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ABSTRACT
We present an improved method for predicting the Sunyaev–Zeldovich (SZ) effect in galaxy
clusters from spatially resolved, spectroscopic X-ray data. Using the deprojected electron
density and temperature profiles measured within a fraction of the virial radius, and assuming
a Navarro–Frenk–White mass model, we show how the pressure profile of the X-ray gas can be
extrapolated to large radii, allowing the Comptonization parameter profile for the cluster to be
predicted precisely. We apply our method to Chandra observations of three X-ray-luminous,
dynamically relaxed clusters with published SZ data: RX J1347.5–1145, Abell 1835 and
Abell 478. Combining the predicted and observed SZ signals, we determine improved estimates
for the Hubble constant from each cluster and obtain a weighted mean of H 0 = 69 ± 8 km s−1

Mpc−1 for a cosmology with �m = 0.3 and �� = 0.7. This result is in good agreement with
independent findings from the Hubble Key Project and the combination of cosmic microwave
background and galaxy cluster data.

Key words: cosmic microwave background – cosmology: observations – distance scale –
X-rays: galaxies: clusters.

1 I N T RO D U C T I O N

The inverse Compton scattering of cosmic microwave background
(CMB) photons by hot electrons in galaxy clusters leads to a dis-
tortion of the CMB spectrum along the line of sight, known as the
Sunyaev–Zeldovich (SZ, Sunyaev & Zeldovich 1972) effect. The
magnitude of the SZ effect is determined by the Comptonization
parameter of the cluster gas, y(r), which is proportional to the line-
of-sight integral of the gas pressure.

It was recognized swiftly (Silk & White 1978; Cavaliere, Danese
& de Zotti 1979) that for an assumed, simple geometry, the com-
bination of X-ray and SZ observations can be used to measure the
angular diameter distance to a cluster. The ratio of the observed
(based on radio/submillimetre observations) and predicted (based
on X-ray observations) SZ signals is proportional to the square
root of the angular diameter distance, making this, potentially, an
exceptionally powerful technique for probing the cosmic distance
scale.

Although the SZ effect is now employed frequently to determine
extragalactic distances (e.g. Mauskopf et al. 2000; Carlstrom et al.
2001; Jones et al. 2001; Mason, Myers & Readhead 2001; Reese
et al. 2002), most studies to date have relied on the application of the
β-model (Cavaliere & Fusco-Femiano 1978) in their X-ray analy-
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ses. The β-model provides a simple analytical approximation to the
spatial distribution of the cluster gas. These studies have also gener-
ally assumed isothermality and relied on broad-beam measurements
of the mean, emission-weighted temperature when calculating the
gas pressure.

With the Chandra X-ray Observatory and XMM–Newton it is now
possible to measure the temperature, density and pressure profiles
of the cluster gas precisely. The surface brightness distribution, in
particular, can be resolved on subarcsecond scales. Chandra obser-
vations have shown that β-models do not, generally, provide good
descriptions of the X-ray gas distributions in the cores of dynam-
ically relaxed clusters, and that the gas temperature is not isother-
mal but drops sharply within cluster cores (e.g. Allen, Schmidt
& Fabian 2001b; Schmidt, Allen & Fabian 2001; Kaastra et al.
2004). The main limitation of the new X-ray observations is that
(due to background levels and restricted fields of view; 8 × 8 ar-
cmin2 for the Chandra ACIS-S detector) the gas temperature can
only be measured directly out to radii r � one-third of the virial
radius for most clusters. Since predictions of the SZ effect require
the line-of-sight pressure integral through the cluster, extrapolation
of the X-ray results is therefore required for combined X-ray/SZ
work.

In this paper we present a recipe for calculating the predicted SZ
effect in clusters which makes use of the spatially resolved spectro-
scopic techniques described in our earlier work, and which includes
a new method for extrapolating the X-ray pressure profiles beyond
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the directly observed region. Analytical formulae for the electron
density and temperature profiles of the X-ray gas at large radii are
obtained under the assumption of hydrostatic equilibrium. These
can be computed easily and used for SZ analysis. We show that our
method, which takes full account of the observed density and tem-
perature profiles of the X-ray-emitting gas, provides a significant
improvement in accuracy with respect to the standard isothermal
β-model.

The outline of this paper is as follows. In Section 2 we review the
standard β-model approach and describe our improved method. In
Section 3 we apply our method to Chandra X-ray and SZ observa-
tions of three highly X-ray-luminous, dynamically relaxed galaxy
clusters: RX J1347.5–1145 (z = 0.451), Abell 1835 (z = 0.2523)
and Abell 478 (z = 0.088). In Section 4 we use the combined data to
measure the Hubble constant. In Section 5 we compare our results
to those obtained using the standard isothermal β-model approach.
A summary of the results can be found in Section 6.

Unless stated otherwise, all quantities are quoted for a Hubble
constant H 0 = 70 km s−1 Mpc−1, matter density �m = 0.3 and
vacuum energy density �� = 0.7. Error bars correspond to 1σ

(68.3 per cent) confidence.

2 P R E D I C T I N G T H E S Z E F F E C T

2.1 The standard β-model approach

Within the context of the isothermal β-model (Cavaliere & Fusco-
Femiano 1978), the surface brightness profile of a galaxy cluster
can be written as

I (θ ) ∝
[

1 +
(

θ

θc

)2
]−3 β+ 1

2

, (1)

where θ c is the angular core radius and β is the slope parameter. By
calculating the X-ray emission due to hot cluster gas at a temperature
T (e.g. Kaastra & Mewe 1993; Liedahl et al. 1995), one can invert
this to yield the central electron density n e 0 of the corresponding
intrinsic (three-dimensional) electron density profile

ne(r ) = ne 0

[
1 +

(
r

rc

)2
]− 3 β

2

, (2)

where the core radius rc follows from the angular diameter distance
d of the cluster, r c = dθ c.

The Comptonization parameter along a line of sight at an impact
parameter R is defined by

y(R) = 2 σT kB

me c2

∫ ∞

R

ne(r ) T (r )√
r 2 − R2

r dr (3)

(e.g. Birkinshaw 1999, where we have converted the equation into
an integral along radius r). Here σ T is the Thomson cross-section,
kB the Boltzmann constant, c the speed of light, and me the electron
mass. Equation (3) can be integrated analytically for the isothermal
β-model (e.g. Birkinshaw 1999) to give

y(R) = y0

[
1 +

(
R

rc

)2
]− 3

2 β+ 1
2

, (4)

with the normalization constant

y0 = ne 0 rc σT

(
kBT

mec2

)
B

(
1

2
,

3β

2
− 1

2

)
(5)

(Mauskopf et al. 2000), where B(a, b) = 	(a) 	(b)/	(a + b) is the
beta function.

In previous work, the temperature T has usually been taken to
be the mean emission-weighted temperature of the X-ray gas, de-
termined with broad-beam instruments. However, as discussed in
Section 1, observations with the Chandra and XMM–Newton satel-
lites have shown that regular, dynamically relaxed galaxy clusters
are not isothermal. This temperature variation should be accounted
for in the analysis.1

Finally, clusters are not infinitely large, as is usually assumed
when calculating the predicted Comptonization parameter profile
using the β-model. In what follows we show how modern X-ray
data can be used to integrate equation (3) without the assumption
of isothermality, taking account of the finite size of galaxy clusters.
In particular, where the region of the cluster directly observed in
X-rays is small, the use of an extrapolation procedure like the one
described here can become important.

2.2 An improved approach

2.2.1 Discretization of the y-parameter calculation

In order to calculate the expected y-parameter profile (equation 3)
for a particular galaxy cluster, the temperature profile T(r) and the
electron density profile n e(r ) need to be known. In practice, depro-
jection analyses of Chandra or XMM–Newton data (e.g. Schmidt
et al. 2001, and references therein) provide the electron density and
X-ray gas temperature in N discrete shells, with inner and outer radii
r in,i and r out,i , respectively. We can thus recast equation (3) into a
sum starting with shell j at impact parameter R:

y(R) = 2 σT kB

me c2

[
ne,j Tj

√
r 2

out,j − R2

+
N∑

i=j+1

ne,i Ti

(√
r 2

out,i − R2 −
√

r 2
in,i − R2

)]
. (6)

For clusters with temperatures above about 8 keV, relativistic cor-
rections also become significant. Analytic and fitting relations for
the relativistic corrections to the SZ effect have been worked out
by several groups: Challinor & Lasenby (1998), Itoh, Kohyama &
Nozawa (1998) and Sazonov & Sunyaev (1998). Using the analyt-
ical formulae of Challinor & Lasenby (1998) up to second order,
we determine the relativistic correction factor χ that needs to be
applied to each summand of (6), so that yi → χ (Ti)yi.

2.2.2 Extrapolation of the temperature and gas density profiles

In the case of the Chandra X-ray Observatory, the detector size and
the particle background limit the regions of clusters for which direct
temperature measurements can be made (r � r 1) to a fraction of the
virial radius. In order to calculate the predicted Comptonization
parameter precisely, we need to extrapolate the temperature and
electron density profiles out to the edge of the cluster, r2 – or at least
past the point where significant contributions to y(r) are made. Here,
for convenience, we will set r 1 = r 2500 and r 2 = r 200 (corresponding
to the radii within which the mean enclosed mass density is  =
2500 and  = 200 times the critical density of the Universe, ρ crit(z),

1 Uncertainties in the determination of the distance scale associated with
the assumption of isothermality were previously discussed by, e.g. Inagaki,
Suginohara & Suto (1995) and Yoshikawa, Itoh & Suto (1998).
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at redshift z, respectively). r2500 is typical of the outer radii for which
useful information on the gas temperature profile can be obtained
from Chandra observations. r200 is used to mark the outer edge of
the cluster. (In Section 6 we shall show that the precise choice of r2

does not affect the results significantly.)
We parametrize the total mass distributions in the clusters using

a Navarro–Frenk–White (1995, NFW) model

ρ(r ) = ρcrit(z) δc

(r/rs) (1 + r/rs)
2 , (7)

where ρ(r ) is the mass density, rs is the scale radius,

ρcrit = 3H (z)2

8πG
,

H(z) is the Hubble constant, G is the gravitational constant,

δc = 200

3

c3

ln(1 + c) − c/(1 + c)
,

and c is the concentration parameter with c = r 200/r s.
The temperature T (r 1), electron density n e(r 1), and gas mass-

weighted temperature Tm,r1 within r1 are assumed to be known from
direct spatially resolved spectroscopy. We extrapolate the electron
density from r1 to r2 using a power-law model n e(r ) ∼ r−γ . The
hydrostatic equation is then used to determine the temperature so-
lution T(r) for that power-law electron density profile in the given
NFW potential (see Appendix A).

We fit the exponent γ of the electron density profile so that the
model complies with two fixed quantities:

(i) the observed temperature T (r 1) at r1;
(ii) the gas-mass weighted temperature Tm,r2 at r2.

The power-law model approximates the true electron density pro-
file between r1 and r2. (It is assumed that the galaxy cluster ends at
r2.) To determine the gas-mass weighted temperature Tm,r2 within
r2, we use the Lokas & Mamon (2001) solution for the radial de-
pendence of the ratio of kinetic energy W kin and potential energy
W pot in an NFW potential with an isotropic velocity dispersion.
The key assumption here is that the gas-mass weighted temperature
Tm,r inside a radius r is proportional to the kinetic energy of the mass
distribution inside this radius (e.g. Eke, Navarro & Frenk 1998). We
then calculate the change, q, of the ratio W kin/W pot between r1 and
r2 as

q = Wkin(r1)/Wpot(r1)

Wkin(r2)/Wpot(r2)
= Tm,r1/ [Mtot(r1)/r1]

Tm,r2/ [Mtot(r2)/r2]
, (8)

where M tot(r ) is the total enclosed mass within radius r. The quantity
q can be computed as a function of the scale radius rs and the
concentration parameter c of the NFW profile using the analytical
formulae included in Appendix B.

Thus, given both the gas-mass weighted temperature Tm,r1 at r1

and a specific NFW mass model from the Chandra data, the gas-
mass weighted temperature Tm,r at r2 can be obtained from equa-
tion (8). For the correct electron density slope γ , this is equal to
the temperature that follows from the temperature solution (equa-
tion A3) and gas density profile ρ g(r ) [for which we assume
ρ g(r ) = 1.1345 m p n e(r )] via the integral

Tm,r2 = 1

Mg,r2

(
Mg,r1 Tm,r1 + 4π

∫ r2

r1

T (r )ρg(r )r 2 dr

)
, (9)

where M g,r is the gas mass inside the radius r.
We note that in cases where the X-ray data only extend to radii

r 0  r 2500 (within which cooling and/or heating effects may have

modified Tm,r0 significantly), one should extrapolate the gas density
(Appendix A) from r0 to r200, use this extrapolation to estimate the
gas temperature and density at r 1 = r 2500, and then apply equation
(8) between r2500 and r200 as usual. (This is possible because the
extrapolation recipe is attached continuously to the Chandra data so
that Tm,r can be calculated for any exponent γ of the electron density
extrapolation, regardless of where we attach the extrapolation.) We
show below that this approach leads to robust answers in the case
of Chandra observations of Abell 478, where the data cover only a
relatively small radial range.

3 A P P L I C AT I O N TO P U B L I S H E D C H A N D R A
A N D S Z O B S E RVAT I O N S

In this section we apply our method to Chandra and SZ observa-
tions of three galaxy clusters: RX J1347.5–1145, Abell 1835 and
Abell 478. The X-ray data were originally published by Allen,
Schmidt & Fabian (2002), Schmidt et al. (2001) and Sun et al.
(2003), respectively.

3.1 Analysis of the X-ray data

Inside the region accessible to Chandra, the deprojected temperature
and electron density profiles for the X-ray gas can be determined
directly (under the assumption of spherical symmetry) using the
methods described by Allen, Ettori & Fabian (2001a) and Schmidt
et al. (2001). These data are then used to calculate the 68 per cent
(1σ ) confidence region of NFW mass models that provide the best-
fit to the Chandra data. The results on the NFW mass models for
RX J1347.5–1145, Abell 1835 and Abell 478 are summarized in
Table 1.

We have carried out the extrapolation procedure described in
Section 2.2.2 for every mass model within the 68 per cent con-
fidence region obtained for each cluster. The radii r1 and r2, the
temperature Tr1 , the ratio q (equation 8) calculated using the formu-
lae in Lokas & Mamon (2001) and the effective power-law exponent
γ of the electron density distribution for the clusters are given in
Table 2. In the case of Abell 478, the Chandra data do not extend
beyond r ∼ 0.3 h−1

70 Mpc (corresponding to an overdensity  =
8500). Within this radius radiative cooling may have affected the
observed temperature of the cluster gas. Following the instructions
from Section 2.2.2 for such a case, the temperature profile and elec-
tron density profiles were extrapolated from r8500, but the exponent
γ was determined using equation (8) between r2500 and r200.

The application of our extrapolation procedure leads to the tem-
perature and electron density profiles shown in Fig. 1. In this figure,
both the best-fitting profile and allowed range of models are shown.
Note that the small scatter in the electron density profiles is a con-
sequence of the small scatter in the luminosity profile derived from
the Chandra data. The temperature profiles have been binned using
a simple emission-weighting scheme.

For Abell 478, it is also possible to determine the power-law
slope of the electron density distribution beyond r1 using ROSAT

Table 1. Details of the Chandra NFW mass models.

Object Redshift c rs (Mpc)

RX J1347.5–1145 0.451 6.34+1.61
−1.36 0.37+0.18

−0.12

Abell 1835 0.2523 4.21+0.53
−0.61 0.55+0.18

−0.09

Abell 478 0.088 3.88+0.28
−0.36 0.61+0.12

−0.07

C© 2004 RAS, MNRAS 352, 1413–1420

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/352/4/1413/1077645 by guest on 20 August 2022



1416 R. W. Schmidt, S. W. Allen and A. C. Fabian

Table 2. Details of the cluster model extrapolation.

Object r1 r2 T (r 1) Tm,r2 ne(r 1) q γ

(Mpc) (Mpc) (keV) (keV) 10−4 cm−3

RX J1347.5–1145 0.73+0.08
−0.09 2.34+0.40

−0.35 12.13+1.46
−0.41 9.69+1.18

−1.52 8.44+0.82
−0.20 1.25+0.06

−0.05 2.50+0.97
−1.02

Abell 1835 0.67+0.05
−0.03 2.36+0.26

−0.18 11.34+0.20
−0.49 7.97+0.75

−0.63 7.46+0.81
−0.47 1.36+0.05

−0.04 1.88+0.39
−0.20

Abell 478 0.66+0.03
−0.02 2.36+0.18

−0.11 8.29+0.16
−0.21 6.41+0.48

−0.32 5.92+0.60
−0.77 1.40+0.02

−0.04 1.90+0.09
−0.05

observations (Allen 2000). Fitting the ROSAT data between 0.3 Mpc
and 0.9 Mpc yields a slope of γ = 1.84 ± 0.07. This result is
consistent with our model predictions given the expected steepening
of the profile beyond the limit of the ROSAT data.

Finally, we note that the power-law model used in extrapolating
the density profile provides only an approximation to the density
values at large radii. (The true profile will steepen with increasing
radius.) However, the pressure profile – the relevant quantity for
predicting the Comptonization parameter profile – should be pre-
dicted accurately by the extrapolation procedure over the full range
of radii.

Figure 1. Extrapolated temperature and electron density profiles for RX J1347.5–1145, Abell 1835 and Abell 478. The best-fitting profiles are indicated by
the solid lines. The upper and lower envelopes of the model ranges are plotted with dashed lines. For clarity we have only plotted the profiles up to the smallest
 = 200 overdensity radius of each model ensemble (see Table 2).

3.2 Combination with the SZ data

3.2.1 RX J1347.5–1145

Detections of the SZ effect in RX J1347.5–1145 were published
by Pointecouteau et al. (2001, P01) at 142.9 GHz, Komatsu et al.
(2001) at 21 GHz and 150 GHz and Reese et al. (2002, R02) at
30 GHz using the Diabolo, Nobeyama and Owens Valley Radio
Observatory (OVRO) instruments, respectively. The Comptoniza-
tion parameters of all groups are consistent with each other. We
compare the Chandra prediction with the Diabolo detection, which
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has the smaller beam size at 142.9 GHz of the two bolometers
(Diabolo and Nobeyama), as well as a smaller error bar on the
central Comptonization parameter than the OVRO interferometer
result. P01 also published the flux decrement of the background
radiation in four quadrants, which allows us to exclude the south-
east quadrant, which contains hot, probably shocked, gas (Komatsu
et al. 2001; Allen et al. 2002). Recently, Kitayama et al. (2004) have
also carried out a detailed study of the intracluster medium in RX
J1347.5–1145 using SZ observations. They obtain results in good
agreement with those determined from the Chandra X-ray data.

In order to avoid the complicating effects of the shocked gas to
the south-east of the cluster centre in RX J1347.5–1145, only data
from the other three quadrants were used to determine the X-ray
mass model (Allen et al. 2002). P01 published the flux decrements
in the four quadrants, excluding a small square 16.2 × 16.2 arcsec2

region around the nucleus (to avoid contamination by the central
radio source). Adding all four quadrants, they find a flux decrement
of −(39.0 ± 2.8) mJy in a square 100 × 100 arcmin2 area around
the cluster centre. However, this becomes −(26.8 ± 2.4) mJy once
the south-east quadrant is excluded. This is the measurement we use
for comparison with the X-ray data.

The intensity change I due to the SZ effect can be calculated
from the Chandra model. In the Kompaneets approximation (e.g.
Birkinshaw 1999) this is given by

I = I0 y g(x) (10)

where I 0 = 2(k B T0)3/h2 c2,

g(x) = x4ex

(ex − 1)2

[
x(ex + 1)

ex − 1
− 4

]
, (11)

and x = hν/k BT0, with the Planck constant h, observing frequency
ν and microwave background temperature T0. Where relativistic
corrections are significant, the Comptonization parameter y has to
be modified appropriately (Section 2.2.1).

3.2.2 Abell 1835

The detection of the SZ effect in Abell 1835 was published by
Mauskopf et al. (2000, M00) using the SuZIE I and SuZIE II bolo-
meters. R02 have also published a detection using the OVRO inter-
ferometer at 30 GHz, which provides a consistent, but more precise
determination of the Comptonization parameter. Here we compare
our Chandra Comptonization profiles with the co-added SuZIE I
scans published by M00, using their φ = −0.1 arcsec offset of the
X-ray cluster centre from the scan centre. To calculate their differ-
ence channels D3 (two beams separated by 4.6 arcmin) and T123
(triple beam chop of three beams separated by 2.3 arcmin) of the
bolometer array we followed the description given by M00.

3.2.3 Abell 478

Abell 478 was observed by Myers et al. (1997) at 32 GHz and
reanalysed by Mason et al. (2001, MMR). The observed decrement
was published as an average y-parameter, y = 7.52 ± 0.56 × 10−5,
within the telescope beam. Note that we use their value without
the relativistic correction, as we apply this correction to the X-ray
model. We compare the observed SZ decrement with the Chandra
prediction using the beam-switching technique described by Myers
et al. (1997).

4 H U B B L E - C O N S TA N T D E T E R M I NAT I O N

The Comptonization parameter y defined in equation (3) depends
upon the square root of the angular diameter distance to the clus-
ter (Silk & White 1978; Cavaliere et al. 1979). By comparing the
observed Comptonization parameter, yobs, within a given beam or
aperture with the predicted value, ypred, from the X-ray data (for a
given cosmology with H 0 = 70 km s−1 Mpc−1), we can measure
the Hubble constant, e.g. (MMR),

H0 =
(

ypred

yobs

)2

× 70 km s−1 Mpc−1. (12)

Since equation (10) is linear in the Comptonization parameter, these
considerations also apply to the flux decrement F ν = ωI ν (Sec-
tion 3.2), where ω is the solid angle of the emitting area, and I ν

is the intensity decrement.
In order to compare our X-ray-predicted Comptonization param-

eter profiles with the direct SZ observations, we have convolved
the X-ray profiles with the instrument beams for RX J1347.5–1145
[22 arcsec full width at half maximum (FWHM) beam] and Abell
478 (7.35 arcmin FWHM beam and 22.16 arcmin beam switching
as described by Myers et al. 1997). For Abell 1835 we have added an
additional normalization parameter to the NFW parameter space of
scale radius and concentration parameter constrained by the Chan-
dra data (Table 1). To determine the best-fitting value and 1σ error
for this normalization parameter we added the χ2 contribution from
the SuZIE I co-added scans (1.7-arcmin FWHM beam and 2.3-
arcmin or 4.6-arcmin beam separation) to the χ 2 contribution from
the Chandra data. The normalization parameter directly measures
the distance scale and is represented here by the resulting Hubble
constant.

The results for the three galaxy clusters are shown in Table 3. For
quantities with two-sided error bars, the root-mean-square error was
used to determine the error on the Hubble constant. The weighted
mean of the three Hubble-constant determinations in Table 3 is
H 0 = 69 ± 8 km s−1 Mpc−1.

5 C O M PA R I S O N W I T H T H E β- M O D E L
A N D P R E V I O U S S T U D I E S

As the method for calculating the predicted Comptonization profiles
presented here is significantly different from the standard isothermal
β-model approach, it is instructive to compare the results on y(r)
and the Hubble constant obtained with the two approaches.

We have fitted the Chandra surface brightness profiles with a
β-model (equation 1) inside a radius of 2.5 arcmin for RX J1347.5–
1145, 3 arcmin for Abell 1835, and between radii of 1.5 arcmin
and 4.5 arcmin for Abell 478. Note that in the case of Abell 478
the core of the cluster had to be excluded, because the central sur-
face brightness profile is not flat, as is required by the β-model. The
mean, emission-weighted temperatures from single-temperature fits
to the Chandra spectra and the β-model parameters are given in
Table 4. The temperatures were determined using the MEKAL

(Kaastra & Mewe 1993; Liedahl et al. 1995) plasma model. The gas
density normalization n e 0 was calculated from the surface bright-
ness using the MEKAL plasma emission model with the spectroscopi-
cally determined metallicities. Relativistic corrections were applied
as described in Section 2.2.1. Using equation (5), together with
the appropriate relativistic corrections factors, we obtain the central
Comptonization parameters y0 = 1.13 × 10−3 for RX J1347.5–
1145, y0 = 4.2 × 10−4 for Abell 1835 and y0 = 3.5 × 10−4 for
Abell 478.
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1418 R. W. Schmidt, S. W. Allen and A. C. Fabian

Table 3. Results: Column 2 lists the observed quantity used to measure the Hubble constant. Columns 3 and 4 contain the measured and predicted values. The
fifth column lists the observed areas. Column 6 contains the implied Hubble constant (�m = 0.3, �� = 0.7).

Object Quantity Observed Predicted Area H 0 [km s−1 Mpc−1]

RX J1347.5–1145 F ν [mJy] −26.8 ± 2.4 mJy −25.5 ± 2.3 mJy 3 quadrants 63.4 ± 16.1
Abell 1835 SuZIE I scan direct fit 24 arcmin scan 77.5 ± 16.5
Abell 478 ȳ [10−5] 7.52 ± 0.56 7.43+0.12

−0.14 7.35 arcmin FWHM beam 68.3 ± 10.5

Table 4. β-model fits to the Chandra data.

Object T θ c ne 0 β

(keV) (arcsec) (cm−3)

RX J1347.5–1145 12.2 4.8 0.207 0.57
Abell 1835 8.1 9.0 0.100 0.61
Abell 478 6.8 26.6 0.068 0.55

10 100 1000

Figure 2. Best-fitting fully deprojected and extrapolated Chandra Comp-
tonization parameter profiles (solid lines). The results from β-model fits to
the Chandra data are plotted with dashed lines. All profiles are calculated
for H 0 = 70 km s−1 Mpc−1, �m = 0.3 and �� = 0.7.

Fig. 2 shows the best-fitting Comptonization parameter profiles
determined with our new method (solid line) together with the re-
sults from the standard isothermal β-model approach (dashed line).
This plot shows that the Comptonization parameter profiles for the
β-model differ substantially from the profiles obtained using the
new, deprojected/extrapolated solution. First, the overall normal-
ization in the core can be quite different. Secondly, the slope of
the β-model is too shallow at large radii due to the infinite extent
assumed in that model. [We note that the β-model can yield signif-
icantly different answers when applied to other data sets covering
different ranges of radii (Mason et al. 2001; Pointecouteau et al.
2001; Reese et al. 2002). Here we have applied the two approaches
to the same Chandra data simply to enable a direct comparison of
the methods on the basis of the same, well-defined data sets.]

Applying the procedure described in Section 4 to the measured
β-profile parameters yields Hubble constant estimates of H 0 =
32 km s−1 Mpc−1 for RX J1347.5–1145, H 0 = 29 km s−1 Mpc−1

for Abell 1835 and H 0 = 103 km s−1 Mpc−1 for Abell 478. One can
immediately see that the application of the isothermal β-model does
not yield a consistent estimate when applied naively to Chandra data
for the present sample of clusters.

It is also interesting to compare these estimates with pre-
viously published β-model estimates for the clusters discussed
here. We have translated the electron densities from other stud-
ies into our assumed cosmology (�m = 0.3, �� = 0.7 and H 0 =
70 km s−1 Mpc−1).

RX J1347.5–1145: P01 determined a Hubble constant H 0 = 44 ±
6 km s−1 Mpc−1 using a kT = 9.3 keV isothermal model with the β-
model parameters θ c = 8.4 arcsec, β = 0.56 and n e 0 = 0.102 cm−3

from ROSAT (Schindler et al. 1997). Using the same temperature
and a slightly different β-model, R02 found an angular diameter
distance that implies H 0 = 68.2+26.7

−15.8 km s−1 Mpc−1. This estimate
is consistent with the value we obtain using our fully deprojected and
extrapolated cluster model (Table 3). However, the gas temperature
and the other β-model parameters used by R02 are not consistent
with the β-model parameters from Chandra (Table 4).

Abell 1835: For this cluster, M00 measured a Hubble constant
H 0 = 66+38

−22 km s−1 Mpc−1 for a kT = 9.8 keV isothermal model
with the β-model parameters θ c = 13.2 arcsec, β = 0.58 and n e 0 =
0.058 cm−3 from a fit to ROSAT data. This temperature was ob-
tained by allowing for a cooling flow component in the core of
the cluster. R02 obtained an angular diameter distance to the clus-
ter which implies H 0 = 55.4+13.2

−8.8 km s−1 Mpc−1, based on a kT =
8.21 keV isothermal model (no cooling flow correction). The dif-
ference between these two measurements can be attributed to the
different isothermal temperatures and small differences in the as-
sumed β-model parameters. Note also that the β-model parameters
used in these studies are significantly different from those deter-
mined from Chandra (Table 4) over a smaller range of radii. This
explains the difference in the predicted Hubble constant. However,
the M00 result is consistent with the result we obtain from the depro-
jected and extrapolated X-ray data, which shows that it is possible
to correct the β-model partially in the central region of the clus-
ter when the surface brightness profile observed with the ROSAT
field of view is used. For larger radii this approximation will fail,
however, because of the fixed β-model slope.

Abell 478: MMR measured a Hubble constant H 0 =
61+33

−21 km s−1 Mpc−1 assuming an isothermal kT = 8.4 keV model
with the β-model parameters θ c = 1 arcmin, β = 0.64 and
n e 0 = 0.023 cm−3 from ROSAT . This temperature also ac-
counts for the presence of a cooling flow in the cluster core.
Sun et al. (2003) improved upon the result by MMR by
determining the Comptonization parameter as a function of ra-
dius from a deprojection of the Chandra data, and by extrapo-
lating the Chandra data with a β-model based on a fit to the
combined surface brightness profile from Chandra and ROSAT .
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They used β = 0.68 and obtained a Hubble constant estimate
H 0 = 64+32

−18 km s−1 Mpc−1, which lies between our value and the
one obtained by MMR.

6 S U M M A RY A N D D I S C U S S I O N

We have presented a new method for extrapolating the pressure pro-
files of galaxy clusters beyond the region accessible to current X-ray
satellites such as Chandra and XMM–Newton, for use in combined
X-ray and SZ studies. Our method assumes hydrostatic equilibrium,
an NFW mass profile for the clusters and predicts the temperature
profile and an effective power-law slope of the electron density
profile. The method does not assume isothermality and provides a
simple extrapolation recipe that can be easily implemented. We have
applied our method to the Chandra data for three X-ray-bright, dy-
namically relaxed galaxy clusters, RX J1347.5–1145, Abell 1835
and Abell 478, and have obtained detailed temperature, electron
density and Comptonization parameter profiles for these clusters
out to the virial radius.

Since all three clusters have published SZ detections, we were also
able to measure the Hubble constant for each, as shown in Table 3.
The individual measurements are consistent with each other and
yield a weighted mean of H 0 = 69 ± 8 km s−1 Mpc−1. This result is
consistent with findings from the Hubble Key Project (H 0 = 72 ±
8 km s−1 Mpc−1; Freedman et al. 2001) and combined studies of the
cosmic microwave background and X-ray galaxy cluster data (H 0

= 68.4+2.0
−1.4 km s−1 Mpc−1; Allen, Schmidt & Bridle 2003). Note that

our weighted mean value does not include additional systematical
errors, due to, e.g. clumping or asphericity, although for such regular,
relaxed clusters these should be at a minimum.

The contribution to the predicted Comptonization parameter
from material beyond the regions directly observed with Chan-
dra, modelled by our extrapolation procedure, varies from sys-
tem to system. For RX J1347.5–1145 the correction to the Comp-
tonization parameter in the region used in Table 3 amounts only
to 1 per cent and is negligible. For Abell 1835, however, the
contribution from material in the extrapolated region amounts to
20 per cent, and for Abell 478 the contribution rises to 68 per
cent. This shows that a robust extrapolation method is necessary
when combining X-ray and SZ observations to infer cosmological
information.

We have estimated the effect of changing the outer radius r200 by
repeating the calculation for Abell 478, but stopping at r500. This
leads to a 4.2 per cent smaller average Comptonization parameter,
well within the observational error bar.

We have compared the Comptonization parameter profiles pre-
dicted by our method with the profiles obtained by fitting an isother-
mal β-model to the Chandra data. We find that a naive application of
the β-model approach leads to profiles with significantly different
central Comptonization parameters and predicts different slopes for
the Comptonization parameter profiles at large radii. The isothermal
β-model also leads to inconsistent Hubble constant estimates when
applied to the Chandra data sets considered here.

It is clear that for galaxy clusters like Abell 478, a field of view
larger than the one afforded by the Chandra ACIS-S3 detector would
be beneficial. In this respect the combination of Chandra and XMM–
Newton observations will help (e.g. Pointecouteau et al. 2004), al-
though the detector background will still prohibit precise measure-
ments of the temperature profile beyond r ∼ 0.5r 200. (We also note
that the high spatial resolution of Chandra is important in resolv-
ing the central temperature profile and constraining the best-fitting
NFW mass models.)

Observations for a larger sample of clusters, as well as deeper
X-ray and SZ observations, should make this a powerful method to
explore the cosmological distance scale. In the first case, it will be
important to concentrate such studies on the largest, dynamically
relaxed clusters for which systematic uncertainties associated with
the deprojection method and assumption of hydrostatic equilibrium
are at a minimum.
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A P P E N D I X A : A N E X T R A P O L AT I O N
S O L U T I O N F O R T H E X - R AY G A S
T E M P E R AT U R E P RO F I L E I N
A N N F W P OT E N T I A L

Let the mass distribution of a galaxy cluster be parametrized by
an NFW mass model (equation 7). Also, let the electron density
distribution for a certain range of radii be parametrized by a power-
law model

ne(r ) ∼ r−γ . (A1)

The temperature as a function of radius can then be determined under
the assumption of hydrostatic equilibrium by solving the hydrostatic
equation

1

ne

d(ne kT )

dr
= −µmp

GM

r 2
, (A2)

where k is the Boltzmann constant, µ = 0.60 is the molecular weight
of the gas and mp is the proton mass (note that the normalization of
(A1) drops out of this equation). Using the method of the variation
of the constant one finds that is possible to write the solution of (A2)
in the form

kT (r ) =
(

r

r1

)γ
{

kT1 − 4πr 2
s δcρcµmpG

(1 + γ ) r1r 1+γ

×
[

r r 1+γ

1 2 F1

(
− γ, 1; 1 − γ ; − r

rs

)

− r1 r 1+γ
2 F1

(
− γ, 1; 1 − γ ; −r1

rs

)

− rsr
1+γ

1 ln

(
1 + r

rs

)
+ rsr

1+γ ln

(
1 + r1

rs

)]}
, (A3)

with the boundary condition T (r 1) = T1. 2 F 1 is the hypergeometric
function (e.g. Gradshteyn & Ryzhik 2000, p. 995) which is well-
defined on the whole negative real axis and is available in standard
mathematical packages.

A P P E N D I X B : T H E E N E R G Y D I S T R I BU T I O N
O F T H E N F W M A S S D I S T R I BU T I O N

In this Appendix we list the Lokas & Mamon (2001) expressions
for the potential energy W pot and the kinetic energy W kin in an
NFW potential with an isotropic velocity dispersion, as a function
of radius r. The ratio of these quantities is used in Section 2.2.2 to
determine the cluster model extrapolation. It can be calculated from
the concentration parameter c and the scale radius rs.

The radial dependence of the potential energy associated with an
NFW mass distribution with virial radius r 200 = cr s as a function
of (scaled) radius s = r/r 200 is

Wpot(s) = −W∞

[
1 − 1

(1 + cs)2
− 2 ln(1 + cs)

1 + cs

]
(B1)

(equation 21 in Lokas & Mamon 2001), where W ∞ is the asymptotic
value

W∞ = G M2
tot(r200)

2rs[ln(1 + c) − c/(1 + c)]2
. (B2)

The radial dependence of the kinetic energy, assuming isotropic
velocity dispersion, is

Wkin(s) = 1

2
W∞

{
− 3 + 3

1 + cs
− 2 ln(1 + cs)

+ cs[5 + 3 ln(1 + cs)] − c2s2[7 + 6 ln(1 + cs)]

+ c3s3[π2 − ln c − ln s + ln(1 + cs)

+ 3 ln2(1 + cs) + 6Li2(−cs)]

}
(B3)

(equation 24 in Lokas & Mamon 2001), where Li2 is the diloga-
rithm.
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