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Abstract

Background: Recent advances in sequencing technologies make it possible to comprehensively study structural

variations (SVs) using sequence data of large-scale populations. Currently, more efforts have been taken to develop

methods that call SVs with exact breakpoints. Among these approaches, split-read mapping methods can be

applied on low-coverage sequence data. With increasing amount of data generated, more efficient split-read

mapping methods are still needed. Also, since sequence errors can not be avoided for the current sequencing

technologies, more accurate split-read mapping methods are still needed to better handle sequence errors.

Results: In this paper, we present a split-read mapping method implemented in the program SVseq2 which

improves our previous work SVseq1. Similar to SVseq1, SVseq2 calls deletions (and insertions) with exact

breakpoints. SVseq2 achieves more accurate calling through split-read mapping within focal regions. SVseq2 also

has a much desired feature: there is no need to specify the maximum deletion size, while some existing split-read

mapping methods need more memory and longer running time when larger maximum deletion size is chosen.

SVseq2 is also much faster because it only needs to examine a small number of ways of splitting the reads.

Moreover, SVseq2 supports insertion calling from low-coverage sequence data, while SVseq1 only supports deletion

finding. The program SVseq2 can be downloaded at http://www.engr.uconn.edu/~jiz08001/.

Conclusions: SVseq2 enables accurate and efficient SV calling through split-read mapping within focal regions

using paired-end reads. For many simulated data and real sequence data, SVseq2 outperforms some other existing

approaches in accuracy and efficiency, especially when sequence coverage is low.

Background
Finding structural genomic variations (e.g. deletions and

insertions) has become an active research subject

recently. It is commonly believed that some structural

variations may be linked to complex diseases [1]. Now

high throughput sequencing (HTS) technologies (such

as the Roche 454 FLX, Illumina Genome Analyzer, and

ABI SOLiD) become more available. Sequence data can

potentially reveal nearly all genetic variations, including

structural variants. Thus, great efforts have been made

for discovering structural variations in populations using

sequence data. For example, the ongoing 1000 Genomes

Project has released called structural variations for sev-

eral human populations from hundreds of sequenced

individuals in the pilot studies [1].

Many current sequence datasets are consisted of pairs

of reads. These pairs can be mapped to a reference gen-

ome using read mapping tools such as Bowtie [2] and

BWA [3]. Usually both reads of the same pair can be

successfully mapped to two different locations of the

reference genome. The distance in between is called

insert size, whose value depends on the library mean

and standard deviation. Abnormal insert size (as sug-

gested by the two mapped reads) may indicate the pre-

sence of some genomic structure not present in the
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reference genome. Such pairs are called discordant pairs,

which can be useful in locating structural variations.

There are many methods that detect SVs by analyzing

the insert size of discordant pairs, such as PEMer [4],

BreakDancer [5], GASV [6] and VariationHunter [7]. A

drawback of these methods is that only approximate

positions of the breakpoints of the SVs can be found,

while the high resolution of break points is useful in SV

classification and annotation [8]. Read depth methods

(e.g. [9]) belong to another type of method that does

not show the exact breakpoints.

Assembly and split-read mapping methods are the

alternative approaches that can find exact breakpoints of

SVs. One representative method using split-read map-

ping is the program Pindel [10]. Sometimes a reads

mapping program cannot properly map a pair of reads.

There are multiple causes for unmapped reads, e.g.

errors in sequence reads. The presence of SVs may also

cause some reads to be unmappable. In the case of dele-

tions, for example, when a read contains breakpoints of

a deletion site, the read will contain two parts: one from

the region prior to the deletion site and one from the

region following the deletion site. The read may be

unmappable because the read is a concatenation of the

two parts and is not contained in the reference genome.

The pairs with one read mapped and the other read

unmapped are used in the split-read mapping methods.

The mapped read in the pair is used as an anchor. The

other read is split in the middle and then the two parts

are attempted to map to the reference genome. If

mapped correctly, the mapped split reads may reveal

where the deletions occur. Recently there are more

methods dedicated to find exact breakpoints. SRiC [11]

is a split-read method mainly works on longer single

reads like the Sanger and 454 reads. AGE [12] maps an

assembled contig to a reference genome to detect the

exact breakpoints of multiple SVs. There are also meth-

ods (e.g. CREST [13]) that do not detect the breakpoints

themselves but rely on the exact breakpoints provided

by mapping tools (through soft-clip mapping). A disad-

vantage of split-read mapping is that mapping split

reads with a large gap is usually less efficient. Moreover,

split reads may be mapped to wrong locations due to

noises in the reads. Also, for the SVs with a breakpoint

in a repetitive region, mapping may fail.

Despite there are increasing number of developed

methods, calling structural variations from real sequence

data remains a challenging computational problem. The

challenges for calling structural variations with real

sequence data include: (i) sequence data tends to be

short and noisy (i.e. containing sequence errors or arti-

facts caused by errors in reads mapping), (ii) much cur-

rent sequence data is at low coverage, and (iii) the

volume of sequence data is often large. Therefore, much

work is still needed to develop more accurate and effi-

cient approaches for structural variation calling with

low-coverage sequence data.

Recently, we have developed a computational

approach for calling deletions from low-coverage

sequence data [14]. This approach (implemented in the

program SVseq1) integrates two existing deletion call-

ing approaches (namely discordant insert size analysis

and split-read mapping), and thus in principle it uti-

lizes more information contained in the reads than the

pure split-read mapping approaches. Since sequence

data tends to be noisy, it is important to utilize more

information contained in the data when calling dele-

tions. Briefly, SVseq1 first tries to split a read (that

cannot be mapped as a whole) and maps the prefix

and suffix parts in two regions. The gap between the

two mapped regions of the split read may correspond

to a deletion. Since there may be more than one way

of splitting for some reads and some mapped split

reads may only be artifacts of sequence and/or map-

ping errors, we filter the candidate deletions (from the

split-read mapping) using discordant insert size analy-

sis. That is, we call a candidate deletion a true deletion

only when the candidate deletions are supported by

the discordant insert size analysis. Simulation results

in [14] show that our method outperforms an existing

method [10].

Our work in [14] makes progress toward improving

deletion calling from sequence data. However, we notice

that it has several disadvantages. The most severe issue

is that it is difficult to determine the best way for split-

ting reads: due to noise in reads, there may be many

equally good ways for splitting the reads. This not only

leads to longer running time (due to the need to exam-

ine more candidate deletions), but also may introduce

false positives. Moreover, split-read mapping tends to be

slow especially for genome-scale data. At last, only dele-

tion calling is supported in [14] and obviously other

types of structural variations (e.g. insertions) may also

be of interests to many downstream applications.

In this paper, we present our recent work that

improves upon SVseq1 [14]. Our new approach is

implemented in the program SVseq2. The following lists

the main features of SVseq2.

1. Like SVseq1, SVseq2 calls deletions (and inser-

tions) with exact breakpoints.

2. SVseq2 achieves more accurate calling through

split-read mapping on focal regions. SVseq2 also has

a much desired feature: there is no need to specify

the maximum deletion size, which is often needed

by other methods (e.g. [10,14]). SVseq2 is also much

faster because it only needs to examine a small num-

ber of ways of splitting the reads.
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3. SVseq2 utilizes new features of sequence reads

mapping tools. Latest sequence reads mapping (e.g.

BWA [3]) provides partial reads mapping (called

soft-clips in BWA). These partially mapped reads are

often provided in the sequence data. SVseq2 relies

on the soft-clip mapping provided by reads mapping

tools in part of the split-read mapping. This makes

SVseq2 faster than SVseq1 and some other similar

deletion finding programs (e.g. [10]).

4. SVseq2 is also easier to use: it only needs mapped

sequence data (stored in a BAM file) and reference

genome (stored in FASTA format) as input.

5. SVseq2 supports insertion calling from low-cover-

age sequence data.

Methods
SVseq2 is mainly designed to reduce the number of

falsely mapped split reads. In our previous method

SVseq1 [14], split-read mapping is performed on a

genomic region whose length depends on the maxi-

mum size of deletions to detect. Then, each mapped

split read introduces a candidate deletion, which is

then filtered through discordant pair analysis. Suppose

one wants to find deletions up to 1 Mb long, SVseq1

needs to search for a region roughly 1 Mb long on the

reference genome. Due to errors in reads and repeats

in the genome, there may be many “hits” when split

reads are mapped. Many falsely mapped splits reads

are filtered with discordant pairs, but some may hap-

pen to pass the filtering step. Also, when the number

of hits is large, it can be slow in finding all the hits

and evaluating them. SVseq2 takes a different approach

in calling deletions:

1. The mapped segment of a split read (from soft-

clip mapping) is used as the starting point of split-

read mapping. This utilizes new features of read

mapping tool and speeds up the computation.

2. To locate the soft-clipped segment of the split

read, we infer a focal region (i.e. the region that

highly likely where the soft-clipped segment may be

mapped) using the discordant read analysis. We will

explain in the following how this step is performed.

3. The focal region is usually much shorter and thus

there is less chance to introduce false positives. We

then search for the occurrence of the second seg-

ment within the focal region using a semi-global

alignment algorithm.

For insertions, SVseq2 also uses soft-clip mapping in

locating the likely insertions. We now give a more

detailed description on how SVseq2 calls deletions and

insertions.

Deletion calling

SVseq2 relies on two types of patterns formed by split

reads to detect deletions.

• Type I pattern: the segment facing the anchor end

is mapped (e.g. Read 1 in Figure 1).

• Type II pattern: the segment away from the anchor

is mapped (e.g. Read 4 in Figure 2).

For type I pattern, the mapped segment of a split read

based on soft-clip mapping faces the anchor. We denote

the mapped location of the mapped segment as [a, b]

(where a <b). To discover a deletion, the soft-clipped seg-

ment needs to be mapped to some region [c, d] (where c

<d <a). We denote the length of the soft-clipped segment

as ls = d - c + 1. Because the length of the true deletion is

not known, some existing split-read mapping methods (e.

g. [10,14]) have a parameter on the maximum distance to

search for the second (i.e. the soft-clipped) segment.

Instead of searching in a large region, SVseq2 only

searches a focal region by the guidance of spanning pairs.

Our goal here is to infer where the soft-clipped segment

is likely to start (i.e. the likely range of c). Our first obser-

vation is: even with low-coverage sequence data, a dele-

tion is still likely to have at least one paired-end read

whose two ends are located on different sides of the dele-

tion (i.e. a spanning pair). Suppose there is a read pair

whose two ends are mapped to [s1 , e1 ] and [s2 , e2 ]

respectively on the reference genome (where s1 <e1 <s2
<e2 ), and this pair is a spanning pair for the deletion,

whose location is determined by the mapping of the soft-

clipped segment of the split read. We let li be the

expected insert size and let s be the standard deviation

of the insert size. Note that li measures the outer distance

of the pair (i.e. the distance of the two farthest points of

the two two reads). We denote the length of the two

reads of the spanning pair as l1 and l2 respectively. Sup-

pose the minimum deletion size to be detected by

SVseq2 is md. SVseq2 sets md to be 50.

We first show where to find spanning pairs for a given

split read.

Lemma 1 For type-I pattern, s2 ≥ a, and with high

probability, we have s2 ≤ a - l1 - l2 + li + 3s.

Proof 1 If s2 < a, then a is not a breakpoint. This does

not agree with our underlying assumption that the

mapped segment [a, b] corresponds to a deletion.

To give an upper bound on s2, note that a is the posi-

tion of the right breakpoint. The rightmost position of e1
on the reference is a - ldel, where ldel is the length of the

deletion. Now since with high probability, the distance

between s2 and e1 is at most li - l1 - l2 + 3s + ldel on the

reference. So with high probability s2 ≤ (a - ldel)+ (li - l1
- l2 + 3s + ldel) = a - l1 - l2 + li + 3s.
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Lemma 1 states where the spanning pairs are very

likely to be located. For a given split read, SVseq2

searches for reads mapped on the reverse strand within

this region for spanning pairs.

Now suppose we find one spanning pair for the given

split read. Recall the spanning pair is mapped to [s1, e1 ]

and [s2, e2]. The following lemma specifies the range of

c (i.e. the starting point of the soft-clipped segment).

Lemma 2 For type-I pattern, e1 - ls ≤ c ≤ a - md - ls .

Moreover, with high probability, we have c ≤ e1 + li - ls -

l1 - l2 + 3s.

Proof 2 Note that the rightmost position a deletion

can end is md bases to the left of a on the reference,

because the minimum deletion size is md. So c ≤ a - md

- ls. Since the spanning pair ([s1, e1], [s2, e2]) spans the

deletion, we know the deletion must occur to the right of

[s1, e1]. The leftmost position of the deletion is thus at

least e1. Since the length of ls is to be mapped (to the

left) from the left end of the deletion, we have c + ls ≥ e1.

We now estimate how large c can be. Note that on the

alternative chromosome (the chromosome with the dele-

tion), the left and right breakpoints of the deletion

become the same, and the left breakpoint of the deletion

must be to the left of the starting position of the right

end of the spanning pair. Thus, on the reference

chromosome, with high probability, the left breakpoint is

no bigger than e1 + li - l1 - l2 + 3s.

Lemma 2 states that we only need to search for the

second segment of the split read within the region [e1 -

ls, min(e1 + li - ls - l1 - l2 + 3s, a - md - ls )]. This

region is called the “focal“ region for the split read

being mapped and a spanning pair. In most current

sequence data, the focal region is relatively small. For

example, suppose ls = 50 (taken from a read of 100 bps

long), l1 = l2 = 100, li = 200 and s = 50. Then the width

of the focal region is not larger than 200. This is much

smaller than the focal region that the original split-read

mapping would have searched (which can be as long as

1 Mbps). Also, from Lemma 1, the width of the region

for spanning pairs is at most 150.

The processing of split reads with type II pattern is

similar in many aspects to that of type I pattern. A main

difference between type I and type II patterns is that

type II pattern does not need additional spanning pairs

because the paired-end read itself is a spanning pair.

This imposes an additional constraint on the focal

region. Suppose the mapped segment of the split read is

located at [a, b] and the mapped anchor is located at [s,

e] (where a <b <s <e as shown in Figure 2). We let [c,

d] be the location of the soft-clipped segment of the

Figure 1 Type I pattern of deletion calling. Read 1 is a split read. Read 2 is a spanning pair. Read 3 is a pair on the other haplotype without

the deletion.

Figure 2 Type II pattern of deletion calling. Read 4 itself is a spanning pair. The left end is split.

Zhang et al. BMC Bioinformatics 2012, 13(Suppl 6):S6

http://www.biomedcentral.com/1471-2105/13/S6/S6

Page 4 of 11



split read on the reference (where b <c <d). We let ls =

d - c + 1 be the length of the soft-clipped segment. We

let l1 and l2 be the length of the two reads (i.e. l2 = e - s

+ 1). md, li and s are defined as before. The following

lemma specifies where the soft-clipped segment is

allowed to map.

Lemma 3 b + md ≤ c ≤ s. Also, with high probability,

we have s - li - ls + l1 + l2 - 3s ≤ c ≤ s.

Proof 3 Note that the leftmost position a deletion can

start is md bases to the right of b on the reference,

because the minimum deletion size is md . Also, the

breakpoint cannot go to the right side of s for there is no

split on the anchor.

Note that the position of soft-clipped segment is con-

strained by the anchor position and the insert size. So

the second inequality follows the same reasoning as in

Lemma 2.

Lemma 3 states that we only need to search for the

second segment of Type II pattern of the split read

within the focal region [max(b + md, s - li - ls + l1 + l2 -

3s), s]. For the cases when the split read is on the

reverse strand, the method applied on them is essen-

tially the same as when they are on the forward strand.

Our experience indicates that type I pattern is usually

more reliable then type II pattern, because less errors

are expected at the head of Illumina reads. Thus SVseq2

gives type I pattern higher weights than type II pattern

when calling deletions. The weight of type I pattern is

set to 3, and the weight is set to 1 for type II pattern. A

cutoff value on the total weight (i.e. the sum of weights

of supporting reads for a deletion) is used by SVseq2.

The default cutoff value is set to 3, i.e. at least one type

I pattern read is required or at least three type II pattern

reads are required when there is no type I pattern read.

To search for the occurrence of a soft-clipped seg-

ment within a inferred focal region, SVseq2 uses a semi-

global alignment algorithm, as illustrated in Figure 3.

Briefly, we want to map the entire soft-clipped segment

within the focal region. Thus, the gaps outside of the

aligned positions for the focal region are without pen-

alty, while we set the gap penalty within the read to 3.

The similarity score is 1 for matches and -1 for mis-

matches. Since the focal region and the read are rela-

tively short (e.g. several hundreds at most for the focal

region and less than one hundred for Illumina reads),

split-read mapping with sequence alignment can be per-

formed relatively fast.

Since the above split-read mapping method starts

from soft-clip mapping, its accuracy depends on how

accurate the soft-clip mapping is. Because soft-clip map-

ping is found through local sequence alignment, some-

times errors can be introduced by soft-clip mapping.

We observe that one possible error in soft-clip mapping

occurs when there is a gap in the soft-clip mapping. As

shown in Figure 4, soft-clip mapping may align a seg-

ment longer than that in the true split read by introdu-

cing a false gap, while the true alignment can be

achieved without gap by mapping a longer soft-clipped

segment to a later position. When this occurs, the

length of the detected deletion can be different from the

real length. SVseq2 addresses this potential problem by

using an adjustment step, which tries to find an opti-

mized mapping of the entire read by avoiding errors (i.e.

as shown in Figure 4). During the adjustment step, we

examine all supporting split reads for some deletion. If

each of the split reads can be adjusted to achieve a bet-

ter mapping (i.e. by rearranging the split-read alignment

as shown in Figure 4), then SVseq2 removes the gaps

within these reads and adjusts the length of the deletion

accordingly. If the reads do not agree with each other in

terms of splitting positions, then SVseq2 takes a voting

scheme by choosing split reads with higher alignment

scores.

In practice, there may be more than one spanning

pairs for a candidate deletion (corresponding to a split

read). When the deletion is heterozygous in a diploid

genome, Some spanning pairs may originate from the

copy without the deletion while others from the copy

with the deletion. Some other spanning pairs may be

due to mapping errors. One possible scheme is to find a

“consensus” focal region by combining information pro-

vided by multiple spanning pairs. SVseq2 simply takes

the union of all the focal regions from all the possible

spanning pairs. This is because there could be mapping

errors in the spanning pairs, and thus SVseq2 takes a

conservative estimate of the focal region. Our experience

shows that the overall focal region is still relatively small

and searching for split read can be performed relatively

efficiently.

Insertion finding

SVseq2 uses the reads with head segments mapped with

low quality (contains too many gaps or is soft-clipped)

to detect insertions. (Here a head segment means the 5’

Figure 3 SVseq2 uses a semi-global alignment algorithm. The gaps “GTTCTAAGCC” and “GAATCACTTGGA” are without penalty. The gap at

“TAC” and “T-C” are with penalty 3. The T-A mismatch are scored -1. Other Matches are scored 1 each. Total score is 23.

Zhang et al. BMC Bioinformatics 2012, 13(Suppl 6):S6

http://www.biomedcentral.com/1471-2105/13/S6/S6

Page 5 of 11



portion of a read.) In particular, SVseq2 uses type III

pattern: two mapped segments of split reads overlap but

the two whole reads cannot be aligned well (see Figure

5). Both reads are from properly mapped pairs, and

both have low quality mapping or soft-clip at the head

segment. We consider a split read that has its tail

mapped on the reverse strand. If another split read is

from the other direction of the insertion, its split is very

likely to be only located in a small region near the

known breakpoint. For example, in Figure 5, knowing

that read 1 is mapped with a possible breakpoint, then

only the reads that have split in the short Region 1 have

to be examined. As shown in Figure 5, if there is an

insertion, then the heads of the reads are not from the

reference genome. Thus, the overlapped portions of the

two reads are unlikely to be aligned well. On the other

hand, if there is no insertion, then the overlapped por-

tions come from the same genomic region and should

be aligned well. Because the not well mapped segments

are from the heads of the Illumina reads, less errors are

expected in these segments and their alignment is more

reliable.

SVseq2 relies on pair wise sequence algorithm to align

two overlapped reads. The parameters are the same as

Figure 4 Adjustment of breakpoints. Length of a deletion can be adjusted. In the upper case, the left segment is mapped by Smith-

Waterman algorithm with a gap and the length of the deletion is 101. In the lower case, the gap is removed and the length of the deletion is

adjusted to 100.

Figure 5 Type III pattern in finding insertion. Tail segments (portions 1 and 4) are mapped next to each other on the reference. The

sequences of head segments (portions 2 and 3) belong to the inserted sequence.
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for the deletion case. If the score of the mapping over

the length of the overlap is less than 0.1 then the pair is

treated as evidence of a possible insertion. The default

cutoff value of reads supporting an insertion for SVseq2

is 3. That is, at least another read in this region has the

same split and passes the alignment test with the read

in this pair on the different strand.

Results and discussion
We apply SVseq2 on both simulated datasets and real

datasets, comparing with SVseq1 [14] and Pindel 0.2.4d

[10] on accuracy and efficiency. For deletion finding, the

three methods are run on simulated population data,

real individual and pooled data. For insertion finding,

simulated individual data is used. The real sequence

datasets (20101123 Illumina data) consist of the align-

ment files of 18 individuals on chromosome 20. Nine of

the individuals are from the CEU population and the

others are from the YRI population. These alignment

datasets are mapped using BWA with soft-clips on

NCBI human genome 37. The accuracy is evaluated

according to the results by the 1000 Genomes Project

ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/

working/20110719_merged_sv_calls/. The results con-

tain assembled deletions and the ones found by five SV

detection tools of more than 1000 individuals (which

include the ones used in this paper). The methods

include BreakDancerMax1.1 [5], CNVnator [9], Geno-

meStrip v1.04 [15], EMBL/Delly and Pindel [10]. Since

not all of the methods are able to provide exact break-

points of deletions, evaluation of accuracy of methods is

based on both a strict criterion and a less strict criter-

ion. A called deletion is viewed correct by the strict one,

if the length of the called deletion is the same as a dele-

tion in the results by the benchmark. The less strict one

only requires that a called deletion overlaps with a dele-

tion in the benchmark, and at least 50% of the bases of

the called deletion are supported.

Finding deletions using simulated pooled data

The simulated datasets with read length 100 from [14]

are used in this paper to compare SVseq2 to SVseq1

and Pindel in terms of accuracy and sensitivity. The

datasets are simulated from the sequence of chromo-

some 15 (100,338,915 bps in length) of NCBI human

genome 36. The results of the copy number variation

release paper of the 1000 Genomes Project [16] are

based on this version of genome. The deletions of the

45 individuals from the CEU population reported by

[16] are introduced to the simulation datasets

(union.2010_06.deletions.genotypes.vcf.gz). Since the

haplotypes of the deletions are not inferred in the file,

for the heterogeneous deletions we arbitrarily place one

such deletion to one of the two haplotypes of an

individual. Since the deletions are usually far apart from

each other, this may not have big effects on the accu-

racy of the simulation. A tool called wgsim https://

github.com/lh3/wgsim is used with the “-h” option to

generate paired-end reads from the two copies of gen-

omes of an individual. Single nucleotide polymorphisms

and small indels on each genome are simulated using

the default parameters. All the datasets are generated

with base error rate 2%. Paired-end reads are simulated

with read length 100 and “outer distance” 500. Three

datasets with coverage 3.2×, 4.2× and 6.4× are used.

BWA, which provides soft-clips, is used with default

parameters to map these simulated paired-end reads to

the entire NCBI human genome 36.

The performance of finding deletions is compared

among SVseq2, SVseq1 and Pindel, on these pooled

datasets. The results are shown in Table 1. We can see

that SVseq2 usually has the highest accuracy and sensi-

tivity. Pindel usually has a high accuracy but lower sen-

sitivity comparing with the other two methods. Mapping

a soft-clipped segment of a split read to a focal region

reduces the chance that this segment is mapped to

wrong positions. Since the mapping approach of SVseq2

is more accurate, it does not need a higher cutoff to call

deletions (recall that the cutoff value of 3 means that

only one type I pattern read is needed). We can see that

when coverage is higher (6.4×), the sensitivity of SVseq2

and SVseq1 is similar. But when coverage is lower

(3.2×), the sensitivity of SVseq2 is higher than SVseq1.

When the coverage or the frequency of a deletion is

very low, SVseq2 may have a better chance of detecting

it than using the other two methods.

A called deletion is viewed correct in the comparison

in Table 1 if the length of a called deletion is the same

as the simulated length. The split-read approaches have

the advantage of high resolution of breakpoints, while

different approaches such as read depth and read pair

Table 1 Comparison of SVseq2, SVseq1 and Pindel in

simulation.

Coverage Tool Findings True
Positive

Accuracy
(%)

Sensitivity
(%)

3.2× SVseq2 114 112 98 85

SVseq1 111 108 97 82

Pindel 91 90 99 68

4.2× SVseq2 113 112 99 85

SVseq1 117 109 93 83

Pindel 91 90 99 68

6.4× SVseq2 123 120 98 91

SVseq1 128 120 94 91

Pindel 103 102 99 77

Reads of length 100 on chromosome 15 with 132 deletions are simulated. The

cutoff value of SVseq2 is 3. The cutoff value is 3 for SVseq1 and Pindel.

Number of findings and true positives in each setting are reported.
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methods are not suitable to find the exact breakpoints.

The 132 deletions introduced into the simulation are

only from 45 individuals of the CEU population on one

chromosome, but the frequencies of the lengths of these

deletions (see Figure 6) show the same trend with the

frequencies of the deletions found by the 1000 Genomes

Project (refer to Figure 2a of [16]). SVseq2 is able to

detect both smaller and larger deletions. For example, in

the 6.4× coverage setting, SVseq2 finds all the 6 larger

deletions with length > 7, 000 and Pindel misses one

deletion. For the 33 deletions with length in range 1,

000 to 7, 000, SVseq2 finds 29 and Pindel finds 25 dele-

tions. For the 93 smaller deletions with length < 1, 000,

the numbers are 85 and 72, respectively. The effective-

ness of the SV finding methods may also be affected by

sequence coverage. For example, CNVnator [9] is a read

depth method that is very accurate on the 1000 Gen-

omes Project’s trio data. The resolution of breakpoints

is also high when it is applied on high coverage data.

But it does not perform as well on the low-coverage

datasets, e.g. when it is applied on the 6.4× coverage

data using bin size of 30, 100, 500 and 1, 000, CNVnator

reports 510, 120, 74 and 53 deletions, with 44, 35, 14

and 8 correct (if the region of a reported deletion over-

laps with the true region) respectively.

Finding deletions using real individual data

The sequence data of five individuals from YRI popula-

tion used by the 1000 Genomes Project is used to com-

pare SVseq2, SVseq1 and Pindel on real individual data.

The number of findings and true positives are shown in

Table 2.

Using individual sequence data, SVseq2 is able to uti-

lize split reads to call more deletions than SVseq1 and

Pindel even when the coverage is very low. With cutoff

value 3, SVseq2 finds the largest number of deletions

and a large portion has supports by the benchmark. If a

higher cutoff value 4 is used, most of the called dele-

tions are supported by the benchmark. The number of

findings is still larger than SVseq1 and Pindel, when

using cutoff value 4.

Finding deletions using real pooled data

Sequence reads from 9 individuals from CEU population

are pooled together, and reads from 9 individuals from

YRI populations are pooled together. SVseq2, SVseq1

and Pindel are tested using these two pooled datasets.

Results are shown in Table 3.

Using pooled data, all three methods are able to find

more deletions than using individual data. SVseq2 finds

more deletions using cutoff value 3 but false positive

Figure 6 Lengths of the deletions used in the simulation. Histogram of the lengths of 126 deletions in the simulation with length less than

7, 000. There are other 6 deletions with length range from 7, 688 to 160, 798.
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rate is increased too. Quite a portion of deletions found

by SVseq2 using cutoff value 3 are missed by using cut-

off value 4. Even pooling nine individuals together,

many less frequent deletions still belong to single indivi-

duals. Because the sequence coverage is low, only one

split read with soft-clipped mapping covers such a dele-

tion (recall that the cutoff value 3 means one type I

read). The quality of soft-clipped mapping provided by

the mapping tools matters in finding SVs. If a mapping

tool fails to perform soft-clip mapping on a split read,

then this read is not used by SVseq2. By pooling more

data from more individuals, more deletions are likely to

be found by SVseq2.

Simulation results for insertion

There are fewer insertion finding methods than dele-

tion finding. Also, fewer insertions have been called

and released than deletions. To simulate insertion, the

release (CEU.trio.2010_06.novelsequences.sites.vcf) of

the NA12878 individual is used in this paper. This

individual has been sequenced at high coverage and

the 1000 Genomes Project has released some inserted

sequences of this individual. Chromosome 4 of NCBI

human genome 36 is used in the simulation, since

there are 13 (the highest number of) inserted

sequences on this chromosome in the release for this

individual. Each insertion is treated to be heterozygous

and added into an arbitrary haplotype. Illumina reads

with 20× coverage (so that each inserted sequence has

10× coverage) are simulated using wgism https://

github.com/lh3/wgsim with insert size 230 and read

length 100. The reads are mapped using BWA. Both

SVseq2 and Pindel 0.2.4.d are tested to find insertions.

SVseq2 finds 10 insertions with 9 true positives. Pindel

finds 2 insertions, both of which are correct. One is

found as “LI” and the other is found as “SI”. The large

insertion reported by Pindel as “LI” has 6 split reads

supporting it, where 3 out of 6 are from the forward

strand and the other 3 are from the reverse strand.

Even at 20× coverage, split reads of type III pattern

are not common in this simulation study. This simula-

tion shows that SVseq2 is able to use fewer supporting

reads to call insertions.

Running time

Because the mapping of SVseq2 is performed on focal

regions, the algorithm of SVseq2 is usually faster than

SVseq1 and Pindel. The run time of SVseq2, SVseq1

and Pindel is compared in this paper on one dataset.

The file (NA19312.chrom20.ILLUMINA.bwa.LWK.low_-

coverage.20101123.bam) from the 1000 Genomes Pro-

ject is used. The chromosome is 63, 025, 520 bps in

length and the file is about 5.4× coverage. Running time

of the three methods with different settings is shown in

Table 4. Each method is run using one thread on a

3192 MHz Intel Xeon workstation. It can be seen that

SVseq2 is the fastest among the three methods in calling

deletions. SVseq2 also runs faster in calling insertions

than Pindel. Also note that the running time of SVseq1

and Pindel depends on the maximum event size. It can

be seen that, if the maximum event size is set higher,

both SVseq1 and Pindel will take even longer time to

run. Before running SVseq1 and Pindel, running some

additional scripts is needed to collect inputs for these

two programs. Such preprocessing may take several

minutes, which are not included in the table. SVseq2

takes the BAM file as input and there is no additional

preprocessing.

Table 2 Comparison of SVseq2, SVseq1 and Pindel using real individual data.

SVseq2(3) SVseq2(4) SVseq1 Pindel

F SE SO F SE SO F SE SO F SE SO

NA19311 48 38(79%) 44(92%) 24 24(100%) 24(100%) 15 14(93%) 14(93%) 3 2(67%) 2(67%)

NA19312 47 27(57%) 32(6872%) 19 16(84%) 16(84%) 28 12(43%) 20(72%) 9 2(22%) 7(78%)

NA19313 70 23(33%) 43(61%) 27 16(59%) 22(81%) 70 21(30%) 51(73%) 14 3(21%) 12(85%)

NA19316 17 14(82%) 16(94%) 4 3(75%) 4(100%) 3 2(67%) 3(100%) 7 5(71%) 6(86%)

NA19317 28 18(64%) 22(79%) 13 10(77%) 10(77%) 6 4(67%) 4(67%) 4 2(50%) 4(100%)

SVseq2 is run with cutoff values 3 and 4. The cutoff value is 3 for SVseq1 and Pindel. F stands for “Findings”, SE for “Supported by exact breakpoints” and SO for

“Supported by overlap”. Numbers in the parenthesis are accuracies.

Table 3 Comparison of SVseq2, Svseq1 and Pindel using real pooled data.

SVseq2(3) SVseq2(4) SVseq1 Pindel

F SE SO F SE SO F SE SO F SE SO

CEU 108 43(40%) 72(67%) 39 26(67%) 36(92%) 258 48(19%) 99(38%) 30 19(63%) 25(83%)

YRI 195 77(39%) 133(68%) 84 55(65%) 68(81%) 131 54(41%) 101(77%) 112 38(34%) 77(69%)

SVseq2 is run with cutoff values 3 and 4. The cutoff value is 3 for SVseq1 and Pindel. F stands for “Findings”, SE for “Supported by exact breakpoints” and SO for

“Supported by overlap”. Numbers in the parenthesis are accuracies.
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Conclusions
There are four types of methods that use high through-

put sequencing data to call SVs. Read depth methods

and assembly methods usually need data with higher

coverage. Read pair methods and read depth methods

are not able to find exact breakpoints of SVs. Split-read

mapping methods may find exact breakpoints of some

SVs with low-coverage data. However, split-read map-

ping alone usually leads to significant false positives.

Combining split-read mapping with other types of

methods may increase the power in finding SVs. In this

paper we describe an improved split-read mapping

method to call SVs using low-coverage sequence data.

We show that by using read pairs with discordant insert

sizes, split-read mapping can be applied as mapping a

segment of a split read on a focal region. Using the lem-

mas in the Methods section, we show that the length of

the focal region can be much smaller than the maxi-

mum deletion size. Mapping split reads within a small

focal region reduces the chance that a segment is

aligned to incorrect positions. Thus, mapping split reads

within focal regions leads to both higher accuracy and

shorter running time. Applying on several datasets, we

show that SVseq2 outperforms some other methods in

both accuracy and efficiency. SVseq2 is more powerful

compared to these methods when using very low cover-

age sequence data.

The split-read mapping approach in SVseq2 can still

be improved, e.g. to better model the error patterns of

high throughput sequencing data. For the situation

when there are repeats in focal regions, insert size analy-

sis might be helpful in finding correct mapping.

Availability
The program SVseq2 can be downloaded at http://www.

engr.uconn.edu/~jiz08001/.
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