
ORIGINAL ARTICLE

An improved bat optimization algorithm to solve the tasks scheduling
problem in open shop

Morteza Babazadeh Shareh1 • Shirin Hatami Bargh2 • Ali Asghar Rahmani Hosseinabadi3 •

Adam Slowik4

Received: 14 January 2020 / Accepted: 3 June 2020 / Published online: 16 June 2020

� The Author(s) 2020

Abstract

The open shop scheduling problem involves a set of activities that should be run on a limited set of machines. The purpose

of scheduling open shops problem is to provide a timetable for implementation of the entire operation so that the total

execution time is reduced. The tasks scheduling problem in open shops is important in many applications due to the

arbitrariness of the processing sequence of each job and lack of a prioritization of its operations. This is an NP-hard

problem and obtaining an optimal solution to this problem requires a high time complexity. Therefore, heuristic techniques

are used to solve these problems. In this paper, we investigate the tasks scheduling problem in open shops using the Bat

Algorithm (BA) based on ColReuse and substitution meta-heuristic functions. The heuristic functions are designed to

increase the rate of convergence to the optimal solution. To evaluate the performance of the proposed algorithm, standard

open shop benchmarks were used. The results obtained in each benchmark are compared with those of the previous

methods. Finally, after analyzing the results, it was found that the proposed BA had a better performance and was able to

generate the best solution in all cases.

Keywords Open shop � Scheduling � Makespan � Bat algorithm � Heuristic functions

1 Introduction

The scheduling and sequencing of operations is, in fact, the

optimal allocation of limited resources to activities over

time [1]. Due to its importance and practical application,

extensive research has been carried out in this area since

the early 1950s. Suppose machine (i ¼ 1; 2, ..., m) must

process n work (j ¼ 1; 2, ..., n). A schedule is the allocation

of time periods for processing these jobs on machines. Any

schedule can be displayed on a Gantt chart [2]. An efficient

and suitable schedule will lead to increased profitability,

reduced costs, reduced time required to accomplish activ-

ities and winning the customers’ confidence. In most

manufacturing factories and service companies, timely

delivery of customers’ orders or timely delivery of services

is important. Costs of delay in these problems not only lead

to customer loss, but it also reduces the credit of service

companies or manufacturing factories. Therefore, attention

to scheduling problems is important in many management

issues and planning principles. Workshop environments

including workshop jobs and workshop flows are used in

many industrial and service processes [3–5]. An open shop

scheduling problem (OSSP) environment is a workspace

environment in which there is no operation-dependent

sequence. Therefore, it has a wider solution space than

other workspace environments. As a result, less attention

& Adam Slowik

aslowik@ie.tu.koszalin.pl

Morteza Babazadeh Shareh

babazadeh@baboliau.ac.ir

Shirin Hatami Bargh

sh.hatami@mubabol.ac.ir

Ali Asghar Rahmani Hosseinabadi

a.r.hosseinabadi1987@gmail.com

1 Department of Computer Engineering, Islamic Azad

University, Babol Branch, Babol, Iran

2 Babol University of Medical Sciences, Babol, Iran

3 Young Researchers and Elite Club, Ayatollah Amoli Branch,

Islamic Azad University, Amol, Iran

4 Department of Electronics and Computer Science, Koszalin

University of Technology, Koszalin, Poland

123

Neural Computing and Applications (2021) 33:1559–1573

https://doi.org/10.1007/s00521-020-05055-7 (0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-2542-9842
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-020-05055-7&domain=pdf
https://doi.org/10.1007/s00521-020-05055-7

has been paid to the open shop problem (OSP) compared to

other workspace environments [6]. The OSSP was first

introduced in major car repair garages [7]. It has other

applications, most notably quality control centers, semi-

conductor manufacturing centers, teacher classroom

assignments, inspection schedules and satellite communi-

cations [8–10]. Scheduling problems are one of the most

important issues of production planning. Scheduling is a

resource allocation process limited to activities over time

[11]. Scheduling problems are formulated in the form of

machines and jobs (activities), where machines represent

resources and jobs represent activities that need to be done

using these resources [12]. The OSP is one such problem.

In fact, it is such that there are a number of machines and a

number of jobs in the workshop. Each job includes a

number of operations and each operation must be pro-

cessed on a predetermined machine. However, the impor-

tant point that distinguishes this from the rest of the

problems is that the ordering of operations of a job is not

predetermined. Provided that the order of operations had

been important, we had a job shop problem (JSP) [13].

Therefore, any arbitrary order can be considered for

operations of a job. For this reason, the formulation of the

OSSP is more complicated than the job shop scheduling

problem (JSSP) and the flexible job shop scheduling

problem (FJSSP) problems. In the OSP, each machine can

process at most one job at a time, and each job can also be

processed at most on a single machine at a time [14–16].

In recent years, the application of mathematical models

to finding the optimal solution (OS) of the scheduling

problems has attracted the attention of many researchers. In

this regard, many studies have been done on modeling the

workshop jobs and workshop flows. In addition, formula-

tion of the OSSP is less attractive to researchers. Since an

increase in the number of machines (m > 3) turns the

problem into an NP-hard one [7, 17, 18], heuristic and

meta-heuristic algorithms have been used in most studies

on the OSSP. Tautenhahn and Woeginger [19] studied the

OSSP with regard to unit-time operations so that the

availability of resources varies over time in their problem.

They developed polynomial algorithms for multiple target

functions such that the number of machines, the number of

resources and the demand for each resource were limited.

They were able to define a boundary between easy and hard

versions of the problem by proving that they are NP-hard

problems. The most important studies were carried out on

heuristic algorithms by Brasel et al. [20] who presented a

comparative study of heuristic algorithms for OSP aimed at

minimizing the average flow time. They made comparisons

for problems with up to 50 jobs and 50 machines. They

showed that if the number of jobs is higher than machines,

the algorithm solving time is far less. Among the meta-

heuristic algorithms, Alcaide et al. [21] developed a tabu

search (TS) algorithm for solving the OSP with the goal of

minimizing the makespan. They tested their proposed

algorithm on random data of varying dimensions. Liaw

[22] proposed a hybrid genetic algorithm (HGA) to solve

the OSSP aimed at minimizing the makespan. His proposed

algorithm has been developed by adding a local opti-

mization function to genetic algorithm (GA). The opti-

mization function is based on TS algorithm. He used his

proposed algorithm to solve random problems and the

benchmark problems present in the literature up to 20 jobs

and 20 machines, and in some cases, he was able to deliver

results close to optimal values. Blum [23] presented an ant

colony algorithm (ACO) using the beam search process and

was able to deliver outstanding results for the problem.

Huang and Lin [24] proposed a new honeybee optimization

algorithm for the OSP considering the idle time. This

method reduced time and cost based on the fact that the

less the idle time, the less the makespan. Hosseinabadi and

Ahmadizar [25] proposed a HGA for the OSSP with the

goal of minimizing the maximum completion time of the

jobs. In this algorithm, a special intersection operator is

used to maintain the order of the machines and also a

strategy is used to avoid the search for unnecessary

responses in the jump operator. Chen et al. [26] presented

the parallel open workshop scheduling by providing an

approximate algorithm. Each job consists of two indepen-

dent operations each of which is processed by one of the m

pairs of parallel machines. The goal was to minimize the

makespan of the last job. Naderi and Zandieh [27] studied

the problem of open workshop planning without interme-

diate buffering. The paper presents an easy-to-use proce-

dure of encryption and decryption frameworks for nonstop

open shop problems (NS-OSP). The proposed meta-

heuristic operators are designed to create a problem

encryption framework. Bai et al. [28] explored the static

and dynamic versions of the flexible open shop problem

(FOSP) to minimize the makespan of the last job. They

used the general dense scheduling algorithm (GDSA) for

solving problems in a larger scale aimed at accelerating

convergence. Tanimizu et al. [29] presented a scheduling

method for solving the open workshop problems including

disassembly and post-processing operations. A co-evolu-

tionary algorithm was designed to improve the sequence of

operations and product loading. Evolutionary algorithms

have been widely used not only in the OSP, but also in all

issues related to scheduling. For example, Gao et al. [30]

proposed a new method based on the bee colony algorithm

(BCA) that solves the FJSSP. In this method, the uncer-

tainty of the processing time is modeled with a parameter

called fuzzy processing time. Defined goals include the

minimization of two metrics, fuzzy completion time and

fuzzy machine workload. The proposed algorithm, IABC,

can be a part of a decision maker’s expert system in

1560 Neural Computing and Applications (2021) 33:1559–1573

123

management and scheduling. In another study, Zhao et al.

[31] proposed a new method based on the water wave

optimization algorithm (WWOA) to solve the no-wait flow

shop scheduling problem (NW-FSSP). The researchers

devised a discrete version of the WWOA that has the

ability to solve the flow shop scheduling problem (FSSP).

In this method, a crossover operator is also defined besides

the main operators of the WWOA. The crossover operator

is used to prevent getting caught in local optima.

Marichelvam et al. [32] solved the multistage hybrid FSSP

using the bat algorithm (BA). Hybrid flow shop (HFS) is a

generalization of the product deployment problem includ-

ing several machines. Oulamara et al. [33] solved the two-

machine OSSP. They considered the processing time of an

operation as a combination of two times, preparation time

and runtime. The preparation time period comes before the

runtime period on the machine and requires renewable

resources. The authors were able to prove that various

versions fall into the category of NP-hard problems. Zaher

et al. [34] introduced a meta-heuristic method based on BA

in order to optimize the workshop deployment problem.

This algorithm works by reducing the start delay instead of

reducing the makespan. In [26], parallel OSSP with the aim

of reducing makespan is addressed. Due to the NP-hard

nature of the problem, using approximate algorithms is

suggested to solve the problem. Goldansaz et al. [35]

addressed the multi-processor OSSP with some constraints

such as independent setup time, process time and sequence-

dependent removal time. They used a combination of

imperialist competitive algorithm (ICA) and GA to solve

the problem. It has been proven in [36] that, if a constraint

is considered for machines’ load, three-machine propor-

tionate OSP can be solved in O(n log n) time. If no con-

straint is taken into account, approximate methods can be

used to solve the problem. Low and Yeh [37] defined the

OSSP as an integer 0-1 programming model and then

proposed a HGA with the aim of reducing the total delay of

jobs and considered some constraints such as independent

setup and dependent removal time. In [38], Lagrange

expansion has been used to reduce the total quadratic

completion time of small OSSP. In [21], an effective HGA

named hybrid NSGA-II is proposed to solve the OSSP. In

the proposed method, local search algorithm (LSA) is used

to generate initial population. This method is used to solve

medium and large problems. Results of the proposed

method are compared with SPEA-II in terms of quality and

diversity. Results indicated the superiority of the proposed

method. An HGA with special operators is presented in

[25] to solve the OSSP. Proposed crossover operator is able

to eliminate the order in which jobs are performed on

machines, and mutation operator avoids searching for

additional solutions. The proposed method is a

combination of iterative randomized active scheduling,

dispatching index and lower bound.

There are many different versions of this problem which

have their adjusted solution. One of the issues which can be

added to this problem is priority. Some jobs have higher

level of priority in comparison with others. This version of

the problem has been addressed by an approximation

algorithm. This method handles the process through a

directed acyclic priority graph [39, 40]. Open shop

scheduling problem or OSSP can be solved by other con-

straints. For example, predefined travel time between

machines and setup times without any specific order. In

order to tackle this problem, an innovative permutation

model has been proposed to be used in variable neigh-

borhood search. Evaluation of the algorithm on both ran-

dom problems and standard benchmarks suggests that the

innovative permutation method has the most positive

impact on produced outputs [41, 42].

Some papers have focused on a solution for OSSP which

can be run on a multiprocessor. Parallel executing of an

algorithm could increase its productivity significantly. For

example, in a paper a new method has been proposed. In

this method, an innovative SS/PR meta-heuristic has been

designed for the multiprocessor OSSP. Moreover, a dis-

tance function has been developed to show the difference

between different solutions. Based on a standard bench-

mark, evaluating the algorithm shows gaining optimal

solution in 7 cases and new upper bound in 18 other special

cases [43, 44].

In this paper, we will solve the OSP for the first time

using the bat meta-heuristic algorithm. Previous methods

have some shortcomings in exploring problem space.

Hence, we need a better algorithm in terms of exploration

in order to tackle this problem. Since BA is a strong

algorithm in both aspects of exploration and exploitation, it

has been used in this article. The structure of the paper is

organized as follows: in Sect. 2, the problem statement is

described. Section 3 describes the bat algorithm. Section 4

presents the proposed algorithm. Simulation results and

conclusions are presented in Sects. 5 and 6, respectively.

2 Problem statement

The OSSP is a matter of general task scheduling. The open

shop is an NP-hard problem and solving it in polynomial

time is not possible. In this case, there are n jobs and m

machines. Each job contains m operations each of which

must be run by a machine. The machine that must execute

an operation is already specified. The order of the opera-

tions of a job is not important, but more than a single

operation cannot be executed at a moment. The problem

solution is generated as a matrix. Each row of this matrix

Neural Computing and Applications (2021) 33:1559–1573 1561

123

shows the order of the jobs a machine should run. The

following parameters are used to define the OSP:

n – number of jobs in the OSP,

m – number of machines in the OSP,

i – machine index in relations,

j – job index in relations,

opj;i – Jobj operation that must be run on Machinei,

dj;i – opj;i runtime; this parameter is an input for the

scheduling problem,

tj;i – start time of running opj;i on Machinei,

fi – Machinei idle time; the default value of this

parameter is 0 when starting the scheduling for all

machines,

assignedj;i – equal 1 if opj;i is selected for execution and

equals 0 if opj;i is not selected for execution. The default

value of this parameter is 0 when starting the scheduling

for all opj;i.

By reference to the above parameters, the runtime period

will be equal to tj;i; tj;i þ dj;i
� �

. To calculate this time per-

iod, we must first calculate tj;i as follows:

tj;i ¼ maxffi; tj;k þ dj;k
� �

g ð1Þ

for all k where assignedj;k ¼ 0 and k 6¼ i. In Eq. 1, variable

i represents the machine chosen for calculation the

scheduling. Machines are selected in a special order for

scheduling. The choice of Machinei for calculating in the

current stage is done using Eq. 2. After selecting Machinei
and assigning opj;i to it, assignedj;i ¼ 1 and fi ¼ tj;i þ dj;i.

i ¼ k where fk ¼ minml¼1 flð Þ ð2Þ

If Eq. 3 is applied, the open shop scheduling (OSS) is a

valid and acceptable scheduling. Equation 3 shows that

more than one operation will not be executed at a single

moment for any job.

i ¼ k where fk ¼ minml¼1 flð Þ ð3Þ

The main purpose of solving the OSP is to reduce the

amount of makespan. After calculating tj;i, Eq. 4 is used to

obtain the makespan. In solving the OSP, we try to reduce

the value of Eq. 4 function. In other words, this function is

used as the target function in the problem.

I
m
i¼1 tj;i; dj;i

� �

¼ / for j ¼ 1 to nð Þ ð4Þ

3 The bat algorithm

Meta-heuristics usually inspired by nature and physical

processes are now used as one of the most powerful

methods to solve many complex optimization problems.

BA is one of the nature-inspired meta-heuristic algorithms

introduced by Yang [45]. This algorithm is based on the

principles of bat life. Bats are the only mammals with

wings that use echolocation for hunting prey. So far, it has

been used to solve binary problems [46] and multi-objec-

tive optimization problems [47]. However, there are many

discrete optimization problems that can be solved with

existing meta-heuristics. So the goal of this paper is to

provide a suitable form of bat algorithm for this type of

problems. The BA is inspired by the traceability of small

bats searching for hunt. So that small bats can hunt their

prey and receive it in absolute darkness by emitting sound

[48]. Three rules are used to develop this algorithm:

• all bats use echolocation to detect distances and know

the difference between food and progressive barriers,

• bats fly randomly at velocity vi, at position xi, with fixed

frequency of frqi and different wavelengths k and

loudness of A0 for hunting prey. Also, they can

automatically set emitted waves and sent pulse rates

(r 2 0; 1½ �) according to proximity to their hunts,

• given that loudness may vary in many different ways,

we assume that loudness varies from R0 (maximum

value) to Rmin (minimum value).

According to the rules, the position xti with velocity vti for

each virtual bat i in iteration t and frequency frqi is cal-

culated as follows:

frqi ¼ frqmin þ frqmax � frqminð Þ � b ð5Þ

vti ¼ vt�1
i þ xt�1

i � X�
� �

� frqi ð6Þ

xti ¼ xt�1
i þ vti ð7Þ

where b 2 0; 1½ � is a random vector with uniform distri-

bution, X� is the best current position that is selected in

each iteration and after comparison with the position of the

virtual bats. Usually, frequency frqi is selected between

frqmin ¼ 0 and frqmax ¼ 100. In each iteration of local

search, one solution is selected as the Best Solution (BS),

and the new position of each bat is updated with a random

step as follows:

xnew ¼ xold þ � � At ð8Þ

where � 2 �1; 1½ � is a random number and At ¼\At
i[is

the average loudness of bats in iteration t. loudness Ai and

pulse rate r are updated as follows:

Atþ1
i ¼ a � At

i rtþ1
i ¼ r0i � 1� exp �c � tð Þ½ � ð9Þ

where a and c are constants and for each 0\a\1 and

r[0 when t ! 1, we have

At
i ! 0 rti ! r0i t ! 1 ð10Þ

According to the discussion above, BA is summarized in

Algorithm 1.

1562 Neural Computing and Applications (2021) 33:1559–1573

123

The BA has the ability to achieve OS. The convergence

analysis of the BA with the aid of the Markovian frame-

work and dynamical system theory shows that this method

will approach to the OS. The convergence of the BA is

proved by both the Markovian framework and dynamical

system theory. The empirical results of implementing this

algorithm on well-known problem confirm its theoretical

analysis [49].

4 The proposed algorithm

There are many applied solution methods developed for the

optimizations problem in the literature such as exact

methods, heuristics, meta-heuristics and so forth. Evolu-

tionary algorithms are widely used to solve task scheduling

problems. Given that the task scheduling problems are of

an NP-complete type, the use of evolutionary methods can

lead to a reasonable solution to this problem in a logical

time. In this paper, a particle-based algorithm called bat is

used to solve the problem. The BA is inspired by bats

group movement to find food. In the following, how to

formulate the task scheduling problem for the BA and the

steps of the proposed algorithm are described.

4.1 Steps of the proposed algorithm

The proposed algorithm begins by creating some bats. Each

bat has a random solution to the task scheduling problem.

The best bat will be the base of the bats’ movement in the

next round. The fitness of a bat shows its excellence. The

bat fitness function represents the delivery time of the

entire jobs in the scheduling problem. The discussion on

how to calculate fitness is given in the following sections.

After creating the bat and initializing the parameters of the

algorithm, the main steps of the algorithm which simulates

the movement of the bats begin. Algorithm 2 shows the

general steps of the proposed BA for the task scheduling

problem. In Algorithm 2, the fitness function is used to

calculate the fitness of a bat which works on the basis of

delivery time or makespan. Another function called Col-

Reuse was used to calculate velocity of the bats. The

concept of ‘‘velocity’’ has been redefined for this problem.

The new definition is based on a heuristic similarity

between bats. Also, the bats movement was done using the

Substitution, Fold, FullReverse, Join, ShiftUp, and Shift-

Down functions. These functions randomly change part of

a solution. The InactionDel and SmallWalk functions are

used to generate optimal solutions around the BS. The

InactionDel function detects and eliminates the largest idle

time between processors. The SmallWalk function creates a

small movement in the bat by shifting two random jobs.

The operation and pseudocode of these functions are

described in the following sections.

4.1.1 Creating a bat

Given that the number of machines and jobs is equal in one

of the benchmarks of this problem, all pseudocodes and

examples are written for an equal number of machines and

jobs without losing the whole problem. This is done only to

simplify the description of the functions. Therefore, a bat is

a random solution to a problem of a k � k size. To generate

random solutions, we first convert the solution space to a

permutation of integers from one to k � k. Table 1 shows

how this conversion works for k ¼ 3. If we list all possible

combinations of machines and jobs, we can create a

sequence of numbers from one to k � k by taking a

Table 1 Numbering the job and machine states

Sequence number creation

Machine 1 1 1 2 2 2 3 3 3

Job 1 2 3 1 2 3 1 2 3

Numbers 1 2 3 4 5 6 7 8 9

Neural Computing and Applications (2021) 33:1559–1573 1563

123

sequence number. Any permutation of these numbers is a

solution to the problem.

Equations 11 and 12 are used to calculate machine

number and job number.

Machine ¼b
number

k
c þ 1 ð11Þ

Job ¼ number mod kð Þ þ 1 ð12Þ

In these equations, k is the dimension of the problem (the

number of machines and jobs) and ‘‘number’’ is a number

in 1; k � k½ �. Equations 11 and 12 are calculated for all the

numbers in the initial solution, and finally, a k � k matrix is

returned as the final solution. In Table 2, there is an

example of a randomized solution to the problem for k ¼ 4.

4.1.2 Fitness function

The fitness value of a bat is equal to the amount of the

makespan or the time it takes to complete all the jobs. To

calculate this value, you must first schedule all the tasks. At

the end of the scheduling, the exact time of the start and

end of each task is determined. Therefore, the makespan

value is simply quantifiable. The method of computing

makespan is described in Eq. 4. In OSSP, each task is a set

of subtasks that should not be run simultaneously. There-

fore, the scheduling function postpones the start time of

each subtask until the machine is empty and the associated

subtasks are completed. Algorithm 3 shows the pseudocode

of the scheduling function.

In Algorithm 3, MET1�k is the time each machine takes

to be empty with an initial value of zero, PET1�k is the

completion time of processing a job with an initial value of

zero, duration is the time length of performing a subtask,

start is the start time of a subtask, finish is the end time of a

subtask, begink�k is start time of subtasks of each machine,

and endk�k is the end time of subtasks of each machine.

4.1.3 ColReuse function

To calculate the difference between a bat (xi) and the best

bat (X�), a heuristic function called ColReuse was used.

This function shows the maximum repetition of a number

in a scheduling column. For a better understanding of the

role of ColReuse in scheduling quality, look at the standard

5� 5 example in Table 3. In this example, there are three

different schedules, ColReuse 5, 4 and 3, respectively. By

paying attention to the fitness of these schedules, we find

that the higher the number of duplicate numbers in a col-

umn, the lower the scheduling quality. Using this function,

we take the distance between the two bats as the ColReuse

difference between them. The velocity of a bat in the

proposed algorithm is equal to the difference between the

bat (xi) and the best bat (X�). Therefore, the more the

distance between the bat and the BS, the faster it moves to

reach it.

4.1.4 Substitution function

Substitution function creates a new permutation in a

number of matrix rows. Rows are selected if one of their

elements plays a role in increasing the ColReuse value. By

creating a new permutation, ColReuse will drop and Fit-

ness value will probably decrease. Table 4 shows a solu-

tion for a problem with 5 jobs and 5 machines, before and

after substitution. The modified rows is marked in bold.

4.1.5 Fold, FullReverse and join functions

In this section, three new functions used to move a bat are

examined. Each of these functions in a particular way

converts a solution to a new one. Therefore, the search in

the solution space becomes more complete and the likeli-

hood of finding a BS becomes greater. The Fold function

Table 2 A sample solution for

k ¼ 4
Job number

Machine

1

1 3 4 2

Machine

2

3 2 4 1

Machine

3

1 2 3 4

4 1 2 3

Table 3 The effect of the ColReuse function

Solution 1 2 3 4 5 2 3 4 5 1 2 3 4 5 1

1 2 3 4 5 1 2 3 4 5 5 1 2 3 4

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

ColReuse 5 4 3

Fitness 1220 948 713

1564 Neural Computing and Applications (2021) 33:1559–1573

123

chooses one of the rows randomly and reverses the top or

bottom of that row completely. The FullReverse function

reverses all the solution rows. The Join function selects a

few rows in a solution and replaces them with the rows of a

random bat. Table 5 shows an example of the performance

of these functions. Modified parts are shown in bold.

4.1.6 ShiftUp and ShiftDown functions

The ShiftUp and ShiftDown functions choose one of the

response columns randomly and then shift it up or down

(depending on the function). After the shift operation, a

duplicate number is created in some rows. To correct this

state, the deleted number is replaced the number that has

just entered. Therefore, a new and correct solution is

obtained. Algorithm 4 shows the pseudocode of these

functions.

The performances of ShiftUp and ShiftDown functions

are illustrated in Table 6 (the columns are shifted and the

modified elements are shown in bold).

4.1.7 SmallWalk and InactionDel functions

All the functions described in the previous sections are

meant for moving ordinary bats. However, the two func-

tions, namely SmallWalk and InactiveDel, were intended

for creating a place next to the best bat (X�). Based on a

1� r probability, a bat (xi) is moved to that place. Pulse

rate (r in Eqs. 9 and 10) has an initial value of 1 and

decreases according to Eq. 13.

r ¼ 1�
1

MaxGenerationþ 1� t

� �

ð13Þ

In Eq. 13, MaxGeneration is the maximum number of bats

movements and t is the number of moves up to this

moment. The diagram of this function, as depicted in

Fig. 1, shows that at the beginning of the algorithm, the

bats move to the area around the best bat with a little

probability and they try to find the solution themselves.

However, at the end of running the algorithm, most bats

move to the area around the best bat and try to improve the

BS.

The InactionDel function was created with the aim of

eliminating the greatest idle time between machines. This

Table 4 Substitution performance

Before substitution After substitution

Solution 3 2 1 5 4 3 2 1 5 4

1 3 4 5 2 4 1 5 2 3

1 2 5 4 3 2 4 3 1 5

1 3 5 4 2 3 5 1 2 4

5 4 2 3 1 5 4 2 3 1

ColReuse 3 2

Table 5 Performances of Fold, FullReverse and Join functions

Solution After Fold After

FullReverse

After Join

4 2 1 3 4 2 1 3 3 1 2 4 4 2 1 3

3 2 1 4 3 2 1 4 4 1 2 3 3 2 1 4

3 4 2 1 1 2 4 3 1 2 4 3 2 1 4 3

1 3 2 4 4 2 3 1 4 2 3 1 3 4 1 2

Table 6 ShiftUp/Down performance

Solution ShiftUp ShiftDown

2 1 3 5 4 4 1 3 5 2 2 3 1 5 4

4 3 1 5 2 5 3 1 4 2 4 1 3 5 2

5 4 1 3 2 3 4 1 5 2 5 4 1 3 2

3 5 4 2 1 2 5 4 3 1 3 5 1 2 4

2 4 1 3 5 2 4 1 3 5 2 1 4 3 5

Fig. 1 Pulse rate (r) modification for 50 generations

Neural Computing and Applications (2021) 33:1559–1573 1565

123

function finds the biggest gap between machines and shifts

the machine tasks to the right. Therefore, the task that was

delayed and created a gap moves from its place and another

task takes this place and probably uses this idle time. The

pseudocode of the InactionDel function is written in

Algorithm 5.

The last function examined is the SmallWalk function.

This function randomly selects two points of the matrix and

moves its values. After moving, duplicate values may be

created in two rows of the matrix. Duplicate values are

deleted in the same way as performed for the Shift function.

In the next section, the proposed method is implemented

and the results are compared with those of the previous

methods. In this section, functions designed to solve the

OSP using the BA are described. After full description of

these functions, it is necessary to determine how they will

be used during the execution of the BA. Figure 2 shows the

flowchart of the proposed algorithm.

5 Simulation results

In this section, simulation results of the proposed algorithm

(BA_OS) are presented. MATLAB programming language

on a Laptop of Intel Core i7-4720HQ CPU 2.60GHz and

12.0 GB RAM is used to implement the proposed algo-

rithm. In order to investigate the efficiency of the proposed

algorithm for solving OSSP, this section presents scenarios

including various jobs and machines for solving the prob-

lem using BA_OS algorithm; then, results are compared.

Generated scenarios are divided into three groups accord-

ing to the number of jobs and the complexity of the sce-

narios. Table 7 shows these scenarios with the number of

jobs and machines. The parameters of the proposed algo-

rithm are defined as follows: the number of bats that is set

by the user for each problem. The number of generations or

a number of bat movements are set by the user for each

problem. Loudness (A) is set to 0.95. Pulse rate (r) emis-

sion starts from 1 and gradually (based on Eq. 13) reaches

to 0 (Table 8).

The BA_OS has been tested on Taillard criteria [50].

Tables 9 and 10 show the results obtained after applying

any Taillard criteria [50] using the determined parameters.

As seen, BA_OS achieves optimal solutions in most sam-

ples and achieved a relative advantage over compared

algorithms.

Comparison of the proposed algorithm (BA_OS) with

other algorithms is presented in Tables 9 and 10. The

proposed algorithm is compared with simulated algorithm

(SA) [51], GA [52, 53] HGA [52, 54], neural networks

[55], ant colony system (ACS) [56], cuckoo search (CS)

[56] and cat swarm optimization algorithm (CSO) [57]. As

seen, proposed algorithm could solve the problem well and

compete with compared algorithms.

Fig. 2 Flowchart of proposed algorithm

Table 7 Generated scenarios

Data Number of jobs Number of machines Display

Small-scale 4 4 4� 4

data 5 5 5� 5

Medium-scale 7 7 7� 7

data 10 10 10� 10

Large-scale 15 15 15� 15

data 20 20 20� 20

1566 Neural Computing and Applications (2021) 33:1559–1573

123

Table 8 Parameter setting
Pulse rate (r) Loudness (A) Number of generations Number of bats

Start from 1 and gradually reaches to 0 0.95 2000–3000 40–200

Table 9 Obtained results for

benchmarks of size 4� 4,

5� 5, 7� 7 and 10� 10

Benchmarks Optimal SA GA HGA HGA GA EGA_OS ACS CS CSO BA_OS

solution [51] [52] [52] [54] [53] [58] [56] [56] [57]

4� 4� 1 193 193 193 213 193 193 193 193 193 193 193

4� 4� 2 236 236 236 240 236 239 239 236 236 236 236

4� 4� 3 271 271 271 293 271 271 271 271 271 271 271

4� 4� 4 250 250 250 253 250 250 250 250 252 250 250

4� 4� 5 295 295 295 303 295 295 295 295 295 295 295

4� 4� 6 189 189 189 209 189 189 189 189 189 189 189

4� 4� 7 201 201 201 203 201 201 201 201 201 201 201

4� 4� 8 217 217 217 224 217 217 217 217 217 217 217

4� 4� 9 261 261 261 281 261 261 261 261 261 261 261

4� 4� 10 217 217 217 230 217 217 217 217 217 217 217

5� 5� 1 300 300 301 323 300 301 300 301 301 300 300

5� 5� 2 262 262 262 269 262 263 262 262 262 262 262

5� 5� 3 323 323 331 353 323 335 323 331 335 323 323

5� 5� 4 310 310 N/A N/A 310 316 310 315 314 310 310

5� 5� 5 326 326 N/A N/A 326 330 326 331 329 326 326

5� 5� 6 312 312 312 327 312 312 312 317 318 312 312

5� 5� 7 303 303 N/A N/A 303 308 303 308 305 303 303

5� 5� 8 300 300 N/A N/A 300 304 300 304 303 300 300

5� 5� 9 353 353 353 373 353 358 353 358 358 353 353

5� 5� 10 326 326 326 341 326 328 326 329 329 326 326

7� 7� 1 435 435 438 447 435 436 435 435 436 435 435

7� 7� 2 443 443 455 454 443 447 443 445 447 443 443

7� 7� 3 468 468 N/A N/A 468 472 468 479 472 468 468

7� 7� 4 463 463 N/A N/A 463 463 463 467 466 463 463

7� 7� 5 416 416 N/A N/A 416 417 416 419 416 416 416

7� 7� 6 451 451 N/A N/A 451 455 451 460 454 452 451

7� 7� 7 422 422 443 450 422 426 422 435 425 422 422

7� 7� 8 424 424 N/A N/A 424 424 424 424 424 426 424

7� 7� 9 458 458 465 467 458 458 458 458 458 458 458

7� 7� 10 398 398 405 406 398 398 398 398 399 398 398

10� 10� 1 637 637 667 655 637 637 637 638 639 645 637

10� 10� 2 588 588 N/A N/A 588 588 588 588 688 588 588

10� 10� 3 598 598 N/A N/A 598 598 598 599 600 599 598

10� 10� 4 577 577 586 581 577 577 577 577 577 577 577

10� 10� 5 640 640 N/A N/A 640 640 640 640 640 640 640

10� 10� 6 538 538 555 541 538 538 538 538 538 538 538

10� 10� 7 616 616 N/A N/A 616 616 616 616 616 616 616

10� 10� 8 595 595 N/A N/A 595 595 595 595 595 595 595

10� 10� 9 595 595 627 598 595 595 595 595 595 595 595

10� 10� 10 596 596 623 605 596 596 596 596 596 596 596

‘‘N/A’’ is common in the table for the phrase not applicable

Neural Computing and Applications (2021) 33:1559–1573 1567

123

Table 9 shows the results for small size problems. In

these problem sets, the optimal solutions are clear. Results

of the proposed method show that all of the optimal solu-

tions have been obtained by BA_OS. Table 10 lists the

results for medium size problems. Solutions of proposed

method indicate that in all problems (except 20� 20� 8)

the outputs are exactly equal to optimal solution. In com-

parison with other mentioned algorithms, this shows a

reasonable enhancement. Large size problems have been

tested in further tables.

The Gantt chart of a sample schedule for benchmark

10� 10� 1 is depicted in Fig. 3. The white pars of the

chart show the gap times in each machine. Each color

shows the operations of a particular job.

5.1 Test problems

In this section, for further verification, the performance of

the proposed BA_OS is evaluated using the benchmarks

presented recently by Shamshirband et al. [6]. According to

these benchmarks, some GA-based algorithms including

DGA [37], SAGA [37], TSGA [37] and PGA [37] have

been proposed to solve the problem which are compared to

the proposed BA_OS. The main body of these methods is

GA. The difference between these methods is in their local

optimizations which are implemented by GA, SA (simu-

lated annealing), and TS. The structure of TS and SA with

a short memory is the same as classical forms (SA [59], TS

[60]).The obtained results are presented in Tables 11

and 12 for small-sized (job size n ¼ 3 and 4; machine size

m ¼ 2 and 3) and large-sized problems (job size n ¼ 10, 30

and 50; machine size m ¼ 5, 10 and 15), respectively.

Since the results in Tables 11 and 12 include the BS and

mean ones, the stability of the proposed method should be

analyzed before investigating these tables. A multiple run

of a plot and drawing of the plot box from the values

obtained shows how far the outputs of that method are

Table 10 Obtained results for benchmarks of size 15� 15, and 20� 20

Benchmarks Optimal SA GA HGA HGA GA Neural EGA_OS ACS CS CSO BA_OS

solution [51] [52] [52] [54] [53] [55] [58] [56] [56] [57]

15� 15� 1 937 937 967 937 937 937 937 937 937 937 937 937

15� 15� 2 918 918 N/A N/A 918 918 918 918 918 918 920 918

15� 15� 3 871 871 904 871 871 871 871 871 871 871 871 871

15� 15� 4 934 934 969 934 934 934 934 934 934 934 934 934

15� 15� 5 946 946 N/A N/A 946 946 946 946 946 946 952 946

15� 15� 6 933 933 N/A N/A 933 933 933 933 933 933 933 933

15� 15� 7 891 891 N/A N/A 891 891 891 891 891 891 891 891

15� 15� 8 893 893 928 893 893 893 893 893 893 893 893 893

15� 15� 9 899 899 N/A N/A 899 899 899 899 902 902 913 899

15� 15� 10 902 902 N/A N/A 902 902 902 902 902 902 902 902

20� 20� 1 1155 1155 1230 1165 1155 1155 1155 1155 1155 1155 1166 1155

20� 20� 2 1241 1241 N/A N/A 1241 1241 1242 1241 1242 1243 1260 1241

20� 20� 3 1257 1282 1292 1257 1257 1257 1257 1257 1257 1257 1257 1257

20� 20� 4 1248 1274 N/A N/A 1248 1248 1248 1248 1248 1248 1253 1248

20� 20� 5 1256 1289 1315 1256 1256 1256 1256 1256 1256 1256 1256 1256

20� 20� 6 1204 1204 1266 1207 1204 1204 1204 1204 1204 1204 1204 1204

20� 20� 7 1294 1294 N/A N/A 1294 1294 1294 1294 1295 1294 1310 1294

20� 20� 8 1169 1169 N/A N/A 1173 1171 1173 1170 1176 1175 1210 1170

20� 20� 9 1289 1307 1339 1289 1289 1289 1289 1289 1289 1289 1289 1289

20� 20� 10 1241 N/A 1307 1241 1241 1241 1241 N/A 1241 1241 1241 1241

‘‘N/A’’ is common in the table for the phrase not applicable

Fig. 3 Gantt chart of a sample schedule for benchmark 10� 10� 1

1568 Neural Computing and Applications (2021) 33:1559–1573

123

Table 11 Performance comparisons of the proposed algorithm and four GA-based heuristics (for small-size problems)

Problem Optimum solution DGA [37] SAGA [37] TSGA [37] PGA [6] BA_OS

(n� m) Best Average Best Average Best Average Best Average Best Average

3� 2� 1 177 177 177 177 177 177 177 177 177 177 177

3� 2� 2 109 109 109 109 109 109 109 109 109 109 109

3� 2� 3 224 224 224 224 224 224 224 224 224 224 224

3� 2� 4 241 241 241 241 241 241 241 241 241 241 241

3� 3� 1 173 173 173 173 173 173 173 173 173 173 173

3� 3� 2 193 193 193 193 193 193 193 193 193 193 193

3� 3� 3 212 212 212 212 212 212 212 212 212 212 212

3� 3� 4 255 255 255 255 255 255 255 255 255 255 255

4� 2� 1 352 352 352 352 352 352 352 352 352 352 352

4� 2� 2 393 393 393 393 393 393 393 393 393 393 393

4� 2� 3 408 408 408 408 408 408 408 408 408 408 408

4� 2� 4 556 556 556 556 556 556 556 556 556 556 556

4� 3� 1 – 402 404.2 402 405.0 402 410.3 399 401 395 398

4� 3� 2 – 487 487 489 492.2 487 493.1 483 484 479 481

4� 3� 3 – 605 605.6 605 607.0 605 607.4 601 601 595 596

4� 3� 4 – 388 388.6 388 389.2 388 388.8 382 382 375 375

‘‘–’’ indicates that the optimum solutions cannot be obtained by the extended Lindo within 50 running hours

Table 12 Performance comparisons of the proposed algorithm and four GA-based heuristics (for large-size problems)

Problem DGA [37] SAGA [37] TSGA [37] PGA [6] BA_OS

(n� m) Best Average Best Average Best Average Best Average Best Average

10� 5� 1 3048 3058.4 3048 3098 3050 3138 3043 3045 3039 3042

10� 5� 2 2926 2980.2 2932 3100.8 2932 3148.4 2911 2917 2902 2905

10� 5� 3 3043 3061.7 3043 3084 3087 3114.8 3014 3019 3009 3011

10� 5� 4 1965 1972.3 1968 1985.1 2000 2008.2 1922 1925 1910 1913

10� 10� 1 3623 3650 3705 3760.8 3696 3812.6 3605 3612 3596 3600

10� 10� 2 2457 2520.4 2516 2600.4 2532 2636.4 2419 2426 2409 2413

10� 10� 3 1016 1056 1044 1092.7 1075 1121.5 1007 1014 1001 1007

10� 10� 4 1455 1492.7 1455 1504.2 1457 1552 1418 1423 1410 1414

30� 5� 1 4523 4537.4 4523 4602.7 4582 4652.8 4501 4509 4494 4500

30� 5� 2 4587 4626.8 4590 5670.4 4601 4705 4532 4540 4527 4531

30� 5� 3 3864 3880.5 3912 3958 3868 3984.3 3835 3842 3830 3836

30� 5� 4 5137 5184.1 5137 5232.5 5193 5782.5 5117 5127 5108 5114

30� 15� 1 6128 6188.8 6212 6280.6 6216 6312.8 6111 6134 6101 6116

30� 15� 2 5042 5124 5120 5204.9 5120 5220.1 5013 5026 5006 5014

30� 15� 3 4815 4846.2 4832 4920 4850 4950.8 4804 4832 4796 4802

30� 15� 4 5284 5344.4 5291 5385 5291 5410.2 5233 5241 5222 5230

50� 5� 1 6052 6140.8 6150 6318.2 6208 6338.4 6026 6076 6019 6038

50� 5� 2 6615 6742.4 6692 6876.2 6680 6934.1 6603 6631 6546 6573

50� 5� 3 5918 6035.1 6080 6290.2 6097 6298.2 5906 5945 5704 5741

50� 5� 4 7422 7560.3 7510 7768.5 7590 7842 7409 7426 7217 7224

Neural Computing and Applications (2021) 33:1559–1573 1569

123

close to the mean value. As much as the generated values

are closer to the mean value, the stability of that method is

higher. Box plot of several run of the proposed method on

six sample problems of large-scale size is shown in Fig. 4.

Investigating the values of Fig. 4 shows that in many

cases, the outputs of the proposed method are close to the

mean value. Therefore, the proposed method produces

balanced outputs. Among six examined test problems, in

three problems 10� 10� 1, 30� 5� 1 and 30� 15� 1

only one solution was distant from the average value, and

the rest ones were within an acceptable distance from the

mean value. The minimum value of each box plot repre-

sents the best produced solution. The details of the results

for this benchmark are shown in Tables 11 and 12.

According to the tables, the proposed method produces a

better solution in most of the problems.

For a better comparison between the proposed method

and the four previous methods, the results of these algo-

rithms are shown in Fig. 5 in the form of box plots. The

values of box plots are obtained from test problem

50� 5� 1. Results show that the results of the proposed

method have the most similarity to the mean value. The

PGA [6] method, with BS close to the proposed method, is

much weaker in terms of sustainability. Other methods are

much weaker than the proposed method in terms of both

the BS and sustainability.

6 Conclusion

The OSSP is a well-known scheduling problem with high

application in industries. So, finding an optimal applicable

scheduling in this environment would help in order to

execute the best policy in industries. In this paper, a pro-

posed bat algorithm is applied for solving OSSP. The aim

of the proposed algorithm is to reduce production costs

through minimizing makespan of such systems. Given that

classical BA is presented for solving continuous problems

and scheduling problem is a discrete problem, operations

such as difference and bat’s movement are defined so that

proposed algorithm can operate in a discrete environment.

Optimization of random bats is done by two heuristic

functions named: ColReuse and InactionDel. To evaluate

the performance of the proposed algorithm, we tested it on

standard benchmark and compared it algorithm with other

algorithms. This benchmark includes small-, medium- and

large-scale problems. Experimental results show that pro-

posed algorithm obtained better results in all three cate-

gories. This improvement can be more obvious in larger

production systems. For future studies, it is suggested to

consider more real assumptions in the problem such as

setup times and maintenance of the machines. Also,

studying the uncertain nature of the parameters would

make the mode more real.

Table 12 (continued)

Problem DGA [37] SAGA [37] TSGA [37] PGA [6] BA_OS

(n� m) Best Average Best Average Best Average Best Average Best Average

50� 15� 1 6485 6604.2 6540 6876.5 6605 6950.5 6419 6453 6402 6427

50� 15� 2 8905 9015.7 8995 9250.3 9142 9390.8 8876 8895 8852 8821

50� 15� 3 6624 6843.5 6708 6870 6708 6940.3 6604 6638 6546 6555

50� 15� 4 7350 7413.6 7395 7522.6 7395 7560.7 7315 7352 7289 7299

1570 Neural Computing and Applications (2021) 33:1559–1573

123

Fig. 4 Box plots multiple performances on six tests: 10� 5� 1 (a), 10� 10� 1 (b), 30� 5� 1 (c), 30� 15� 1 (d), 50� 5� 1 (e), 50�
15� 1 (f)

Neural Computing and Applications (2021) 33:1559–1573 1571

123

Compliance with ethical standards

Conflict of interest In the present work, we have not used any

material from previously published. So we have no conflict of

interest.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Li X, Gao L (2016) An effective hybrid genetic algorithm and

tabu search for flexible job shop scheduling problem. Int J Prod

Econ 174:93–110

2. Tellache NEH, Boudhar M (2017) Open shop scheduling prob-

lems with conflict graphs. Discr Appl Math 227:103–120

3. Noori-Darvish S, Tavakkoli-Moghaddam R (2011) Solving a bi-

objective open shop scheduling problem with fuzzy parameters.

J Appl Oper Res 3(2):59–74

4. Ciro GC, Dugardin F, Yalaoui F, Kelly R (2016) A NSGA-II and

NSGA-III comparison for solving an open shop scheduling

problem with resource constraints. IFAC-PapersOnLine

49(12):1272–1277

5. TsoLin H, TauLee H, Pan W (2008) Heuristics for scheduling in a

no-wait open shop with movable dedicated machines. Int J Prod

Econ 111:368–377

6. Shamshirband S, Shojafar M, Hosseinabadi AR, Kardgar M,

Nasir MN, Ahmad R (2015) OSGA: genetic-based open-shop

scheduling with consideration of machine maintenance in small

and medium enterprises. Ann Oper Res 229(1):743–758

7. Gonzalez T, Sahni S (1976) Open shop scheduling to minimize

finish time. J ACM (JACM) 23(4):665–679

8. Kubiak W, Sriskandarajah C, Zaras K (1991) A note on the

complexity of openshop scheduling problems. INFOR Inf Syst

Oper Res 29(4):89–294

9. Liu CY, Bulfin RL (1987) Scheduling ordered open shops.

Comput Oper Res 14(3):257–264

10. Prins C (1994) An overview of scheduling problems arising in

satellite communications. J Oper Res Soc 45(6):611–623

11. Brucker P (2007) Scheduling algorithms. Springer, Berlin

12. Kolen AW, Lenstra JK, Papadimitriou CH, Spieksma FC (2007)

Interval scheduling: a survey. Nav Res Logist (NRL)

54(5):530–543

13. Reddy MS, Ratnam C, Rajyalakshmi G, Manupati VK (2018) An

effective hybrid multi objective evolutionary algorithm for

solving real time event in flexible job shop scheduling problem.

Measurement 114:78–90

14. Hosseinabadi AAR, Farahabadi AB, Rostami MHS, Lateran AF

(2013) Presentation of a new and beneficial method through

problem solving timing of open shop by random algorithm

gravitational emulation local search. Int J Comput Sci Issues

(IJCSI) 10(1):745–751

15. Tavakkolai H, Hosseinabadi AAR, Yadollahi M, Mohammad-

pour T (2015) Using gravitational search algorithm for in advance

reservation of resources in solving the scheduling problem of

works in workflow workshop environment. Indian J Sci Technol

8(11):1–16

16. Farahabadi AB, Hosseinabadi AR (2013) Present a new hybrid

algorithm scheduling flexible manufacturing system considera-

tion cost maintenance. Int J Sci Eng Res 4(9):1870–1875

17. Michael RG, David SJ (1979) Computers and intractability: a

guide to the theory of NP-completeness. WH Free. Co., San

Francisco

18. Ciro GC, Dugardin F, Yalaoui F, Kelly R (2015) A fuzzy ant

colony optimization to solve an open shop scheduling problem

with multi-skills resource constraints. IFAC-PapersOnLine

48(3):715–720

19. Tautenhahn T, Woeginger GJ (1997) Unit-time scheduling

problems with time dependent resources. Computing

58(2):97–111

20. Brasel H, Herms A, Morig M, Tautenhahn T, Tusch J, Werner F

(2008) Heuristic constructive algorithms for open shop schedul-

ing to minimize mean flow time. Eur J Oper Res 189(3):856–870

21. Alcaide D, Sicilia J, Vigo D (1997) A tabu search algorithm for

the open shop problem. Top 5(2):283–296

22. Liaw CF (2000) A hybrid genetic algorithm for the open shop

scheduling problem. Eur J Oper Res 124(1):28–42

23. Blum C (2005) Beam-ACO-Hybridizing ant colony optimization

with beam search: an application to open shop scheduling.

Comput Oper Res 32(6):1565–1591

24. Huang YM, Lin JC (2011) A new bee colony optimization

algorithm with idle-time-based filtering scheme for open shop-

scheduling problems. Exp Syst Appl 38(5):5438–5447

25. Ahmadizar F, Farahani MH (2012) A novel hybrid genetic

algorithm for the open shop scheduling problem. Int J Adv Manuf

Technol 62(5–8):775–787

26. Chen Y, Zhang A, Chen G, Dong J (2013) Approximation

algorithms for parallel open shop scheduling. Inf Process Lett

113(7):220–224

27. Naderi B, Zandieh M (2014) Modeling and scheduling no-wait

open shop problems. Int J Prod Econ 158:256–266

28. Bai D, Zhang ZH, Zhang Q (2016) Flexible open shop scheduling

problem to minimize makespan. Comput Oper Res 67:207–215

29. Tanimizu Y, Sakamoto M, Nonomiya H (2017) A co-evolution-

ary algorithm for open-shop scheduling with disassembly oper-

ations. Procedia CIRP 63:289–294

30. Gao KZ, Suganthan PN, Pan QK, Chua TJ, Chong CS, Cai TX

(2016) An improved artificial bee colony algorithm for flexible

Fig. 5 Box plot of running of five different methods

1572 Neural Computing and Applications (2021) 33:1559–1573

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

job-shop scheduling problem with fuzzy processing time. Exp

Syst Appl 65:52–67

31. Zhao F, Liu H, Zhang Y, Ma W, Zhang C (2018) A discrete water

wave optimization algorithm for no-wait flow shop scheduling

problem. Exp Syst Appl 91:347–363

32. Marichelvam MK, Prabaharan T, Yang XS, Geetha M (2013)

Solving hybrid flow shop scheduling problems using bat algo-

rithm. Int J Logist Econ Glob 5(1):15–29

33. Oulamara A, Rebaine D, Serairi M (2013) Scheduling the two-

machine open shop problem under resource constraints for setting

the jobs. Ann Oper Res 211(1):333–356

34. Zaher H, Ragaa N, Sayed H (2017) A novel improved bat algo-

rithm for job shop scheduling problem. Int J Comput Appl

164(5):24–30

35. Goldansaz SM, Jolai F, Anaraki AHZ (2013) A hybrid imperialist

competitive algorithm for minimizing makespan in a multi-pro-

cessor open shop. Appl Math Model 37(23):9603–9616

36. Koulamas C, Kyparisis GJ (2015) The three-machine propor-

tionate open shop and mixed shop minimum makespan problems.

Eur J Oper Res 243(1):70–74

37. Low C, Yeh Y (2009) Genetic algorithm-based heuristics for an

open shop scheduling problem with setup, processing, and

removal times separated. Robot Comput Integr Manuf

25(2):314–322

38. Zhang ZH, Bai D (2014) An extended study on an open-shop

scheduling problem using the minimisation of the sum of quad-

ratic completion times. Appl Math Comput 230:238–247

39. Chen Y, Goebel R, Lin G, Su B, Zhang A (2020) Open-shop

scheduling for unit jobs under precedence constraints. Theor

Comput Sci 803:144–151

40. Wei W, Song H, Li W, Shen P, Vasilakos A (2017) Gradient-

driven parking navigation using a continuous information

potential field based on wireless sensor network. Inf Sci

408:100–114

41. Mejı́a G, Yuraszeck F (2020) A self-tuning variable neighbor-

hood search algorithm and an effective decoding scheme for open

shop scheduling problems with travel/setup times. Eur J Oper Res

285(2):484–496

42. Wei W, Xu Q, Wang L, Hei XH, Shen P, Shi W, Shan L (2014)

GI/Geom/1 queue based on communication model for mesh

networks. Int J Commun Syst 27(11):3013–3029

43. Abdelmaguid TF (2020) Scatter search with path relinking for

multiprocessor open shop scheduling. Comput Ind Eng

141:106292

44. Wei W, Zhou B, Polap D, Wozniak M (2019) A regional adaptive

variational PDE model for computed tomography image recon-

struction. Pattern Recognit 92:64–81

45. Yang XS (2010) A new metaheuristic bat-inspired algorithm. In:

Proceedings of the of nature inspired cooperative strategies for

optimization (NICSO 2010). Springer, Berlin, Heidelberg,

pp 65–74

46. Yang XS (2011) Bat algorithm for multi-objective optimisation.

Int J Bio-Inspired Comput 3(5):267–274

47. Yang XS, He X (2013) Bat algorithm: literature review and

applications. Int J Bio-Inspired Comput 5(3):141–149

48. Basetti V, Chandel AK (2017) Optimal PMU placement for

power system observability using Taguchi binary bat algorithm.

Measurement 95:8–20

49. Chen S, Peng GH, He XS, Yang XS (2018) Global convergence

analysis of the bat algorithm using a markovian framework and

dynamical system theory. Exp Syst Appl 114:173–182

50. Taillard E (1993) Benchmarks for basic scheduling problems. Eur

J Oper Res 64(2):278–285

51. Harmanani HM, Ghosn SB (2016) An efficient method for the

open-shop scheduling problem using simulated annealing. In:

Information technology: new generations. Springer, Cham,

pp 1183–1193

52. Khuri S, Miryala SR (1999) Genetic algorithms for solving open

shop scheduling problems. In: Proceedings of the of Portuguese

conference on artificial intelligence. Springer, Berlin, Heidelberg,

pp 357–368

53. Ross HLFP, Corne D (1994) A promising hybrid GA/heuristic

approach for open-shop scheduling problems. In: Proceedings of

the 11th European conference on artificial intelligence,

pp 590–594

54. Prins C (2000) Competitive genetic algorithms for the open-shop

scheduling problem. Math Methods Oper Res 52(3):389–411

55. Colak S, Agarwal A (2005) Non-greedy heuristics and augmented

neural networks for the open-shop scheduling problem. Nav Res

Logist (NRL) 52(7):631–644

56. Marrouche W, Harmanani HM (2018) Heuristic approaches for

the open-shop scheduling problem. In: Information technology—

new generations, pp 691–699

57. Bouzidi A, Essaid Riffi M, Barkatou M (2019) Cat swarm opti-

mization for solving the open shop scheduling problem. J Ind Eng

Int 15(2):367–378

58. Hosseinabadi AAR, Vahidi J, Saemi B, Sangaiah AK, Elhoseny

M (2019) Extended genetic algorithm for solving open-shop

scheduling problem. Soft Comput 23(13):5099–5116

59. Van Laarhoven PJ, Aarts EH (1987) Simulated annealing. In:

Aarts EHL (ed) Simulated annealing: theory and applications.

Springer, Dordrecht, pp 7–15

60. Glover F, Laguna M (1998) Tabu search. In: Pardalos PM, Du

DZ, Graham RL (eds) Handbook of combinatorial optimization.

Springer, Boston, pp 2093–2229

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2021) 33:1559–1573 1573

123

	An improved bat optimization algorithm to solve the tasks scheduling problem in open shop
	Abstract
	Introduction
	Problem statement
	The bat algorithm
	The proposed algorithm
	Steps of the proposed algorithm
	Creating a bat
	Fitness function
	ColReuse function
	Substitution function
	Fold, FullReverse and join functions
	ShiftUp and ShiftDown functions
	SmallWalk and InactionDel functions

	Simulation results
	Test problems

	Conclusion
	Open Access
	References

