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ABSTRACT

Data aggregation is an efficient primitive in wireless sensor net-
work (WSN) applications. This paper focuses on data aggrega-
tion scheduling problem to minimize the latency. We propose an
efficient distributed method that produces a collision-free sched-
ule for data aggregation in WSNs. We prove that the latency of
the aggregation schedule generated by our algorithm is at most
16R+∆−14 time-slots. Here R is the network radius and ∆ is the
maximum node degree in the communication graph of the original
network. Our method significantly improves the previously known
best data aggregation algorithm [3], that has a latency bound of
24D+6∆+16 time-slots, where D is the network diameter (Note
that D can be as large as 2R). We conduct extensive simulations to
study the practical performances of our proposed data aggregation
method. Our simulation results corroborate our theoretical results
and show that our algorithms perform better in practice.

We prove that the overall lower-bound of latency of data aggre-
gation under any interference model is max{log n, R} where n is
the network size. We provide an example to show that the lower-
bound is (approximately) tight under protocol interference model
when rI = r, where rI is the interference range and r is the trans-
mission range. We also derive the lower-bound of latency under
protocol interference model when r < rI < 3r and rI ≥ 3r.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Wireless communica-
tion, Network topology; G.2.2 [Graph Theory]: Network prob-
lems, Graph algorithms
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1. INTRODUCTION
Wireless sensor networks (WSNs) have drawn considerable amount

of research interests for their omnipresent applications such as en-
vironmental monitoring, spatial exploration and battlefield surveil-
lance. In WSNs, many issues need to be resolved such as de-
ployment strategies, energy conservation, routing in dynamic en-
vironment, localization and so on. All the issues essentially cor-
relate to collecting data from a set of targeted wireless sensors to
some sink node(s) and then performing some further analysis at
sink node(s) which can be termed as many-to-one communication.
In-network data aggregation [16] is one of the most common many-
to-one communication patterns used in these sensor networks, thus
it becomes a key field in WSNs and has been well-studied in recent
years.

We consider the problem of designing a schedule for data aggre-
gation from within networks to sink node(s) with minimum time-
slot latency. Some of previous research works on in-network ag-
gregation did not consider the collision problem and left it to the
MAC layer. Resolving collisions in MAC layer could incur a large
amount of energy consumption and a large latency during aggre-
gation. Thus, in this paper we mainly concentrate on the TDMA
scheduling problem above the MAC layer. To define the problem
formally, consider a WSN G formed by n wireless nodes V =
{v1, ..., vn} deployed in a 2-dimensional region. vs ∈ V is the
sink node that will collect the final aggregation result. Every node
vi has a transmission range r and interference range rI = Θ(r).
A node vi can send data correctly to another node vj , if and only
if (1) vj is within vi’s transmission range, and (2) vj is not within
interference range rI of any other transmitting node. Every node
vi has an ability to monitor the environment, and collect some
data (such as temperature), i.e., vi has a set of raw data Ai. Let
A = ∪n

i=1Ai and N = |A| be the cardinality of the set A. Then
〈A1, A2, · · · , Ai, · · · , An〉 is called a distribution of A at sites of
V . Data aggregation is to find the value f(A) for a certain function
f , such as min, max, average, variance and so on with minimum
time latency.

The data aggregation scheduling problems have been extensively
studied in recent years. The most related ones are as follows. Huang
et al. [10] proposed a scheduling algorithm with the latency bound
of 23R + ∆ + 18 time-slots, where R is the network radius and
∆ is maximum node degree. However the interference model used
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in [10] is a simple primary interference model: no node can send
and receive simultaneously. Under Protocol Interference Model,
Yu et al. [3] proposed a distributed scheduling algorithm generating
collision-free schedules that has a latency bound of 24D+6∆+16
time-slots, where D is the network diameter.

The main contributions of this paper are as follows. We propose
efficient algorithms that will construct a data aggregation tree and
a TDMA schedule for all links in the tree such that the latency of
aggregating all data to the sink node is approximately minimized.
For simplicity of analysis, we use the following interference model:
when a node v is receiving data from a sender u, v is not within
the interference range rI of any other active sender x. As an il-
lustration, we first present an efficient centralized algorithm that
will build a TDMA schedule of links based on the aggregation
tree which is build distributively. Our schedule uses a bottom-up
approach: schedule nodes level by level starting from the lowest
level. For simplicity of analysis we assume that the interference
range rI = r, and then we prove that the latency of the aggrega-
tion schedule generated by our algorithm is at most 16R + ∆− 14
time-slots. Notice that, for general rI , our algorithm will produce
a collision-free schedule for aggregation whose latency is at most
Θ(( rI

r
)2R+∆) time-slots. We then present an efficient distributed

algorithm that builds an aggregation tree and gives a schedule for
each link. For simplicity, our distributed method assumes that the
clocks of all nodes are synchronized. Unlike our centralized algo-
rithm, our distributed algorithm will not explicitly produce a sched-
ule for links in the aggregation tree. The link schedule is implic-
itly generated in the process of data aggregation. Our distributed
scheduling algorithm thus works well in dynamic networks, as long
as the constructed backbone of the network by our algorithm re-
mains unchanged. Obviously, when rI = r, for a network G with
radius R and the maximum node degree ∆, the latency by any data
aggregation algorithm is at least R. This implies that our algorithm
is within a small constant factor of the optimum. We then conduct
extensive simulations to study the practical performances of our
proposed data aggregation methods. Our simulation results corrob-
orate our theoretical results and show that our algorithms perform
better in practice. We find that data aggregation by our distributed
methods have latency close to R. Besides, we prove that the overall
lower-bound of latency for data aggregation under any interference
model is max{log n, R}. We provide an example to show that the
lower-bound is (approximately) tight under protocol interference
model when rI = r. We also analyze the lower-bound of latency
under protocol interference model when r < rI < 3r and rI ≥ 3r.

The rest of the paper is organized as follows. Section 2 for-
mulates the problem. We present our centralized and distributed
scheduling algorithms in Section 3 and analyze their performances
and prove the overall lower-bound in Section 4. Section 5 discusses
the results in other interferences models. Section 6 presents the
simulation results. Section 7 outlines the related work. Section 8
concludes the paper.

2. SYSTEM MODELS
In this section, we describe the questions to be studied, the inter-

ference models that we will use and some related terminologies.

2.1 Aggregation Functions
The database community classifies aggregation functions into

three categories: distributive (e.g., max, min, sum, count), algebraic
(e.g., plus, minus, average, variance) and holistic (e.g., median, kth

smallest or largest).
A function f is said to be distributive if for every pair of disjoint

data sets X1, X2, we have f(X1 ∪ X2) = h(f(X1), f(X2)) for

some function h. For example, when f is sum, then h can be set as
sum; when f is count, h is sum. A function f is said to be algebraic

if it can be expressed as the combination of k distributive functions
for some integer constant k, i.e.,

f(X) = h(g1(X), g2(X), ..., gk(X)).

For example, when f is average, then k = 2, g1 can be set as
sum, g2 can be set as count (obviously both g1 and g2 are distribu-
tive) and h can be set as h(y1, y2) = y1/y2. When f is vari-

ance, then k = 3, g1(X) =
∑

xi∈X x2
i , g2(X) =

∑

xi∈X xi,

g3(X) =
∑

xi∈X
1, and h(g1, g2, g3) = g1 − g2

2

g3
. In this paper,

we only focus on the distributive or algebraic functions. Hereafter,
we assume that an aggregation function f is given as the following
formula

h(g1(X), g2(X), · · · , gk(X)),

i.e., the functions h, g1, g2, · · · , gk are given in advance. Thus,
instead of computing f , we will just compute yi = gi(X) distribu-
tively for i ∈ [1, k] and h(y1, y2, · · · , yk) at the sink node.

2.2 Network Model
We consider a WSN consisting of n nodes V where vs ∈ V is

the sink node. Each node can send (receive) data to (from) all di-
rections. For simplicity, we assume that all nodes have the same
transmission range r such that two nodes u and v form a commu-
nication link whenever their Euclidean distance ‖u − v‖ ≤ r. In
the rest of the paper we will assume that r = 1, i.e., normalized to
one unit. Then the underneath communication graph is essentially
a unit disk graph (UDG).

Let A, B ⊂ V and A∩B = ∅. We say data are aggregated from
A to B in one time-slot if all the nodes in A transmit data simul-
taneously in one time-slot and all data are received by some nodes
in B without interference. We will define interference at the end of
this section. Then a data aggregation schedule with latency l can be
defined as a sequence of sender sets S1, S2, · · · , Sl satisfying the
following conditions:

1. Si ∩ Sj = ∅, ∀i = j;
2. ∪l

i=1Si = V \ {vs};
3. Data are aggregated from Sk to V \ ∪k

i=1Si at time-slot k,
for all k = 1, 2, · · · , l and all the data are aggregated to the
sink node vs in l time-slots.

Notice that here ∪l
i=1Si = V \ {vs} is to ensure that every data

will be aggregated; Si ∩ Sj = ∅, ∀i = j is to ensure that every
data is used at most once. To simplify our analysis, we will relax
the requirement that Si ∩ Sj = ∅, ∀i = j. When the sets Si,
1 ≤ i ≤ l are not disjoint, in the actual data aggregation, a node
v, that appears multiple times in Si, 1 ≤ i ≤ l, will participate in
the data aggregation only once (say the smallest i when it appears
in Si), and then it will only serve as a relay node in the following
appearances.

The distributed aggregation scheduling problem is to find a sched-
ule S1, S2, · · · , Sl in a distributed way such that l is minimized.
This problem is proved to be NP-hard in [4]. This paper proposes
an approximate distributed algorithm with latency 16R + ∆ − 14
time-slots, where R is the network radius and ∆ is the maximum
node degree.

INTERFERENCE MODEL We assume that a node cannot send and
receive data simultaneously. In protocol interference model [9],
we assume that each node has a transmission range r and an inter-
ference range rI ≥ r. A receiver v of a link uv is interfered by
another sender p of a link pq if ‖p − v‖ ≤ rI . As [4, 10], we first
assume that rI = r, which is normalized to 1 unit in this paper. We
will later study a more general case rI ≥ r.
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2.3 Related Terminologies
For simplicity, we present our distributed algorithms in a syn-

chronous message passing model in which time is divided into
slots. In each time-slot, a node is able to send a message to one
of its neighbors by unicast communication. Note that, at the cost
of higher communication, our algorithms can also be implemented
in asynchronous communication settings using the notions of syn-
chronizer.

In a graph G = (V, E), a subset S of V is a dominating set (DS)
if for each node u in V , it is either in S or is adjacent to some node
v in S. Nodes from S are called dominators, whereas nodes not
in S are called dominatees. A subset S of nodes is independent

set (IS), if for any pair of nodes in S, there is no edge between
them. An IS S is a maximal IS if no another IS that is a superset
of S. Clearly, a maximal IS is always a DS. A subset C of V is
a connected dominating set (CDS) if C is a dominating set and C
induces a connected subgraph. Consequently, the nodes in C can
communicate with each other without using nodes in V \ C. A
CDS is also called a backbone here.

3. AGGREGATION SCHEDULING ALGO-

RITHM
Our data aggregation scheduling (DAS) algorithm consists of

two phases: 1) aggregation tree construction and 2) aggregation
scheduling. As an illustration of our methods, we first present a
centralized version of our data aggregation scheduling. We adopt
an existing method for the first phase and the second phase is the
core of our algorithm. We will present these two phases in the
following two sections. At the end of the section, we present a
distributed implementation based on our centralized aggregation
scheduling algorithm.

3.1 Dominating Set (DS) Construction

Algorithm 1 Distributed Dominators Selection [15]

1: Determine the topology center of the UDG as v0;
2: Construct a BFS tree rooted at v0 with height R, the radius of

the original network;
3: Every node colors itself white;
4: Root node v0 changes its color to black and broadcasts a mes-

sage; BLACK to its one-hop neighbors in G;
5: for each white node u received a message BLACK do

6: u colors itself grey and broadcasts a message GREY to its
one-hop neighbors in G;

7: if a white node w receives GREY from all its lower-ranked
neighbors then

8: w colors itself as black and sends message BLACK to all its
one-hop neighbors in G;

9: All black nodes form a dominating set.

As our algorithm is aggregation-tree-based, in the first phase we
construct an aggregation tree in a distributed way using an existing
approach [15]. We employ a connected dominating set (CDS) in
this phase since it can behave as the virtual backbone of a sensor
network. A distributed approach of constructing a CDS has been
proposed by Wan et al. [15]. In their algorithm, a special dom-
inating set of the network is constructed first and then a CDS is
constructed to connect dominators and the other nodes. This CDS
tree can be used as the aggregation tree in our scheduling algorithm
with a small modification as follows.

1. We choose the topology center of the UDG as the root of
our BFS tree. Notice that, previous methods have used the

sink node as the root. Our choice of the topology center en-
ables us to reduce the latency to a function of the network
radius R, instead of the network diameter D proved by pre-
vious methods. Here a node v0 is called the topology cen-

ter in a graph G if v0 = arg minv{maxu dG(u, v)}, where
dG(u, v) is the hop distance between nodes u and v in graph
G. R = maxu dG(u, v0) is called the radius of the network
G. Notice that in most networks, the topology center is dif-
ferent from the sink node.

2. After the topology center gathered the aggregated data from
all nodes, it will then send the aggregation result to the sink
node via the shortest path from the topology center v0 to the
sink node vs. This will incur an additional latency dG(v0, vs)
of at most R.

Algorithm 1 and Algorithm 2 briefly review the methods for se-
lecting a dominating set and a CDS in [15]. In Algorithm 1, the
rank of a node u is (level, ID(u)), where level is the hop-distance
of u to the root. The ranks of nodes are compared using lexico-
graphic order. After execution of Algorithm 2, all black nodes form
a dominating set. For each grey node, either it is a leaf or its chil-
dren in the aggregation tree are black nodes. In the second case, a
grey node plays the role of connecting two black nodes. The root
is a node in the dominating set (a black node) and all its neighbors
in G are its children in BFS.

Algorithm 2 Distributed Construction of Aggregation Tree T

1: Select a set of dominators as in Algorithm 1;
2: Root node v0 sends a message GREY-JOIN to its one-hop

neighbors in G;
3: if an unmarked grey node not in T received a message GREY-

JOIN then

4: Join T with the sender as its parent;
5: Send a message BLACK-JOIN to its one-hop neighbors;
6: Mark itself;
7: if an unmarked black node not in T received message BLACK-

JOIN then

8: Join T with the sender as its parent;
9: Send a message GREY-JOIN to its one-hop neighbors;

10: Mark itself;
11: Return T .

3.2 Centralized Approach
The second phase is aggregation scheduling which is the core of

the whole algorithm. It is based on the aggregation tree constructed
in the first phase. As an illustration, we first present an efficient cen-
tralized algorithm. We will then present our distributed scheduling
implementation in Section 3.3.

Algorithm 3 shows how the data from the dominatees are ag-
gregated to the dominators. Our method is a greedy approach, in
which at every time-slot, the set of dominators will gather data from
as many dominatees (whose data have not been gathered to a dom-
inator yet) as possible. Notice that since the maximum degree of
nodes in the communication graph is ∆, our method guarantees
that after at most ∆ time-slots, all the dominatees’ data will be
gathered to their corresponding dominators when considering the
interference, which will be proved in Lemma 2. The basic idea is
as follows: each dominator will randomly pick a dominatee whose
data is not reported to any dominator yet. Clearly, these selected
dominatees may not be able to send their data to corresponding
dominators in one time-slot due to potential interferences. We then
reconnect these dominatees to the dominators (and may not sched-
ule some of the selected dominatees in the current time-slot), using
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Algorithm 4, such that these new links can communicate without
interferences.

Algorithm 3 Aggregate Data to Dominators

1: for i = 1, 2, · · · , ∆ do

2: Each dominator randomly chooses 1 neighboring domina-
tee, whose data is not gathered yet, as transmitter. The set of
such chosen links form a link set L.

3: If there are conflicts among chosen links, resolve interfer-
ence using Algorithm 4;

4: All the remaining links in L now transmit simultaneously;
5: i = i + 1;

Algorithm 4 Reconnect Dominatees to Dominators

1: while (exist a pair of conflicting links) do

2: Let uizi and ujzj be one of the pairs of conflicting links.
3: Find the sets Di and Dj based on rules described previously.
4: if (|uizj | ≤ 1 and |ujzi| > 1) then

5: If Dj = φ, replace ujzj by a link ujzj0 , for a zj0 ∈ Dj .
6: If Dj = φ, then remove the link ujzj .
7: else if (|ujzi| ≤ 1 and |uizj | > 1) then

8: If Di = φ, then replace uizi with uizi0 , for zi0 ∈ Di.
9: If Di = φ, then remove link uizi.

10: else if (|ujzi| ≤ 1 and |uizj | ≤ 1) then

11: If Di = φ, remove the link uizi; otherwise, if Dj = φ,
remove the link ujzj .

12: If both Di and Dj are not empty, replace uizi and ujzj

by two new links uizi0 , ujzj0 , for zi0 ∈ Di, zj0 ∈ Dj .

Suppose that two directed links uizi and ujzj interfere with
each other (see Fig.1), where the dominatees ui and uj are trans-
mitters in these two links respectively and zi and zj are domina-
tors. For each dominatee v, let D0(v) be the set of neighboring
dominators. Obviously, |D0(v)| ≤ 5 holds for any node v. Let
D(ui) = D0(ui) \ {zi}, D(uj) = D0(uj) \ {zj}. Notice that
here D(ui) and D(uj) may be empty, and D(ui) ∩ D(uj) may
also not be empty.

For each active transmitter v, v = ui and v = uj , we delete all
dominators from D(ui) (and also from D(uj)) that are within the
transmission range of v. Notice that we can discard these domina-
tors since their degrees are already decreased by at least 1 because
of the existence of some active transmitter v. We also delete the
dominators that are within transmission range of both ui and uj

from D(ui) and D(uj). Notice that we can do this because these
dominators’ degree will be decreased by 1 since our re-scheduling
can guarantee at least one transmitter of ui and uj will remain as
an active transmitter, as we will show later.

Let Di (resp. Dj ) be the set of remaining dominators in D(ui)
(resp. D(uj)).

Fig. 1(a) illustrates one possible state after the preceding two
deletions of dominators from D(ui) and D(uj). Notice that

1. The distance between ui and any member of Dj is greater
than 1. The distance between uj and any member of Di is
greater than 1.

2. Both Di and Dj may be empty and may not be empty.
Algorithm 4 shows how to re-connect dominatees to dominators to
avoid the interference.

After all the data in the dominatees have been aggregated to dom-
inators, our next step is to aggregate all the intermediate results in
the dominators to the root. We can see that in each layer of the
BFS tree, there are some dominator(s) and some dominatee(s). For

uj

zi zj

ui uj

zi zj

ui

(a) (b)

Figure 1: (a) An interference between 2 links. (b) A state after

rescheduling the two links.

every dominatee, it has at least one dominator neighbor in the same
or upper level. Thus, every dominator (except the root) has at least
one dominator in the upper level within two-hops. Using this prop-
erty, we can ensure that all the data in the dominators can reach
the root finally if every dominator transmits its data to some domi-
nator in upper level within two-hops. From another point of view,
considering dominators in the decreasing order of their levels, a
dominator u in level L aggregates data from all dominators in level
L + 1 or L + 2 that are within two-hops of u. This will ensure that
all the data will be aggregated to the root. Algorithm 5 presents our
method in detail.

Algorithm 5 Centralized-DAS

Input: The BFS tree with root v0 and depth R, and a distributive
aggregation function f , data Ai stored at each node vi.

1: Construct the aggregation tree T ′ using Algorithm 2. Remove
the redundant connectors to ensure that each dominator uses
at most 12 connectors to connect itself to all dominators in
lower level and is within 2-hops. Here a connector node x (a
dominatee of a dominator u) is said to be redundant for the
dominator u, if removing x will not disconnect any of the 2-
hop dominators of u from u.
Let T be the final data aggregation tree.

2: for i = R − 1, R − 2, · · · , 0 do

3: Choose all dominators, denoted as Bi, in level i of the BFS
tree.

4: for every dominator u ∈ Bi do

5: Find the set D2(u) of unmarked dominators that are
within two-hops of u in BFS, and in lower level i + 1
or i + 2.

6: Mark all nodes in D2(u).
7: Every node w in D2(u) sends f(Aw, X1, X2, · · · , Xd)

to the parent node (a connector node) in T . Here Aw is
the original data set node w has, and X1, X2, · · · , Xd are
data that node w received from its d children nodes in T .

8: Every node z that is a parent of some nodes in D2(u)
sends f(X1, X2, · · · , Xp) to node u (which is the parent
of z in T ). Here X1, X2, · · · , Xp are data that node z
received from its p children nodes in T .

9: i = i − 1
10: The root v0 sends the result to the sink using the shortest path.

In Algorithm 5 we only concentrate on communications between
dominators. Since dominators cannot communicate directly, we
have to rely on some dominatees, each of which acts as a bridge
between two dominators. Hereafter we rename these dominatees
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as connectors. The algorithm runs from lower level to upper level
in aggregation tree, every dominator will remain silent until the
level where it locates begins running. When it is its turn, the domi-
nator will try to gather all the data from other dominators in lower
levels that have not been aggregated. If a dominator’s data have
been collected before, then it is unnecessary to be collected again.
Actually we have to guarantee this since every data should be and
only be used once. Algorithm 5 implements this by discarding the
dominators after their data have been gathered to upper levels.

Notice that in Algorithm 5 after we process dominators Bi (all
dominators in level i), there may still have some dominators in
Bi+1 whose data are not aggregated. This could happen because
a dominator in Bi+1 could be within 2-hops of some dominator
in Bi−1, but not within 2-hops of any dominator from Bi. We
conclude that after the execution of all the dominators in Bi , all
dominators in Bi+2 have already been aggregated their data.

3.3 Distributed Implementation
Now we present a distributed implementation for our data ag-

gregation scheduling. The distributed implementation consists of
three stages:

1. Every dominatee transmits its data to the neighboring domi-
nator with the lowest level,

2. Data are aggregated from dominators from lower levels to
dominators in upper levels and finally to the root of the ag-
gregation tree which is the topology center of the network,

3. Topology center then transmits the aggregated data to the
original sink via the shortest path.

The distributed implementation differs from the centralized one
in that the distributed one seeks to transmit greedily: we will try
to allocate a node v a time-slot to transmit whenever v has col-
lected the aggregated data from all its children nodes in the data
aggregation tree T . Thus the first two phases may interleave in
our distributed implementation. The interleaving will reduce the
latency greatly since it increases the number of simultaneous trans-
missions. Later, we will provide the simulation result of our dis-
tributed method, which shows that our distributed implementation
is quite close to (1 + ε)R + ∆ + Θ(1), where ε is a small positive
constant. Therefore we conjecture that the data aggregation latency
by our distributed implementation indeed has a theoretical perfor-
mance guarantee of (1 + ε)R + ∆ + Θ(1). It will be interesting if
we can prove or disprove this conjecture, which is left as a future
work.

To run our algorithm, every node vi should maintain some local
variables, which are

1. Leaf indicator: Leaf[i] ∈ {0, 1}, to indicate whether the
node vi is a leaf node in the data aggregation tree.

2. Competitor Set: CS[i], the set of nodes such that for each
j ∈ CS[i], nodes vi and vj cannot transmit simultaneously
to their parents due to interference. In other words, if j ∈
CS[i], we have either the parent pT (i) of node vi in the data
aggregation tree T is within the interference range of node
vj ; or the parent pT (j) of node vj in the data aggregation tree
T is within the interference range of node vi; or both. Notice
that under the interference model studied in this paper, each
node in CS[i] is within a small constant number of hops of i.

3. Ready Competitor Set: RdyCS[i], which is the set of nodes
that collides with i and it is ready to send data to its parent,
i.e., it has received the data from all its children nodes.

4. Time Slot to Transmit: TST[i], which is the assigned time-
slot that node vi indeed sends its data to its parent.

5. Number of Children: NoC[i], which is the number of chil-
dren nodes of vi in the data aggregation tree T .

Observe that here, at some time, if we let Rdy be the set of nodes
which are ready to transmit (i.e., v ∈ Rdy iff v has collected the
aggregated data from all its children nodes in the data aggregation
tree T ), and let F denote all the nodes which have finished their
transmission, then RdyCS[i] = CS[i]∩Rdy−F . The TST of all
nodes are initialized to 0. The details of our distributed algorithm
are shown in Algorithm 6.

Algorithm 6 Distributed Data Aggregation Scheduling

Input: A network G, and the data aggregation tree T ;
Output: TST[i] for every node vi

1: The node vi initializes the value NoC[i], and Leaf[i] based on
the constructed aggregation tree T .

2: Initializes the set CS[i] based on the tree T and the original
interference relation,

3: RdyCS[i] ← CS[i] ∩ {j | j is a leaf in T}.
4: TST[i] ← 0; DONE←FALSE;
5: Node i randomly selects an integer ri ∈ N. Then we say

(ri, i) < (rj , j) if (1) ri < rj or (2) ri = rj and i < j.
6: while (not DONE) do

7: if NoC[i] = 0 then

8: Send message READY(i, ri) to all nodes in CS[i].
9: if (ri, i) < (rj , j) for each j ∈ RdyCS[i] then

10: Send message FINISH(i) to all nodes in CS[i];
11: DONE←TRUE;
12: if i received a message FINISH(j) then

13: Delete j from RdyCS[i];
14: TST[i] ← max {TST[i], TST[j] + 1};
15: if j is a child of i then

16: NoC[i] ← NoC[i] − 1;
17: if i received a message READY(j, rj) then

18: if j is in CS[i] then

19: Add j to RdyCS[i].
20: Node i transmits data based on the time slot in TST[i].
21: The topological center transmits aggregated data to the sink.

When a node vi finishes its scheduling, it sends a message FINISH
to all nodes in its competitor set CS[i]. When a node i received a
message FINISH, it sets its TST[i] to the larger one of its orig-
inal TST[i] and TST[j] + 1. When all the children of node vi

finished their transmission, the node vi is ready to compete for the
transmission time slot and it will send a message READY(i, ri)
to all nodes in its competitor set. When a node vi received a mes-
sage READY from another node vj , it will add the sender j to its
ready competitor set RdyCS[i] if j is in CS[i]. When the schedul-
ing ends, all nodes will transmit their data based on TST[i]. In the
end, the topology center aggregates all the data and sends the result
to the sink node via the shortest path.

4. PERFORMANCE ANALYSIS
In this section we first prove that the latency of the data aggrega-

tion based on our scheduling is at most 16R + ∆− 14, where R is
the radius of the network and ∆ is the maximum node degree in the
original communication graph. We conjecture that the theoretical
performance of our centralized and distributed algorithms could be
much better than 16R + ∆ − 14, which is supported by our ex-
tensive simulations. On the other hand, we also present a network
example to show that our centralized algorithm cannot achieve a
latency lower than 4R + ∆ − 3. It remains a future work to find
bad network examples to show that our distributed methods could
perform worse than (1+ε)R for a small constant ε > 0. At last, we
present an overall lower-bound of the latency of data aggregation.
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4.1 Performances of Our Algorithms
First we show that, by using Algorithm 4, for each dominator,

the number of neighboring dominatees whose data is not collected
is reduced by at least 1.

CLAIM 1. In Algorithm 4, our schedule will ensure that after

every time-slot, for each dominator, the number of neighboring

dominatees whose data is not collected is reduced by at least 1.

PROOF. First, according to Algorithm 3 each dominator u chooses
a dominatee randomly from its neighbors and let the chosen dom-
inatee transmits to u. The selected dominatees are called active

transmitters for the set of selected links. Assume there are nd dom-
inators, then there are a set of (at most) nd links transmitting at the
same time-slot. If these links do not conflict with each other, our
claim holds. Here two directed links uv and xy conflict with each
other if either receiver y is in the interference range of sender u or
receiver v is in the interference range of sender x.

If there exists interference among chosen links, there are only
3 possible cases. For each case, it is easy to show that Algorithm
4 re-schedules these two links to avoid the interference while the
number of neighboring dominatees whose data is not collected is
reduced by at least 1.

Algorithm 4 repetitively adjusts the set of links whenever there is
a pair of conflicting links. Observe that due to the recursive nature
of our adjustment algorithm, we must prove that Algorithm 4 will
terminate in a limited number of rounds. Clearly, when it termi-
nates, there is no pair of conflicting links, i.e., the remaining links
from Algorithm 4 are a valid schedule. In addition, we also have
to show that when Algorithm 4 terminates, our schedule can ensure
that each dominator’s degree indeed will be reduced by at least 1.

We define Loop Invariant as: every dominator’s degree will
be decrease at least 1. We can see that loop invariant is always
kept before and after one round of execution (which is the loop
body in Algorithm 4). To show that Algorithm 4 terminates, we
define a Potential Function for a schedule as the cardinality of
the set C = {(x1, x2) | x1, x2 are active transmitters and their
corresponding links x1y1, x2y2 are conflicting links}. We call the
pair (x1, x2) ∈ C a pair of conflicting transmitters. Clearly, the
initial cardinality of the set C is at most nd(nd − 1)/2. After one
round of re-scheduling, the interference between at least one pair
of conflicting transmitters is resolved. Observe that, our adjustment
will not introduce new pairs of conflicting transmitters. Thus the
potential function will be decreased by at least 1 after 1 round,

which means that Algorithm 4 will terminate after at most
n(n−1)

2
rounds of execution of the while loop in Algorithm 4.

LEMMA 2. Given a communication graph G of a network, un-

der the assumption that the interference range rI is the same as the

transmission range r, Algorithm 3 (aggregating data from domi-

natees to dominators) costs at most ∆ time-slots where ∆ is the

maximum node degree in G.

PROOF. Each dominator has at most ∆ neighboring domina-
tees. We define a dominator’s unaggregated-node-degree as the
number of the neighboring dominatees whose data have not been
aggregated to dominators yet. At first, each dominator’s unaggregated-
node-degree is bounded by ∆. By Claim 1, after every time-slot,
each dominator’s unaggregated-node-degree is reduced by at least
1. Thus Algorithm 3 costs at most ∆ time-slots.

We now bound the number of connectors that a dominator u will
use to connect to all dominators within 2-hops. Our proof is based
on a technique lemma implied from lemmas proved in [19].

LEMMA 3. Suppose that dominator v and w are within 2-hops

of dominator u, v′ and w′ are the corresponding connectors for

v and w respectively. Then either |wv′| ≤ 1 or |vw′| ≤ 1 if

∠vuw ≤ 2 arcsin 1
4

.

LEMMA 4. In Algorithm 5, a dominator requires at most 12
connectors to connect to all dominators within 2-hops.

PROOF. Consider any dominator u, let I2(u) be the set of dom-
inators within 2-hops of u in the original communication network
G. Assume that we have already deleted all the redundant connec-
tors for node u. Let C be the set of connectors left for a dominator
u. Then for each remaining connector x ∈ C, there is at least
one dominator (called a non-sharing dominator) that can only use
this connector to connect to u (otherwise, connector x is redundant
and thus will be removed). Assume there are 13 connectors in C.
Then there are at least 13 non-sharing dominators in I2(u). From
pigeonhole principle, we know that there must have 2 dominators
v1 and v2 such that ∠v1uv2 ≤ 2π/13 < 2 arcsin( 1

4
). Thus, using

Lemma 3, v1 and v2 will share a common connector in C, which
contradicts to the selection of v1 and v2.

In the rest of the proof, for a dominator u, we use C(u) to denote
the set of connectors used to connect all dominators in D2(u).

LEMMA 5. In Algorithm 5, a dominator u in level i can receive

the data from all neighboring dominators D2(u) in at most 16 time-

slots.

PROOF. Each dominator u will collect the aggregated data from
all dominators within 2-hops in lower level. Any connector in C(u)
has at most 4 other neighboring dominators, besides u. Similar to
the proof of Lemma 2, we can show that it takes at most 4 time-slots
for each connector to collect data from those neighboring domina-
tors other than u. Recall that at most 12 connectors are needed for
u to reach all dominators in D2(u). Thus, it will take at most 12
time-slots for the dominator u to collect data from all these connec-
tors. Consequently, within at most 12 + 4 = 16 time-slots, every
dominator u can collect the aggregated data from all the dominators
in D2(u).

THEOREM 6. By using Algorithm 5, the sink can receive all the

aggregated data in at most 17R + ∆ − 16 time-slots.

PROOF. Every dominatee’s data can be aggregated to a domina-
tor within ∆ time-slots from Lemma 2. Observe that every dom-
inator, except the root of the data aggregation tree T , connects to
at least one dominator in the upper level within 2-hops. Then Al-
gorithm 5 ensures that every dominator’s data can be aggregated
upwards the root finally. For each level of the BFS tree, every dom-
inator u including the root of data aggregation tree T , can collect
aggregated data from all dominators in D2(u) within at most 16
time-slots by Lemma 5. Since there is no dominator in level 1, af-
ter at most 16(R − 1) time-slots, every dominator’s data can be
aggregated to the root. The root then uses at most R time-slots to
transmit data to the original sink node via the shortest path. There-
fore within 17R + ∆− 16 time-slots, all the data can be be aggre-
gated to the sink node.

Next, we provide a revised schedule that only needs 15 time-
slots for dominators in level i (i ≥ 2) to aggregate data from some
dominators within 2-hops, which can also ensure that data will be
aggregated to the root finally. This means that we can reduce our
latency by R − 1 time-slots totally.

For a dominator u other than the root, we denote all dominators
within 2-hops of u as B2(u). Notice that B2(u) includes at least
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Figure 2: A network example to show the lower-bound of Algorithm 5.

one dominator v located in upper level of u. By Lemma 4, we need
at most 12 connectors to connect u to B2(u), we denote the set of
at most 12 connectors as C(u). There must exists a connector w ∈
C(u) which connects u to v. Then all dominators in B2(u) that
are connected to w are also 2-hop neighbors of the dominator v, we
denote the set of these dominators as B′

2(u), thus B′
2(u) ⊂ B2(v).

Clearly all data in B′
2(u) can be collected by v, it is not necessary

for them to be collected by u. So we let u only collect the data in
B2(u)\B′

2(u). It requires at most 11 connectors (all the connectors
in C(u) \ {w}) to connect to the dominators in B2(u) \B′

2(u). So
at most 15 (= 4 + 11) time-slots is required for u to aggregate
the data from B2(u) \ B′

2(u). If every dominator u other than the
root aggregate the data from B2(u) \ B′

2(u), all the data can be
aggregated to the root.

THEOREM 7. By using Algorithm 5, the sink can receive all the

aggregated data in at most 16R + ∆ − 14 time-slots.

PROOF. Similar to the proof of Theorem 6, we need ∆ time-
slots for dominators to aggregate data from dominatees. After that,
for each level of the BFS tree, every dominator u, other than the
root of the data aggregation tree T , can collect aggregated data
from all dominators in B2(u) \ B′

2(u) in at most 15 time-slots
as stated above. Thus it costs at most 15(R − 2) for data to be
aggregated to the dominators in level 2. The root rT can collect the
aggregated data from dominators in level 2 within 16 time-slots.
Therefore within 15(R−2)+16 time-slots, every dominator’s data
can be aggregated to the root. The root then transmit the result to
the original sink node in R time-slots. In all, within 16R+∆− 14
time-slots, all the data can be aggregated to the sink node.

Observe that, although our analysis is based on the centralized
method, it is easy to show that all results carry to the distributed
implementation (Algorithm 6). Consequently, we have

THEOREM 8. By using Algorithm 6, the sink can receive all the

aggregated data in at most 16R + ∆ − 14 time-slots.

4.2 Lower-bound of our centralized algorithm
The lower-bound of our algorithm is the latency of data aggre-

gation in the worst input case. It is an important measurement to
estimate the tightness of the upper bound of Algorithm 5 derived in
Section 4.1. In the following context, we present a network exam-
ple and show that when applying Algorithm 5 to it the latency can
be as bad as 4R + ∆ − 3

In Fig. 2, the root v0 (which is the topology center) has 2 chil-
dren, which means there are 2 symmetric branches, each branch is
symmetric with respect to the horizontal axis. For some nodes in
the left branch, we mark their corresponding levels beside them.

We use black nodes to denote dominators and white nodes to de-
note connectors. For each black node on the horizontal axis, we
draw two co-centric circles with radius r and 2r respectively, all its
3 neighboring connectors are located on the inner circle. We omit
all leaf nodes in the figure. The original sink vs is located in the
rightmost of the right branch.

LEMMA 9. When applying centralized algorithm to the exam-

ple shown in Fig. 2, the latency is 4R + ∆ − 3 time-slots.

PROOF. Firstly, aggregating data from dominatees to domina-
tors costs ∆ time-slots by Lemma 2.

Secondly, both branches aggregate data from lower to upper lev-
els. Between level i and level i + 2 as shown in Fig. 2, it costs 3
time-slots to aggregate data from the 7 dominators in level i+2 to 3
connectors in level i+1 and costs another 3 time-slots to aggregate
data from 3 connectors in level i+1 to 1 dominator in level i. So it
costs (3+3)·R−2

2
time-slots to gather data from dominators in level

R towards dominators in level 2. After that, it costs 1 time-slot to
gather data from dominators in level 2 to connectors in level 1 and
then 2 time-slots to the topology center v0. Finally, v0 transmits the
aggregated data to the sink node, which will cost another R time-
slots. Therefore we need ∆+(3+3)·R−2

2
+1+2+R = 4R+∆−3

time-slots in total.

4.3 Overall Lower-bound
In this section we give the overall lower-bound of the latency of

data aggregation. Here overall lower-bound refers to the minimum
time-slots needed to finish the data aggregation by any algorithm.

THEOREM 10. Under any interference model, the overall lower-

bound of latency of data aggregation by any method is max{R, log n}
time-slots where R is the network radius and n is the number of

nodes in the network.

PROOF. The lower-bound R immediately follows from the fact
that no matter what method is implemented and no matter what
interference model we will use, it costs at least R time-slots for the
farthest node v to transmit its data to the sink node vs. Note that,
here R is referred to the network radius instead of the hop-distance
from the farthest node to the sink node. In fact, most of the time, the
latter one is larger than the former one. However, the latter one is
at most twice the former one since it can not be larger the network
diameter (which is at most twice the former one).

Next, we prove log n is a lower-bound for any valid schedule un-
der any interference model. Here a valid schedule is defined in Sec-
tion 2.2 which is denoted as a sequence of sender sets S1, S2, · · · , Sl.
Assume we are given a valid schedule S1, S2, · · · , Sl, for any set
of senders Sl−i, its receivers must be inside {vs} ∪ (

⋃i−1
j=0 Sl−j).
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Consequently, |Sl−i| < 1 +
∑i−1

j=0 |Sl−j | since different senders
in Sl−i must have different receivers. Thus, we have
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⎩

|Sl| ≤ 1 = 20

|Sl−1| < 1 + |Sl| ≤ 2 = 21

|Sl−2| < 1 + |Sl| + |Sl−1| ≤ 4 = 22

· · ·
|Sl−i| < 1 +

∑i−1
j=0 |Sl−j | ≤ 2i

· · ·
|S1| ≤ 2l−1

Then,
∑l

i=1 |Si| ≤ 2l − 1. From the precondition for a valid

schedule ∪l
i=1Si = V \{vs}, we get n−1 ≤ ∑l

i=1 |Si| ≤ 2l−1.
Therefore l ≥ log n, which means that it costs at least log n time-
slots for any schedule.

Under protocol interference model when rI = r, the communi-
cation graph is a Unit Disk Graph (UDG). Using area argument, we
can get n = O(∆ · R), where ∆ is the maximum degree in UDG.
Thus max{R, log n} = max{R, log O(∆·R)} = max{R, log ∆}.
By Theorem 10, max{R, log ∆} is a lower-bound under protocol
interference model when rI = r. In Theorem 11, we construct an
example to show that the lower-bound of both max{R, log ∆} and
max{R, log n} can be (approximately) achievable.

THEOREM 11. Under protocol interference model when rI =
r, there is a placement of nodes such that the latency of data aggre-

gation is only 2 log ∆(= 2 log n+1
2

). In other words, the overall

lower-bound provided in Theorem 10 is (approximately) tight in

this model.

level 0

·
·
·

·
·
·

·
·
·

···

level R level R − 1 level R − 2 level 1

Figure 3: An overall lower-bound example

PROOF. We prove by construction. In Fig. 3, we construct a
network example like a complete binary tree. There are R levels
and level i has 2i nodes. The distance between all nodes in level R
is at most r. Thus, the degrees of all nodes in level R reach ∆. We
order all nodes in level i from highest to lowest, that means a node
with order j is the j-highest among all nodes in level i (we note
the node as v(i,j)). The sink node is located on level 0 which is the
root of the binary tree. The distance between any corresponding
pair of nodes located in two consecutive levels is r, such as the pair
of v(i,2j−1) and v(i−1,j) or the pair of v(i,2j) and v(i−1,j). The
distance of any other pair of nodes located in two different levels
is greater than r, such as v(i,k) and v(i−1,j) when k = 2j − 1 and
k = 2j.

We produce a valid schedule for the network example as follows.
For i = R, R − 1, · · · , 1

1. All links of v(i,2j−1)v(i−1,j)(1 ≤ j ≤ 2i−1) transmit simul-
taneously.

2. All links of v(i,2j)v(i−1,j)(1 ≤ j ≤ 2i−1) transmit simulta-
neously.

From the schedule, we can see that we only need 2 time-slots to
aggregate data from level-i to level-(i−1). This implies that totally
we need 2R time-slots to aggregate data from all nodes to the sink.
Since R = log ∆ = log(n + 1)/2, this finishes the proof.

Now we provide the overall lower-bound under the protocol in-
terference model when r < rI < 3r and rI ≥ 3r.

THEOREM 12. Under protocol interference model, when r <
rI < 3r, the overall lower-bound of data aggregation is max{R, ∆

φ
},

where φ = 2π

⌊arcsin γ−1

2γ
⌋

and γ = rI

r
; when rI ≥ 3r, the overall

lower-bound is max{R, ∆}.

PROOF. By Theorem 10, R is a lower-bound.
Assume node u has ∆ neighbors. Since every neighbor of u

needs to transmit at least once to report its data, we try to compute
the maximum number of u’s neighbors that can transmit simulta-
neously without interference, which implies a lower-bound.

When r < rI < 3r, assume two neighbors p, s of u transmit si-
multaneously, q, t are their corresponding receives. From Lemma
5 of [20], ∠qut must be no larger than θ = arcsin γ−1

2γ
to ensure

links pq and st are interference free with each other. So the max-
imum number of u’s neighbors that can transmit simultaneously
is φ = ⌊ 2π

θ
⌋. Therefore ∆

φ
is an overall lower-bound. Thus, the

overall lower-bound of latency is max{R, ∆
φ
} when r < rI < 3r.

When rI ≥ 3r, if one of u’s neighbors is transmitting to the node
w, the distance between w and any other neighbor of u is smaller
than 3r, thus smaller than rI . So the maximum number of u’s
neighbors that can transmit simultaneously is only 1. Therefore ∆
is an overall lower-bound. Thus, the overall lower-bound of latency
is max{R, ∆} when rI ≥ 3r.

5. OTHER NETWORK MODELS
To schedule two links at the same time-slot, we must ensure that

they are interference free with each other. Previous studies on sta-
ble link scheduling mainly focused on protocol interference model,
in which the transmission and interference ranges are the same. In
addition to the protocol interference model, several different in-
terference models have been used to model the interference. We
briefly review these models:

k-Hops Interference model: A sending node u (with receiver
p) is said to cause interference at another receiving node w if w is
within k-hops of the node u, i.e., the hop distance between u and
w in the communication graph G is at most k.

RTS/CTS Model: For every pair of transmitter and receiver, all
nodes that are within the interference range of either the transmit-
ter or the receiver cannot transmit. In this case, we assume that
node u will interfere the receiving of another node w from another
sender v if either v or w is in the transmission range of u. Although
RTS/CTS is not the interference itself, for convenience of our no-
tation, we will treat the communication restriction due to RTS/CTS
as RTS/CTS interference model.

Now we discuss data aggregation in other interference models.
Similar to the algorithms in Section 3, we apply a scheme in which
all the data in the dominatees are aggregated to the dominators first,
then dominators transmit their data towards the root level by level
until all data reach the root. As already shown in Lemma 2, all the
data can be aggregated to the dominators by at most ∆ time-slots
(Here ∆ is the maximum degree in the interference graph instead of
communication graph). The only difference is how to collect data
from all dominators to the root. We still use the scheme similar to
Algorithm 5. To analyze the performance, we need to count the
maximum number of dominators in k + 1 hops. Observe that here
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RTS/CTS model is essentially 2-hop interference model. We first
discuss 2-hop model, the other models are similar.

THEOREM 13 (WEGNER THEOREM). The area of the con-

vex hull of any n ≥ 2 non-overlapping unit-radius circular disks is

at least 2
√

3(n − 1) + (2 −
√

3)⌈
√

12n − 3 − 3⌉ + π.

LEMMA 14. There are at most 41 independent nodes within

any disk of radius three.

PROOF. Fix a disk D2 centered at a point u. Let S denote the
set of independent nodes in D2. If for each node in S, we con-
sider a disk of radius 0.5 centered at this node, then all of those
disks must be disjoint. Therefore, the convex hull of S must be
contained in the disk of radius 3.5 centered at u. By applying Weg-
ner Theorem with proper scaling, we have 2

√
3(|S| − 1) + (2 −√

3⌈
√

12|S| − 3 − 3⌉ + π < 49π. Straightforward calculation
shows that the maximum integer to make the above expression hold
is |S| = 41.

Thus, similar to Theorem 6, we have the following theorem for
the latency of our data aggregation method under 2-hop interfer-
ence model.

THEOREM 15. Under 2-hop interference model, the sink can

receive all the aggregated data in at most O(R + ∆) time-slots.

Notice that under 2-hop interference model, any two senders x and
y cannot be communication neighbors (otherwise, x will cause in-
terference at the receiver of y). Thus, given ∆ neighbors of a node,
we need at least ∆/5 time slots to just let every of these ∆ neigh-
bors transmits once. Consequently,

THEOREM 16. Under 2-hop interference model, for any data

aggregation method, it will take at least max(R, ∆/5) time-slots

for the sink to receive the aggregated data.

For k-hop interference model, where k ≥ 3, then any two nodes x
and y that are neighbors of a node u clearly cannot transmit simul-
taneously. Thus, ∆ is a lower-bound on latency of data aggregation.
For general k-hop interference model, we are also able to prove that

THEOREM 17. Under k-hop interference model (k ≥ 3), the

sink can receive all the aggregated data in at most O(k2)(R + ∆)
time-slots. For any data aggregation method, it will take at least

max(R, ∆) time-slots for the sink to receive all the aggregated

data.

6. SIMULATION RESULTS
In this section, we present the simulation results which evalu-

ate our Data Aggregation Algorithms. We implemented DAS on
TOSSIM of TinyOS 2.0.2. In our simulation, we randomly deploy
a number of nodes in a 2-D square region, all nodes have the same
transmission range. Each node will generate a random 16-bits non-
negative number as its own datum. The objective of the sink node
is to report the aggregation (max, min, sum or average) result of all
data (totally n data, n is the network size) correctly.

We also implemented another data aggregation algorithm by com-
bining BFS tree and CTP (Collection Tree Protocol, which is pro-
vided by TinyOS 2.0.2) using TOSSIM. We call this method BFS+CTP

method for simplicity. The main idea of BFS+CTP method is to
construct a BFS tree rooted at the sink node based on the link qual-
ity. In other words, during the procedure of constructing BFS, the
link quality computed by CTP will be considered as the link weight.
Notice that, the original CTP method (components) provided in

TinyOS 2.0.2 is used to collect data to the sink node. To enable
CTP to support data aggregation rather than to collect all data to
the sink, we modified CTP in the upper layer such that each node
will not send data to its parent (on the BFS tree) until it aggregates
all necessary data from all children (on the BFS tree).

We tested and compared the efficiency (including latency and
transmission times) for DAS method and BFS+CTP method in two
different cases. For the first case, we randomly generated the net-
work topology (connected) with different network size (increasing
from 30 to 210 with step 30) while ensuring the network density
unchanged, i.e., the network deployment area increases with the
increment of the network size. Actually, by doing this, we fixed
the maximum degree ∆ (we performed 10 rounds of simulations
and the average value of ∆ is 22) for each case, thus the radius of
communication graph increases with the increment of network size.
The latency performance of two methods, DAS and BFS+CTP, is
illustrated in Fig. 4(a). Notice that here, the definition of latency is
the time duration from the first datum is transmitted heading for the
sink node to the sink node reports the result finally. From the Fig.
4(a), we can see that when the network density is not big, the la-
tency difference between two method is not so big. In most cases,
our DAS method has better performance than that of BFS+CTP.
The radius R for each case is indicated by the value in the brackets
right after the network size on x-coordinate. The Fig. 4(b) de-
scribes the average transmission times per node with the increment
of network size for both methods. Clearly, for both algorithms,
the average transmission times are not high (around 1.1) and our
method is better than the other in most cases.
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Figure 4: Simulation results for two methods when ∆ is fixed

to 22. x-coordinate is the number of deployed nodes, the value

in the bracket right after the node number is the radius R of

the communication graph.

For the second case, we fix the deployment area as (300 × 300)
and continue to increase the network size from 50 to 200 with step
30 while keeping the network is connected. By doing this, we can
fix the radius R and test the performance of both algorithms with
the increment of network density (maximum degree ∆).
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Figure 5: Simulation results for two methods when the radius

R is fixed to 6. x-coordinate is the number of deployed nodes,
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imum degree ∆ of the communication graph.

55



As we can see from Fig. 5, both latency and transmission times
have big gaps between these two methods when the density (max-
imum degree ∆) continues increasing. That is because the inter-
ference will be greatly decreased after DAS gather all data to dom-
inators. Hence the total latency and average transmission times
decrease significantly. However, for BFS+CTP method, the num-
ber of relay nodes will continue to increase with the increment of
network size such that the latency and average transmission times
increase greatly due to the interference. From the simulation re-
sults, we can see that in most cases, DAS has better performance
than BFS+CTP method. Especially, the denser the network is, the
more efficient our DAS algorithm is.

7. RELATED WORK
Data aggregation in sensor networks has been well studied re-

cently [2] [11] [14] [21]. In-network aggregation means computing
and transmitting partially aggregated data rather than transmitting
raw data in networks, thus reducing the energy consumption [16].

There are a lot of existing researches on in-network aggregation
in the literature [6] [17]. Suppression scheme and model-driven ap-
proach were proposed in [5] [7] towards reducing communication
cost. The tradeoff between energy consumption and time latency
was considered in [21]. A heuristic algorithm for both broadcast
and data aggregation was designed in [1]. Another heuristic algo-
rithm for data aggregation was proposed [18], aiming at reducing
time latency and energy consumption. Kesselman et al. [12] pro-
posed a randomized and distributed algorithm for aggregation in
wireless sensor networks with an expected latency of O(log n).
Their method are based on two assumptions: One is that sensor
nodes can adjust their transmission range without any limitation.
The other is that each sensor node has the capability of detecting
whether a collision occurs after transmitting data. Both assump-
tions pose some challenges for hardware design and is impractical
when the network scales. A collision-free scheduling method for
data collection is proposed in [13], aiming at optimizing energy
consumption and reliability. All these work did not discuss the
minimal-latency aggregation scheduling problem.

In addition, the minimum latency of data aggregation problem
was proved NP -hard and a (∆− 1)-approximation algorithm was
proposed in [4], where ∆ is the maximum degree of the network
graph. Another aggregation scheduling algorithm was proposed
in [10], which has a latency bound of 23R + ∆ + 18, where R is
the network radius and ∆ is the maximum degree. All the algo-
rithms mentioned above are centralized. In many cases centralized
algorithms are not practical, especially when the network topology
changes often in a large sensor network.

The distributed algorithms for convergecast scheduling were pro-
posed in [8, 12] and [3]. [8, 12] focused on the scheduling problem
for data collection in sensor networks. In data collection, since
data cannot be merged, the sink must receive N packets from all
the nodes, where N is the number of sensor nodes in the network.
Thus the lower-bound of latency is N . The upper bound of the
time latency of this algorithm is max(3nk − 1, N), where nk is
the number of nodes in the largest one-hop-subtree. [3] proposed
a distributed scheduling algorithm generating collision-free sched-
ules that has a latency bound of 24D + 6∆ + 16, where D is the
network diameter which is the best result for minimum latency of
data aggregation so far.

8. CONCLUSIONS
Data aggregation is critical to the network performance in wire-

less sensor networks and aggregation scheduling is a feasible way

of improving the aggregation quality. In this paper we study the
problem of distributed aggregation scheduling in sensor networks
and propose a distributed scheduling algorithm with latency bound
16R + ∆ − 14. This is a nearly constant approximate algorithm
which significantly reduces the aggregation latency. The theoretical
analysis and the simulation results show that our algorithm outper-
forms previous algorithms.
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