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Uncertainty measure in data fusion applications is a hot topic; quite a few methods have been proposed to measure the degree
of uncertainty in Dempster-Shafer framework. However, the existing methods pay little attention to the scale of the frame of
discernment (FOD), which means a loss of information. Due to this reason, the existing methods cannot measure the di	erence
of uncertain degree among di	erent FODs. In this paper, an improved belief entropy is proposed in Dempster-Shafer framework.
�e proposed belief entropy takes into consideration more available information in the body of evidence (BOE), including the
uncertain information modeled by the mass function, the cardinality of the proposition, and the scale of the FOD. �e improved
belief entropy is a newmethod for uncertaintymeasure inDempster-Shafer framework. Based on the new belief entropy, a decision-
making approach is designed. �e validity of the new belief entropy is veri
ed according to some numerical examples and the
proposed decision-making approach.

1. Introduction

Decision-making in the uncertain environment is common
in real world applications, such as civil engineering [1–3],
supply chain management [4, 5], risk analysis [6, 7], medical
service [8, 9], and so on [10–12]. In order to reach the goal
of maximum comprehensive bene
ts, many methods have
been developed for decision-making based on probability
theory [13, 14], fuzzy set theory [15–18], Dempster-Shafer
evidence theory [19–22], rough set theory [23–25], and so on
[26–29].

Dempster-Shafer evidence theory [19, 20] is e	ective in
uncertain information processing. It provides the frame of
discernment (FOD) and the basic probability assignment
(BPA) for information modeling, as well as the Dempster’s
rule of combination for data fusion. Dempster-Shafer evi-
dence theory has been extensively studied inmany 
elds such
as pattern recognition [30–34], fault diagnosis [35–38], mul-
tiple attribute decision-making [39–41], risk analysis [22,
35, 42, 43], controller design [44, 45], and so on [46–
48]. Some open issues in Dempster-Shafer evidence theory
are still needed for further study, including the con�icting

management [49–52], the independence of di	erent evi-
dences [53–55], the methods to generate BPAs [56–58], and
the incompleteness of the FOD [59–61]. One way to address
these open issues is to quantify the uncertain degree of uncer-
tain information before further information processing.

In the probabilistic framework, Shannon entropy [62] is
a well-known theory for uncertainty measure; it has attracted
much attention in real applications [63–65]. But Shan-
non entropy cannot be used directly in the framework of
Dempster-Shafer evidence theory, because amass function in
evidence theory is a generalized probability assigned on the
power set of the FOD. In order to overcome this limitation,
in Dempster-Shafer framework, many methods have been
proposed to measure the uncertain degree of the evidence,
such as Hohle’s confusion measure [66], Yager’s dissonance
measure [67], Dubois & Prade’s weighted Hartley entropy
[68], Klir & Ramer’s discord measure [69], Klir & Parviz’s
strife measure [70], George & Pal’s total con�ict measure
[71], and so on [72–74]. Some of these methods are derived
from Shannon entropy [66–70]. But the aforementioned
methods are somehow not that e	ective in some cases
[71, 75].
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Lately, another uncertaintymeasure namedDeng entropy
[75] is proposed in Dempster-Shafer framework. Although
Deng entropy has been successfully applied in some real
applications [36–38, 80, 81], it does not take into consider-
ation the scale of the FOD, which means a loss of available
information while doing information processing. To make
matters worse, the information loss will lead to failure for
uncertainty measure in some cases [71]. �e same shortage
also exists in the confusion measure [66], the dissonance
measure [67], the weighted Hartley entropy [68], the discord
measure [69], and the strife measure [70]. To address this
issue, an improved belief entropy based on Deng entropy
is proposed in this paper. �e proposed belief entropy can
improve the performance of Deng entropy by considering the
scale of the FOD and the relative scale of a focal element
with respect to FOD. What is more, the proposed method
keeps all the merits of Deng entropy; thus it can degenerate
to Shannon entropy in the sense of the probability consisten-
cy.

In order to verify the validity of the improved belief
entropy, a decision-making approach in target identi
ca-
tion is designed based on the new belief entropy. In the
proposed method, the uncertain degree of the sensor data
is measured by the new belief entropy; then the uncertain
degree will be used as the relative weight of each sensor
report modeled as the body of evidence (BOE); a�er that,
the BPAs of the BOE will be modi
ed by the weight value;

nally, the decision-making is based on the fusion results
of applying Dempster’s rule of combination to the modi
ed
BPAs.

�e rest of this paper is organized as follows. In Section 2,
the preliminaries onDempster-Shafer evidence theory, Shan-
non entropy, and some uncertainty measures in Dempster-
Shafer framework are brie�y introduced. In Section 3, the
improved belief entropy is proposed; some behaviors of
the proposed belief entropy are discussed with the numer-
ical examples. In Section 4, an uncertainty measure-based
decision-making approach is proposed to show the e�ciency
of the new belief entropy. �e conclusions are given in
Section 5.

2. Preliminaries

In this section, some preliminaries are brie�y introduced,
including Dempster-Shafer evidence theory, Shannon en-
tropy, and some typical uncertainty measures in Dempster-
Shafer framework.

2.1. Dempster-Shafer Evidence �eory. Let Ω = {�1, �2, . . . ,��, . . . , ��} be a 
nite nonempty set of mutually exclusive and
exhaustive events, and Ω is called the frame of discernment

(FOD).�e power set ofΩ, denoted as 2Ω, is composed of 2�
elements denoted as follows:

2Ω = {0, {�1} , {�2} , . . . , {��} , {�1, �2} , . . . , {�1, �2, . . . , ��} ,
. . . , Ω} .

(1)

Amass function� is de
ned as amapping from the power

set 2Ω to the interval [0, 1], which satis
es the following
conditions [19, 20]:

�(0) = 0,
∑
�∈Ω

�(	) = 1. (2)

If�(	) > 0, then	 is called a focal element, and the mass
function�(	) represents how strongly the evidence supports
proposition 	.

A body of evidence (BOE), also known as a basic proba-
bility assignment (BPA) or basic belief assignment (BBA), is
represented by the focal sets and their associated mass value:

(R, �) = {⟨	,� (	)⟩ : 	 ∈ 2Ω, � (	) > 0} , (3)

whereR is a subset of the power set 2Ω and each 	 ∈ R has
an associated nonzero mass value�(	).

A BPA � can also be represented by its associate belief
function Bel and plausibility function Pl, respectively, de
ned
as follows:

Bel (	) = ∑
� ̸=	⊆�

�(�) ,

Pl (	) = ∑
	∩� ̸=�

�(�) .
(4)

In Dempster-Shafer evidence theory, two independent
mass functions, denoted as�1 and�2, can be combined with
Dempster’s rule of combination de
ned as follows [19, 20]:

�(	) = (�1 ⊕ �2) (	) = 1
1 − � ∑
	∩�=�

�1 (�)�2 (�) , (5)

where � is a normalization constant representing the degree of
con�ict between�1 and�2 and � is de
ned as follows [19, 20]:

� = ∑
	∩�=0

�1 (�)�2 (�) . (6)

2.2. Shannon Entropy. As an uncertainty measure of infor-
mation volume in a system or process, Shannon entropy
plays a central role in information theory. Shannon entropy
indicates that the information volume of each piece of
information is directly connected to its uncertainty degree.

Shannon entropy, as the information entropy, is de
ned
as follows [62]:

� = −
�
∑
�=1
��log���, (7)

where � is the number of basic states, �� is the probability
of state � and �� satis
es ∑��=1 �� = 1, and � is the basis of
the logarithm which accounts for the scaling of�. Although
� is arbitrary, � is usually chosen to be 2, and the unit of
information entropy is bit. If � is the natural base, then the
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Table 1: Uncertainty measures in Dempster-Shafer framework.

Uncertainty measure De
nition

Hohle’s confusion measure [66] �
H (�) = −∑

�⊆�
�(	) log2Bel (	)

Yager’s dissonance measure [67] �
Y (�) = −∑

�⊆�
�(	) log2Pl (	)

Dubois & Prade’s weighted Hartley entropy [68] �
DP (�) = ∑

�⊆�
�(	) log2 |	|

Klir & Ramer’s discord measure [69] �
KR (�) = −∑

�⊆�
�(	) log2∑

	⊆�
�(�) |	 ∩ �||�|

Klir & Parviz’s strife measure [70] �
KP (�) = −∑

�⊆�
�(	) log2∑

	⊆�
�(�) |	 ∩ �||	|

George & Pal’s total con�ict measure [71] ��
GP (�) = ∑

�⊆�
�(	) ∑

	⊆�
�(�) (1 − |	 ∩ �|

|	 ∪ �|)

unit of information entropy will be Nat. Mathematically, as a
scaling factor, di	erent basis of the logarithm is convertible.

2.3. Uncertainty Measures in Dempster-Shafer Framework. In
Dempster-Shafer framework, some uncertainty measures for
the BOE are presented, as is shown in Table 1, where# is the
FOD, 	 and � are focal elements of a mass function, and |	|
denotes the cardinality of 	.

Lately, another belief entropy, named Deng entropy, is
presented to measure the uncertainty in the BOE. Deng
entropy, denoted as ��, is de
ned as follows [75]:

�� (�) = −∑
�⊆�

�(	) log2 �(	)
2|�| − 1 . (8)

3. The Improved Belief Entropy

3.1. Problem Description. In Dempster-Shafer framework,
the uncertain information modeled in the BOE includes
the mass function and the FOD. However, the existing
uncertainty measures only focus on the mass function [66,
67] or at most take into consideration the cardinality of each
proposition [68–71, 75]. In other words, the scale of the FOD
is totally ignored. Without taking full advantage of available
information in the BOE, the existing uncertainty measures
cannot e	ectively quantify the di	erence among di	erent
BOEs if the same mass value is assigned on di	erent FOD.
A simple example of the limitation of Deng entropy is shown
in Example 1.

Example 1. Consider a target identi
cation problem; assume
that two reliable sensors report the detection results indepen-
dently.�e results are represented by BOEs shown as follows:

�1: �1 ({$, �}) = 0.4,
�1 ({%, &}) = 0.6,

�2: �2 ({$, %}) = 0.4,
�2 ({�, %}) = 0.6.

(9)

Recalling (8), the uncertaintymeasure withDeng entropy
is shown as follows:

�� (�1) = −∑
�⊆�

�1 (	) log2 �1 (	)2|�| − 1
= −0.4 log2 0.4

22 − 1 − 0.6 log2
0.6
22 − 1

= 2.5559,
�� (�2) = −∑

�⊆�
�2 (	) log2 �2 (	)2|�| − 1

= −0.4 log2 0.4
22 − 1 − 0.6 log2

0.6
22 − 1

= 2.5559.

(10)

�e limitation of Deng entropy also exists in Dubois &
Prade’s weighted Hartley entropy [68], and the uncertainty
measure with the weighted Hartley entropy is shown as
follows:

�DP (�1) = ∑
�⊆�

�1 (	) log2 |	|

= 0.4 log22 + 0.6 log22 = 1,
�DP (�2) = ∑

�⊆�
�2 (	) log2 |	|

= 0.4 log22 + 0.6 log22 = 1.

(11)

�e results calculated by Deng entropy and the weighted
Hartley entropy are counterintuitive. Although the two BOEs
have the same mass value, the FOD of the 
rst BOE �1
consists of four targets, denoted as $, �, %, and &, while
the second BOE �2 has only three possible targets, denoted
as $, �, and %. Intuitively, it is expected that �2 has a less
uncertainty than �1. In other words, the belief entropy of
�1 should be bigger than that of�2. Both Deng entropy and
weighted Hartley entropy fail to quantify this di	erence.
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Table 2: Calculation results in Example 1.

BOEs Weight Hartley entropy [68] Deng entropy [75] Improved belief entropy

�1 1 2.5559 2.1952

�2 1 2.5559 2.0750

To address this issue, an improved belief entropy is
proposed.

3.2. �e Proposed Belief Entropy. In Dempster-Shafer frame-
work, the improved belief entropy is proposed as follows:

��� (�) = −∑
�⊆�

�(	) log2 ( � (	)
2|�| − 1*

(|�|−1)/|�|) , (12)

where # is the FOD, |	| denotes the cardinality of the focal
element 	, and |#| is the number of element in the FOD.
Compared with some other uncertainty measures in [66–71,
75], the improved belief entropy addresses more information
in a BOE. �e uncertain information addressed by the new
belief entropy includes the information represented by the
mass function, the cardinality of each proposition, the scale of
FOD (denoted as |#|), and the relative scale of a focal element
with respect to the FOD (denoted as ((|	| − 1)/|#|)).

In detail, compared with the confusion measure [66]
and the dissonance measure [67], the uncertain information
modeled by the cardinality of each proposition and the
scale of FOD now can be handled properly. Compared with
the weighted Hartley entropy [68], the discord measure
[69], the strife measure [70], the total con�ict measure
[71] and Deng entropy [75], the scale of FOD, and the
relative scale of a focal element with respect to the FOD
now can be processed e	ectively. Above all, by involving the
cardinality of each proposition and the scale of FOD in the
proposed belief entropy, the new uncertainty measure can
now e	ectively quantify the di	erence among di	erent BOEs
even if the same mass value is assigned on di	erent FODs.
What is more, more information of the BOE is addressed
in information processing which means less information
loss.

With the new belief entropy, recall the issue in Example 1;
the improved belief entropy for these two BOEs is calculated
as follows:

��� (�1) = −∑
�⊆�

�1 (	) log2 (�1 (	)2|�| − 1*
(|�|−1)/|�|)

= −0.4 log2 ( 0.4
22 − 1*

(2−1)/4)

− 0.6 log2 ( 0.6
22 − 1*

(2−1)/4) = 2.1952,

��� (�2) = −∑
�⊆�

�2 (	) log2 (�2 (	)2|�| − 1*
(|�|−1)/|�|)

= −0.4 log2 ( 0.4
22 − 1*

(2−1)/3)

− 0.6 log2 ( 0.6
22 − 1*

(2−1)/3) = 2.0750.
(13)

It can be concluded that both the weighted Hartley
entropy and Deng entropy cannot measure the di	erent
uncertain degree between these two BOEs, while the new
belief entropy can e	ectivelymeasure the di	erence by taking
into consideration more available information of the BOE.
According to Table 2, it is also safe to say that the 
rst BOE
�1 has a higher uncertain degree with the new belief entropy;
this is reasonable because the FOD of �1 includes four
possible targets which means a larger information volume
than the second BOE �2. �e e�ciency of the new belief
entropy is not available in the weighted Hartley entropy and
Deng entropy.

3.3. Behaviors of the Proposed Belief Entropy. In order to
show the rationality andmerit of the proposed belief entropy,
some numerical examples are presented in this section. In
Section 3.3.1, the compatibility of the new belief entropy with
Shannon entropy is veri
ed with some simple numerical
examples. In Section 3.3.2, the superiority of the new belief
entropy compared with some other uncertainty measures is
presented.

3.3.1. Compatibility with Shannon Entropy

Example 2. Consider a target identi
cation problem; if the
target reported by the sensor is $ with one hundred percent
belief, then the mass function can be denoted as �({$}) = 1
in the frame of discernment# = {$}.

Shannon entropy�, Deng entropy ��, and the improved
belief entropy ��� are calculated, respectively, as follows:

�(�) = −1 × log21 = 0,
�� (�) = −1 × log2

1
21 − 1 = 0,

��� (�) = −1 × log2 ( 1
21 − 1*

(1−1)/1) = 0.
(14)

It is obvious that the uncertainty degree for a certain event
is zero. So the values of Shannon entropy, Deng entropy, and
the improved belief entropy are all zero.

Example 3. Consider the mass functions �({$}) = �({�}) =
�({%}) = �({&}) = 0.25 in the frame of discernment # =
{$, �, %, &}.
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Table 3: Improved belief entropy with a variable element number in
�.
Cases Deng entropy Improved belief entropy

� = {1} 2.6623 2.5180

� = {1, 2} 3.9303 3.7090

� = {1, 2, 3} 4.9082 4.6100

� = {1, . . . , 4} 5.7878 5.4127

� = {1, . . . , 5} 6.6256 6.1736

� = {1, . . . , 6} 7.4441 6.9151

� = {1, . . . , 7} 8.2532 7.6473

� = {1, . . . , 8} 9.0578 8.3749

� = {1, . . . , 9} 9.8600 9.1002

� = {1, . . . , 10} 10.6612 9.8244

� = {1, . . . , 11} 11.4617 10.5480

� = {1, . . . , 12} 12.2620 11.2714

� = {1, . . . , 13} 13.0622 11.9946

� = {1, . . . , 14} 13.8622 12.7177

Shannon entropy�, Deng entropy ��, and the improved
belief entropy ��� are calculated, respectively, as follows:

�(�) = (−0.25 × log20.25) × 4 = 2.0000,
�� (�) = (−0.25 × log2

0.25
21 − 1) × 4 = 2.0000,

��� (�) = (−0.25 × log2 ( 0.25
21 − 1*

(1−1)/4)) × 4
= 2.0000.

(15)

According to Examples 2 and 3, if the mass value
is only assigned on the single element, the result of the
improved belief entropy is consistent with Shannon entropy
and Deng entropy.�e new belief entropy is compatible with
Shannon entropy in the sense of the probability consistency,
which indicates the e	ectiveness of the proposed belief
entropy.

3.3.2. E	ciency in Uncertainty Measure. In order to test the
e�ciency and merit of the new belief entropy, recall the
numerical example in [75] as follows.

Example 4. Consider the mass functions �({6}) = 0.05,
�({3, 4, 5}) = 0.05, �(�) = 0.8, and �(#) = 0.1. �e FOD
# = {1, 2, . . . , 14, 15} is with 
�een elements denoted as
Element 1, . . . , and Element 15. �e proposition � consists
of a variable subset with the number of element changing
from one to fourteen, as is shown in Table 3.

Deng entropy �� and the improved belief entropy ��� are
calculated, respectively, with the variable element number in
the proposition �; the results are shown in Table 3. Table 3
shows that the improved belief entropy is smaller than Deng
entropy. �is is reasonable, because more information in
the BOE is taken into consideration within the improved
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Figure 1: Comparison among di	erent uncertainty measures.

belief entropy. By taking into consideration more available
information, the uncertain degreemeasured by the new belief
entropy decreases signi
cantly compared to Deng entropy,
which can be really helpful in information processing.

�e uncertain degree in Example 4, measured by the
other uncertainty measures in Table 1, is shown in Figure 1.
�e uncertain degree measured by Hohle’s confusion mea-
sure never changes with the variation of the element number
in proposition �; thus it cannot measure the variance of
uncertain degree in this case. Similar to Hohle’s confusion
measure, Yager’s dissonance measure has a limited capacity
of uncertainty measure in this case. Both the confusion
measure and the dissonance measure cannot measure the
change in the proposition �. �e uncertain degree measured
by Klir & Ramer’s discord measure, Klir & Parviz’s strife
measure, and George & Pal’s con�ict measure is decreasing
with the increasing of the element number in the proposition
�; this is counterintuitive. �us, the confusion measure, the
dissonance measure, the discord measure, the strife measure,
and the con�ictmeasure cannot e	ectivelymeasure the rising
of the uncertain degree along with the increasing of the
element number in the proposition �.

It seems that the uncertain degree measured by Dubois
& Prade’s weighted Hartley entropy, Deng entropy, and
the modi
ed belief entropy is rising signi
cantly with the
increasing of the element number in proposition�. However,
the weighted Hartley entropy and Deng entropy cannot
distinguish the di	erent uncertain degree among the BOEs
with similar BPAs on di	erent FODs, as is shown in
Example 1. �us, the improved belief entropy is the only
available method for uncertainty measure in this case. More
importantly, the proposed belief entropy takes advantage of
more valuable information in the BOE, which ensures it to
be more reasonable and e	ective for uncertainty measure in
Dempster-Shafer framework.
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4. An Uncertainty Measure-Based
Decision-Making Approach

In this section, a decision-making approach in sensor data
fusion is presented. A�er uncertainty measure with the
improved belief entropy, the modi
ed BOEs are fused with
Dempster’s rule of combination. Finally, decision-making is
based on the fused results.

4.1. Problem Description. In target recognition, sometimes,
decision-making is based on reports from sensors. Consider
the problem in [78]; the potential objects in the target recog-
nition system are denoted as $, �, and % in the FOD, denoted
as # = {a, �, %}. Five sensors report on the possible object
independently and successively; each report is represented as
a BOE; these BOEs are denoted as �1, �2, �3, �4, and �5,
respectively.

�1: �1 ({$}) = 0.41,
�1 ({�}) = 0.29,
�1 ({%}) = 0.30,

�1 ({$, %}) = 0.00,
�2: �2 ({$}) = 0.00,

�2 ({�}) = 0.90,
�2 ({%}) = 0.10,

�2 ({$, %}) = 0.00,
�3: �3 ({$}) = 0.58,

�3 ({�}) = 0.07,
�3 ({%}) = 0.00,

�3 ({$, %}) = 0.35,
�4: �4 ({$}) = 0.55,

�4 ({�}) = 0.10,
�4 ({%}) = 0.00,

�4 ({$, %}) = 0.35,
�5: �5 ({$}) = 0.60,

�5 ({�}) = 0.10,
�5 ({%}) = 0.00,

�5 ({$, %}) = 0.30.

(16)

With the incoming data of sensors, which is the target?
�e target recognition system needs tomake a decision based
on the fusion results of the sensor data. Intuitively, $ will be
the right target. In the second BOE, the mass value assigned
on target $ is zero and the mass value of target � is 0.9; this is
in high con�ict with the other BOEs. According to [78, 79],
the second BOE �2 may come from a bad sensor and its

report on the target is abnormal. �2 will infer the correct
fusion result, which may lead to a failure in decision-making.
�is case can be really a challenge for some data fusion
methods that cannot handle con�icting evidences e	ectively
[49, 50, 52].

4.2. Uncertainty Measure with the New Belief Entropy. Before
further addressing the BOEs reported by sensors, the quality
of this information is quanti
ed with the proposed belief
entropy. Recalling (12), the improved belief entropy of each
BOE is calculated as follows:

��� (�1) = −∑
�⊆�

�1 (	) log2 (�1 (	)2|�| − 1*
(|�|−1)/|�|)

= −0.41 log2 ( 0.41
21 − 1*

(1−1)/3)

− 0.29 log2 ( 0.29
21 − 1*

(1−1)/3)

− 0.3 log2 ( 0.3
21 − 1*

(1−1)/3)
= 0.5274 + 0.5179 + 0.5211 = 1.5664

��� (�2) = −∑
�⊆�

�2 (	) log2 (�2 (	)2|�| − 1*
(|�|−1)/|�|)

= −0.9 log2 ( 0.9
21 − 1*

(1−1)/3)

− 0.1 log2 ( 0.1
21 − 1*

(1−1)/3)
= 0.1368 + 0.3322 = 0.4690

��� (�3) = −∑
�⊆�

�3 (	) log2 (�3 (	)2|�| − 1*
(|�|−1)/|�|)

= −0.58 log2 ( 0.58
21 − 1*

(1−1)/3)

− 0.07 log2 ( 0.07
21 − 1*

(1−1)/3)

− 0.35 log2 ( 0.35
22 − 1*

(2−1)/3)
= 0.4558 + 0.2686 + 0.9165 = 1.6409

��� (�4) = −∑
�⊆�

�4 (	) log2 (�4 (	)2|�| − 1*
(|�|−1)/|�|)

= −0.55 log2 ( 0.55
21 − 1*

(1−1)/3)

− 0.1 log2 ( 0.1
21 − 1*

(1−1)/3)

− 0.35 log2 ( 0.35
22 − 1*

(2−1)/3)
= 0.4744 + 0.3322 + 0.9165 = 1.7231
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Figure 2: �e �owchart of the proposed approach for decision-making.

��� (�5) = −∑
�⊆�

�5 (	) log2 (�5 (	)2|�| − 1*
(|�|−1)/|�|)

= −0.6 log2 ( 0.6
21 − 1*

(1−1)/3)

− 0.1 log2 ( 0.1
21 − 1*

(1−1)/3)

− 0.3 log2 ( 0.3
22 − 1*

(2−1)/3)
= 0.4422 + 0.3322 + 0.8523 = 1.6267.

(17)

Intuitively, the second BOE �2 is con�icting with the
other BOEs; this is also successfully indicated by the abnor-
mal value of the improved belief entropy. In other words,
the improved belief entropy value of �2, which is 0.4690,
is abnormal in comparison with that of the other four
BOEs.

4.3. Decision-Making Procedures. In real applications, for
example, air battle, the real-time requirement is highly

concerned, so decision-making in target recognition needs
to be 
nished in real time. If decision-making needs to be

nished in real time, then data fusion needs to be processed
instantly with the upcoming sensor report. �e procedures
for decision-making based on the improved belief entropy are
designed in Figure 2; six steps are needed as follows.

Step 1. Evidence from sensor report is modeled as the BOE.

An example of this step is given in Section 4.1; each piece
of evidence is modeled as a BOE.

Step 2. Uncertainty measure of each BOE with the improved
belief entropy.

Generally, the more dispersive the mass value is assigned
among the power set, the bigger the new belief entropy of the
BOE will be. An illustrative example of this step is shown in
Section 4.2; the proposed belief entropy is used to measure
the uncertain degree of each BOE in Section 4.1.

Step 3. Relative weight of the incoming BOEs is calculated
based on the improved uncertainty measure.

A big entropy value corresponds to a big information
volume. It is commonly accepted that the bigger the entropy
is, the higher the uncertain degree will be.�e relative weight
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of each BOE is de
ned as the relative weight of the new belief
entropy. For the �th BOE, its relative weight among all the
available : BOEs, denoted as;BOE(��), is de
ned as follows:

;BOE (��) = ��� (��)
∑��=1 ��� (��)

. (18)

�e relative weight of each BOE in Section 4.1 can be
calculated with (18); the results are shown as follows:

;BOE (�1) = ��� (�1)
∑5�=1 ��� (��)

= 1.5664
1.5664 + 0.4690 + 1.6409 + 1.7231 + 1.6267

= 0.2229,

;BOE (�2) = ��� (�2)
∑5�=1 ��� (��)

= 0.4690
1.5664 + 0.4690 + 1.6409 + 1.7231 + 1.6267

= 0.0668,

;BOE (�3) = ��� (�3)
∑5�=1 ��� (��)

= 1.6409
1.5664 + 0.4690 + 1.6409 + 1.7231 + 1.6267

= 0.2335,
;BOE (�4) = ��� (�4)

∑5�=1 ��� (��)
= 1.7231
1.5664 + 0.4690 + 1.6409 + 1.7231 + 1.6267

= 0.2452,
;BOE (�5) = ��� (�5)

∑5�=1 ��� (��)
= 1.6267
1.5664 + 0.4690 + 1.6409 + 1.7231 + 1.6267

= 0.2315.

(19)

Step 4. �emodi
ed BPAs are derived for sensor data fusion.
For a proposition 	, the modi
ed BPA based on :

available BOEs is de
ned as follows:

�(	) =
�
∑
�=1
�� (	);BOE (��) . (20)

For example, with (20), the BPAs in Section 4.1 are
modi
ed with the relative weight of each BOE; the results are
shown as follows:

�({$}) = 0.41;BOE (�1) + 0.58;BOE (�3)
+ 0.55;BOE (�4) + 0.6;BOE (�5)

= 0.5007
� ({�}) = 0.29;BOE (�1) + 0.9;BOE (�2)

+ 0.07;BOE (�3) + 0.1;BOE (�4)
+ 0.1;BOE (�5) = 0.1888

� ({%}) = 0.3;BOE (�1) + 0.1;BOE (�2) = 0.0736
� ({$, %}) = 0.35;BOE (�3) + 0.35;BOE (�4)

+ 0.3;BOE (�5) = 0.2370.

(21)

Step 5. �e weighted BPAs are fused with Dempster’s rule of
combination in (5)-(6) by (: − 1) time(s).

For example, the modi
ed BPAs in Step 4 are fused with
Dempster’s rule of combination by four times; the fused
results are shown as follows:

�({$}) = ((((� ⊕ �) ⊕ �) ⊕ �) ⊕ �) ({$})
= 0.9873

� ({�}) = ((((� ⊕ �) ⊕ �) ⊕ �) ⊕ �) ({�})
= 0.0011

� ({%}) = ((((� ⊕ �) ⊕ �) ⊕ �) ⊕ �) ({%})
= 0.0097

� ({$, %}) = ((((� ⊕ �) ⊕ �) ⊕ �) ⊕ �) ({$, %})
= 0.0034.

(22)

Step 6. Real-timedecision-making based on the fused results.
For example, taking into consideration the target recog-

nition problem expressed in Section 4.1, with the aforemen-
tioned 
ve steps, now it is safe to make the conclusion that $
is the recognized target.

Based on the aforementioned six steps, the decision-
making results corresponding to two, three, four, and 
ve
BOEs are shown in Table 4, respectively. It can be concluded
that with the proposed method the right decision will be
made even if there are only three BOEs, because the belief
on the proposition {$} is more than 80% in the fusion result
with three BOEs. �e inference of the wrong report �2 can
be overcome instantly with the incoming sensor reports. �e
fusion results with all the 
ve sensor reports will have a belief
of over 98% on the right recognized target $.
4.4. Discussion. In order to test the e�ciency of the proposed
method, the fusion results are comparedwith the othermeth-
ods in [78–80]. �e results of di	erent combination methods
addressed on this issue are shown inTable 5.�e comparisons
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Table 4: Decision-making results based on sensor data fusion.

BOEs Fusion results Recognition result

�1, �2
�({$}) = 0.2849

Uncertain; no proposition
has a belief over 60.00%

�({�}) = 0.5305
� ({%}) = 0.1845
� ({$, %}) = 0

�1, �2, �3
�({$}) = 0.8148

$, with a belief of 81.48%
�({�}) = 0.0794
� ({%}) = 0.0904
� ({$, %}) = 0.0154

�1, �2, �3, �4
�({$}) = 0.9495

$, with a belief of 94.95%
�({�}) = 0.0092
� ({%}) = 0.0317
� ({$, %}) = 0.0096

�1, �2, �3, �4, �5
�({$}) = 0.9873

$, with a belief of 98.73%
�({�}) = 0.0011
� ({%}) = 0.0097
� ({$, %}) = 0.0034

Table 5: Fusion results with di	erent combination rules.

�1, �2 �1, �2, �3 �1, �2, �3, �4 �1, �2, �3, �4, �5

Dempster’s rule [20]

�({$}) = 0 � ({$}) = 0 � ({$}) = 0 � ({$}) = 0
� ({�}) = 0.8969 � ({�}) = 0.6575 � ({�}) = 0.3321 � ({�}) = 0.1422
� ({%}) = 0.1031 � ({%}) = 0.3425 � ({%}) = 0.6679 � ({%}) = 0.8578
� ({$, %}) = 0 � ({$, %}) = 0 � ({$, %}) = 0 � ({$, %}) = 0

Yager’s rule [76]

�({$}) = 0 � ({$}) = 0.4112 � ({$}) = 0.6508 � ({$}) = 0.7732
� ({�}) = 0.2610 � ({�}) = 0.0679 � ({�}) = 0.0330 � ({�}) = 0.0167
� ({%}) = 0.0300 � ({%}) = 0.0105 � ({%}) = 0.0037 � ({%}) = 0.0011
� ({$, %}) = 0 � ({$, %}) = 0.2481 � ({$, %}) = 0.1786 � ({$, %}) = 0.0938

� ({#}) = 0.7090 � ({#}) = 0.2622 � ({#}) = 0.1339 � ({#}) = 0.1152

Murphy’s rule [77]

�({$}) = 0.0964 � ({$}) = 0.4619 � ({$}) = 0.8362 � ({$}) = 0.9620
� ({�}) = 0.8119 � ({�}) = 0.4497 � ({�}) = 0.1147 � ({�}) = 0.0210
� ({%}) = 0.0917 � ({%}) = 0.0794 � ({%}) = 0.0410 � ({%}) = 0.0138
� ({$, %}) = 0 � ({$, %}) = 0.0090 � ({$, %}) = 0.0081 � ({$, %}) = 0.0032

Deng et al.’s method [78]

�({$}) = 0.0964 � ({$}) = 0.4974 � ({$}) = 0.9089 � ({$}) = 0.9820
� ({�}) = 0.8119 � ({�}) = 0.4054 � ({�}) = 0.0444 � ({�}) = 0.0039
� ({%}) = 0.0917 � ({%}) = 0.0888 � ({%}) = 0.0379 � ({%}) = 0.0107
� ({$, %}) = 0 � ({$, %}) = 0.0084 � ({$, %}) = 0.0089 � ({$, %}) = 0.0034

Zhang et al.’s method [79]

�({$}) = 0.0964 � ({$}) = 0.5681 � ({$}) = 0.9142 � ({$}) = 0.9820
� ({�}) = 0.8119 � ({�}) = 0.3319 � ({�}) = 0.0395 � ({�}) = 0.0034
� ({%}) = 0.0917 � ({%}) = 0.0929 � ({%}) = 0.0399 � ({%}) = 0.0115
� ({$, %}) = 0 � ({$, %}) = 0.0084 � ({$, %}) = 0.0083 � ({$, %}) = 0.0032

Yuan et al.’s method [80]

�({$}) = 0.2678 � ({$}) = 0.8274 � ({$}) = 0.9596 � ({$}) = 0.9886
� ({�}) = 0.5552 � ({�}) = 0.0609 � ({�}) = 0.0032 � ({�}) = 0.0002
� ({%}) = 0.1770 � ({%}) = 0.0986 � ({%}) = 0.0267 � ({%}) = 0.0072
� ({$, %}) = 0 � ({$, %}) = 0.0131 � ({$, %}) = 0.0106 � ({$, %}) = 0.0039

�e proposed method

�({$}) = 0.2849 � ({$}) = 0.8148 � ({$}) = 0.9495 � ({$}) = 0.9873
� ({�}) = 0.5305 � ({�}) = 0.0794 � ({�}) = 0.0092 � ({�}) = 0.0011
� ({%}) = 0.1845 � ({%}) = 0.0904 � ({%}) = 0.0317 � ({%}) = 0.0097
� ({$, %}) = 0 � ({$, %}) = 0.0154 � ({$, %}) = 0.0096 � ({$, %}) = 0.0034
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Figure 3: Fusion results of two BOEs.
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Figure 4: Fusion results of three BOEs.

of the fusion results with di	erent fusion methods of two,

three, four, and 
ve BOEs are shown in Figures 3, 4, 5, and

6, respectively.

Figure 3 shows the fusion results with two BOEs. In this

case, one cannot make a decision with Yager’s combination

rule because it assigns most belief to the universal set, while



Complexity 11

0

0.6508

0.8362
0.9089 0.9142

0.9596 0.9495

0.3321

0.033

0.1147
0.0444 0.0395

0.0032 0.0092

0.6679 0.0037

0.041 0.0379 0.0399 0.0267 0.0317
0

0.1786

0.0081 0.0089 0.0083 0.0106 0.00960

0.1339

0 0 0 0 0

0

10

20

30

40

50

60

70

80

90

100

Dempster’s
rule

Yager’s rule Murphy’s
rule

Deng et al.’s
method

Zhang et al.’s
method

Yuan et al.’s
method

�e proposed
method

B
PA

 (
%

)

Fusion methods

X

{a, c}

{c}

{b}

{a}

Fusion results of {m1, m2, m3, m4}

Figure 5: Fusion results of four BOEs.

0

0.7732

0.962 0.982 0.982 0.9886 0.9873

0.1422

0.0167

0.021 0.0039 0.0034 0.0002 0.0011

0.8578

0.0011

0.0138 0.0107 0.0115 0.0072 0.00970

0.0938

0.0032 0.0034 0.0032 0.0039 0.00340

0.1152

0 0 0 0 0

0

10

20

30

40

50

60

70

80

90

100

Dempster’s
rule

Yager’s rule Murphy’s
rule

Deng et al.’s
method

Zhang et al.’s
method

Yuan et al.’s
method

�e proposed
method

B
PA

 (
%

)

Fusion methods

X

{a, c}

{c}

{b}

{a}

Fusion results of {m1, m2, m3, m4, m5}

Figure 6: Fusion results of 
ve BOEs.

the other methods except for the proposed method and Yuan
et al.’s method have quite a high belief on the object �; this is
in con�ict with the reality because the second BOE�2 comes
from a bad sensor and � cannot be the target.

Figure 4 shows the fusion results with three BOEs. �e
fusion result with Dempster’s rule is counterintuitive. �e
fusion results with Yager’s rule, Murphy’s rule, and Deng
et al.’s and Zhang et al.’s methods have limited belief on



12 Complexity

the right target �. Even if there are only three BOEs, the
proposed method and Yuan et al.’s method can make the
decision that � is the target with a belief of more than
80%.

Figure 5 shows the fusion results with four BOEs. When
it comes to three of four BOEs to support that the target
is �, the fusion result with Dempster’s rule still leads to
the wrong conclusion due to the con�icting evidence in the
second BOE�2, while the proposed method and Yuan et al.’s
method have much more belief on the target � than the other
methods.

�e performance of di	erent methods shown in Figure 6
is similar to that in Figure 5. With all the 
ve sensor
reports, both the proposed method and Yuan et al.’s method
will have a belief of over 98% on the recognized target
$.

It seems that the performance of the proposed method
is similar to Yuan et al.’s method [80]. However, the pro-
posed method has at least three aspects of superiorities in
comparison with Yuan et al.’s method. Firstly, the improved
belief entropy has an improved capacity of uncertainty
measure compared to the Deng entropy used in Yuan et al.’s
method. According to the discussion related to Example 1
in Sections 3.1 and 3.2, the proposed belief entropy can
e	ectively measure the di	erent uncertain degree among
di	erent BOEs even if the same mass value is assigned on
di	erent FODs, while both Deng entropy and the weighted
Hartley entropy are failed. Secondly, both the support degree
and the information volume of each evidence de
ned in
[80] are based on the mass function, which means that the
BOEs are used twice to de
ne these two indexes; however,
the relation of these two indexes is not clear, for exam-
ple, the coupling relation. �irdly, the proposed method is
only based on the information volume measured by the
improved belief entropy; its physical meaning is clearer
than that in Yuan et al.’s method. Above all, the proposed
method is more reasonable and e�cient than the other
methods.

A few reasons contribute to the e	ectiveness of the pro-
posed decision-making approach. First of all, the sensor data
is preprocessed properly before applying the combination
rules. �is is very important in sensor data fusion especially
if there is con�ict evidence. Secondly, the weights of BOEs
are calculated based on the proposed belief entropy. �e
e	ectiveness and superiority of the newbelief entropy veri
ed
in Section 3.3 ensure the rationality and good performance
of the proposed decision-making approach. Finally, the 
nal
fused rule is based on Dempster’s rule of combination. �e
merits of Dempster’s rule, such as satisfying the commuta-
tivity and associativity, guarantee the rationality of the fusion
result.

5. Conclusions

In this paper, an improved belief entropy is proposed.
�e new belief entropy improves the performance of Deng
entropy and some other uncertainty measures in Dempster-
Shafer framework. �e new belief entropy considers the

uncertain information consisted in not only the mass func-
tion and the cardinality of the proposition, but also the
scale of the FOD and the relative scale of each proposition
with respect to the FOD. Numerical examples show that
the new belief entropy can quantify the uncertain degree
of the BOE more accurately than the other uncertainty
measures.

A new decision-making approach is presented in this
paper and applied to a case study. �e new uncertainty
measure-based decision-making approach shows the e�-
ciency and merit of the new belief entropy. In the following
researches, the proposed belief entropy will be used to solve
more problems related to uncertain information processing
in real world applications.
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