy holes 
will be created and some nodes will not be able to 
communicate with the destination nodes. This will affect the 
normal operation of the entire network. We performed various 
simulations to compare the network lifetime of the four 
schemes. We varied the number of nodes in the network area 
from 40, 80, 120, 160, and 200 for each of the algorithms and 
present the simulation results in Fig. 5. We can see that the 
AMACO scheme has the longest network lifetime among all 
the four schemes. The reason is that the AMACO algorithm 
only chooses nodes in which their energy is above the energy 
threshold as neighbouring nodes and avoids the low energy 
nodes in the process of data transmission to the CHs. Thus, the 
proposed algorithm selects the optimal and efficient paths in 
the energy-abundant nodes. 

 
Fig. 5. Network Lifetime Against the Number of Nodes. 

C. Sum of Energy Consumption 
The sum energy consumption of the sensor network is 

defined as the total energy consumed by each sensor node of 
the whole network. The lesser the sum energy consumption of 
the network, the lesser the routing cost, thus the longer the 
network lifetime. Fig. 6 presents the sum of the energy 
consumption against the number of rounds for all the 
algorithms; the energy of the network increases, with the 
number of rounds. RRDLA consumes more energy than the 
other algorithms. The reason is that the scheme adopts a multi-
path for data transmission and did not consider the residual 
energy of nodes that are selected as relay nodes. There is a 
high possibility for the nodes to transmit their data through 
long-distance either to their neighbouring nodes or CHs and 
hence more energy will be consumed. Conversely, the sum of 
energy consumption in AMACO is less than the other three 
schemes the reason is that the improved ACO algorithm 
considers the dynamic optimization of the ants while taking 
into account the load balance characteristics, thus it prevents 
the intermittent ant diffusion, and conserves the energy 
consumption of the network, therefore achieving the purpose 
of prolonging the network lifetime. 

D. The Average Number of Hops 
We define the average number of hops as the number of 

links traversed by a data packet in the network. The longer the 
average number of hops is, the heavier the data packet traffic 
along the path is. So, there is a positive association between 
the end-to-end delay and the average number of hops. In 
Fig. 7, we can see that the performance of RRDLA algorithm 
is worst, the reason is that the algorithm uses single-hop 
communication for data packet transmission to the base 
station. Our proposed AMACO dynamically considers both 
single-hop and multi-hop communication to transmit data to 
the fog nodes. Each sensor node uses the energy model 
presented in Section 3 to transmit data to its associated cluster 
head. 

 
Fig. 6. Sum of Energy Consumption Against many Rounds. 
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Fig. 7. The Average Number of Hops Against the Number of Rounds. 

E. Packet Delivery Ratio 
A Packet delivery ratio PDR: It can be measured as the 

ratio of the total number of data packets delivered to the total 
number of data packets transmitted from the sender node to 
the receiver node in the network. PDR of various algorithms is 
presented in Table II and Fig. 8. We observed that as the 
number of rounds increases, the PDR decrease linearly, the 
reason is that sensor nodes dissipate energy slowly as the 
number of rounds increases. There is a high likelihood of 
energy holes to be created among the nodes. RRDLA has the 
least PDR because its approach is similar to LEACH protocol. 
The method used for CH selection incurs high overhead. 
Similarly, IACO-MS algorithm is developed in a way that if a 
sensor node transmits a data packet to the base station, the 
data pass through all the sensor nodes as it is moving to the 
base station. Therefore, the overhead in the delivery of the 
data packet to the base station increase for every sensor node 
present in the network. AMACO has the highest PDR 
compared to the three algorithms. The reason is that it avoids 
overhead that is usually involved during cluster formation and 
selection of cluster heads in the previous approaches. 

F. Success Rate 
The average time per iteration of all the schemes and the 

success rate of searching for the optimal solution in 75 
iterations of the four schemes are presented in Table II. 
AMACO algorithm has a higher data packet delivery rate 
compared to the other three schemes in computing time. The 
simulation runs for 75 random topologies to ensure 
consistency of the results to assess the success rate of 
searching for the optimal solution of all the schemes. We 
observe that AMACO has great potential to search for the 
global optimal solution. Its success rate is more than compared 
of algorithms. It can reliably and efficiently improve the 
routing computation and high success rate of searching for the 
global optimal solution. Thus, it shows that the AMACO 
algorithm is effective and reliable. 

TABLE II. AVERAGE TIME PER ITERATION AND THE SUCCESS RATE OF 
SEARCHING FOR THE OPTIMAL SOLUTION OF THE ALGORITHMS 

Name of algorithms Average time for one 
iteration (ms) Success rate (%) 

AMACO 4.38 99.23 

EBAR 6.17 93.60 

IACO-MS 10.54 85.49 

RRDLA 16.92 54.17 

 

 
Fig. 8. Packet Delivery Ratio Against the Number of Rounds. 

VI. CONCLUSION 
Clustering and fog nodes integration technologies are 

effective techniques to improve the performance of WSNs. In 
this paper, we presented an improved ant colony optimization 
routing algorithm to prolong the network lifetime of WSNs. 
We first partition the entire network area into different 
clusters. An algorithm is designed to ensure that advanced 
nodes which are automatically selected as CHs are evenly 
distributed within the network and assign a CH to a cluster. 
Each node belongs to a cluster based on its residual energy 
and distance from the CHs. An improved ACO algorithm is 
developed to construct an optimal path between the CHs and 
fog nodes for efficient and reliable data transmission. NS-2 
Simulator is used to measure the performance against three 
related algorithms namely RRDLA, IACO-MS, and EBAR 
using the following metrics: network lifetime, the sum of 
energy consumption, the average number of hops, packet 
delivery ratio, and success rate. The simulation results show 
that AMACO performs better in terms of energy consumption 
and data packet delivery than the other three algorithms. 
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VII. FUTURE WORK 
In the future, we intend to implement all the algorithms in 

a real test-bed using the above metrics. 
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