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Abstract. We present an improved binomial method for pricing financial deriva-tives by using cell averages. 
After non-overlapping cells are introduced around each node in the binomial tree, the proposed method 
calculates cell averages of payoffs at expiry and then performs the backward valuation process. The price of the 
derivative and its hedging parameters such as Greeks on the valuation date are then computed using the compact 
scheme and Richardson extrapolation. The simulation results for European and American barrier options show 
that the pro-posed method gives much more accurate price and Greeks than other recent lattice methods with less 
computational effort. 
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1.  INTRODUCTION 

Under classical Black-Scholes model, asset prices 
are described by stochastic differential equations and 
option prices are modeled by either partial differential 
equations or expectations under risk neutral measure. 
There have been different approaches of pricing options 
(Clewlow and Strickland 1998, Higham 2004, Kwok 
1998, Lyuu 2002, Wilmott et al. 1995). However still 
analytical approach to the American options is very 
limited due to early exercise before the maturity and the 
estimation of its price or hedging parameters mainly 
relies on computational simulation. 

Among several methods for option pricing, binomial 
method is a very popular computational scheme for 
valuation of derivatives due to its ease of implementation 
and wide application to exotic options. After Cox et al. 
(1979) introduced the binomial method to value American 
options, the scheme has been generalized by many 
researchers including Boyle (1988), Boyle et al. (1989), 
Kamrad and Ritchken (1991), Kwok (1998), Lyuu (2002) 
and its convergence is proved by (Amin and Khanna 
1994). However, if there exists a discontinuity or non-
smoothness in the payoff as in a barrier option, the 
convergence of the binomial method may be very 
oscillatory. The accuracy of the binomial method is poor 

for such an option as shown in Boyle and Lau (1994) or 
Ritchken (1995), especially when the parameter values 
are not placed above layers of nodes and the binomial 
method in such a case requires a large number of time 
steps to ensure that the price error is small. In order to 
cure this oscillatory behavior, there have been many 
studies of modification of the binomial method. Boyle 
and Lau (1994) improved the binomial method for the 
barrier option by placing the barrier above a layer of 
horizontal nodes in the tree. After Boyle (1988) studied 
trinomial methods for two underlying assets, Ritchken 
(1995) improved the trinomial method for barrier options 
by making sure that the layers of the lattice coincide with 
the barrier. Broadie and Detemple (1996) introduced the 
Binomial Black and Sc-holes method with Richardson 
extrapolation (BBSR) scheme, which includes the Black-
Scholes formula in the binomial tree method one step 
before expiry and applies the Richardson extrapolation. 
Later Cheuk and Vorst (1996) developed a new trinomial 
tree model for barrier options, and Gaudenzi and 
Pressacco (2003) presented an efficient binomial interpolation 
method with Richardson extrapolation, BIR.  

The purpose of this work is to introduce an improved 
binomial method, which reduces errors of the standard 
lattice methods occurring when option parameters are  
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represented by nodes in the tree. The proposed method 
defines and updates the cell average of option values 
around each node in the binomial tree and cell aver-aging 
has an effect to decrease those errors. In this sense, this 
proposed scheme has similarities with the finite volume 
method in computational fiuid dynamics. In order to be 
more accurate, we apply the compact scheme from Lele 
(1992) and Richardson extrapolation from Richardson 
(1927) on the valuation date.  

In Section 2, a simple option pricing model and the 
standard binomial method are introduced. The proposed 
method is presented in Section 3. The simulation results 
in Section 4 show that the proposed method gives more 
accurate result than many recent lattice methods with less 
computational effort and the conclusions are summarized 
in Section 6. 

2.  STANDARD APPROACHES  

2.1 Option Pricing Model  

Let us consider the price of the underlying asset as a 
stochastic process [0, ]{ }t t TS ∈  on a suitable probability 
space ( , , )Ω F P . Let us assume that the evolution of the 
underlying satisfies the following stochastic differential 
equation:  

 
   ( ) ( ),  0d ddS t S t S W t t T= + < <μ σ         (1)  
 
where µ is an expected rate of return, σ is a volatil-

ity, T is an expiration date, and W(t)is a Brownian motion. 
Let us define a Gaussian X(t) ≡ ln(S(t)). From the Ito for-

mula in ksendal (1998), X(t) satisfies  
 

 2( ) (0) ( / 2) ( ),X t X t W t= + − +μ σ σ 0t > . 

 
In the risk-neutral world, the value of the European 

option, which gives the holder the right to buy or sell the 
underlying asset at the expiration date, can be computed 
by the discounted conditional expectation of the terminal 
payoff, 

 
 [ ]( )( ,  ) ( ( )) | ( ) ,r T tV x t e E X T X t x− −= Λ =

  
where ( ( ))X TΛ  is the payoff at t T= . Without 

loss of generality, we denote again the risk neutral process 
to be ( )X t with drift rate equal to the risk-free interest 
rate ,r  instead of μ  in (1). If we consider a continu-
ous dividend yield ,q the drift rate becomes r q− . 
 

2.2 The Binomial Model 

Let us partition the interval [0, ]T  into N  cells 
of uniform length / ,t T NΔ = 0 10 .Nt t t T= < < < =L  
The binomial method by Cox et al. in Cox et al. (1979), 
Kwok (1998), Lyuu (2002) assumes that the asset price 

( )nS t at nt t= moves either up to ( )nuS t for expu =  
( ) 1tΔ >σ  or down to ( ) ( ) /n ndS t S t u=  for 1nt t +Δ =  

nt−  for 0,  1,  ,  1n N= −L with probabilities (expp =  
( ) ) / ( )r t d u dΔ − − or 1 ,p− respectively. Let n

jX =  
0 2 )( jX n h+ − denote the value at nt t n t= = Δ for, where 

0(0)X X=  and lnh u= . Then the standard binomial 
method calculates the payoffs of the option at expiry, 

 
 

 
Figure 1. (Left) The tree of the standard binomial method and (Right) the tree of the binomial method using cell averages.
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( )N N
j jV X= Λ  for 0,  1,  ,  ,j N= L  and computes the 

option price 0

0 0( ,  0)V V X=  by backward averaging, 
 

( ,  ) ( ( ,  )r tV x t e pV x h t t− Δ= + + Δ           (2) 
(1 ) ( ,  ))p V x h t t+ − − + Δ     

  
where ,n

jx X= 0,   ,j n= …  and 1n N= − , 
2,  ,  0N − L  

 
Let us point out a weakness of the standard binomial 

method using the European barrier option as an example. 
Barrier options are similar to European vanilla options 
except that the option is knocked out or in if the underly-
ing asset price hits the barrier level before expiration date. 
As Derman et al. (1995) pointed out, there are two 
sources of inaccuracy in pricing options on a lattice. One 
type of error is caused by the existence of discrete lattice, 
which quantizes the underlying asset price and the in-
stants in time at which it can be observed. Once a lattice 
is chosen, the underlying asset is allowed to take the val-
ues of only those points on the lattice and such a lack of 
continuity is called the quantization error. The other type 
of inaccuracy, called the specification error, occurs due to 
the inability of the lattice to represent the terms of the 
option accurately. For example, when the down-and-out 
European barrier call option is considered on a lattice in 
Figure 1 (Left), the available prices of the underlying are 
fixed. If the barrier level is given by 1H , the barrier at 
expiry does not coincide with one of the available prices 
but falls between two available nodes. Thus, the specified 
barrier is moved to the closest underlying price available 
(called the effective barrier), which is the value at the 
black square in case of the expiry. Also, whether the bar-
rier level is given by 2H  or 3H  in Figure 1 (Left), the 
standard binomial method will result in the same option 
price while the exact price of the option won't. As ex-
plained in Boyle and Lau (1994) and Ritchken (1995) , it 
is well known that the accuracy of the lattice method for 
the barrier option is poor when the barrier is not placed 
above a layer of nodes and that the binomial method re-
quires a large number of time steps to ensure that the 
price error of a barrier option is small. An improved bi-
nomial method is suggested in Section 3. 

3.  IMPROVED BINOMIAL METHOD 

The proposed method below will be derived using 
the same parameters as those for the standard binomial 
method. Let us first divide the interval [ 0 (X N− +  

01) , ( 1)h X N h+ + ] into 1N +  non-overlapping equidis-
tant cells of length 2h  centered at points 0 ,X jh+  

,  2,  ,  ,j N N N= − − + L  and compute average option 
prices on each cell at Nt t= ,  

 
1/2
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1
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V d j N

h
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−

≡ Λ = …∫ ξ ξ    (3) 

where ( )Λ ⋅  is the payoff function at expiry and 
0 (2 )N

jX X j N h= + − . If (2) is satisfied at every point 
ξ  in the cell  [ ,  ]n n

j jX h X h∈ − +ξ  at time nt , then the 
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because from the relation (2) 
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)(1 ) ( ,  )n
j np V X h t t+ − − + Δ  

 
See Figure 1 (Right). That is, an equation similar to 

(2) is also satisfied for the cell averages. Thus, cell aver-
ages of the option values at expiry from (3) can be up-
dated iteratively using (4), which eventually leads to the 
average of the option price 0

0V  on 0 0[ , ]X h X h− +  at 
0t = . Then we calculate 0

0V  and Greeks on the valua-
tion date from averaged values by applying the following 
Proposition 3.1. 

 
Proposition 3.1. If ( )v x  is smooth on an interval 

[ , ]I m M=  and 0 0 03 3m x h x x h M< − < < + < for some 
0x I∈  and 0h > , 0( )v x  and 0( )v x′  have the fol-

lowing approximate representations with respect to jv ≡  
( 1)0

( 1)0

1
( )

2

x j h

x j h
v d

h

+ +

+ −∫ ξ ξ  based on the compact scheme Lele 

(1992) : 
 

 0 1 0 1

1 13 1
( )

24 12 24
v x v v v−= − + −

      

  (5) 

1 1
0and ( ) .

4

v v
v x

h
−−

′ =

 
 

proof. Suppose that a function ( )f x  is continu-
ously differentiable on I . The compact scheme from Lele 
(1992) shows that 

 

 3 31 1
0

9 1
  

8 2 8 6
'

f ff f
f

h h
−− −−

= −          (6) 
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and 
 

 1 0 1 3 0 3
0 2 2

2 21 9
  

8 9
''

8

f f f f f f
f

h h
− −− + − +

= − +      (7) 

 
are 4th and 2nd order accurate representations of 0( )f x′  
and 0( ),f x′′ respectively, where 0( ),f f x ihi = +  'if =  

0( )f x ih′ + and 0('' )if f x ih′′= + . Let 
30

( )
x

x h
f x

−
≡ ∫  

( )v dξ ξ . Then, 0 0 0( ) ( ) 2f x h f x h hv+ − − =  and 0(f x  

( )0 1 0 13 ) ( 3 ) 2h f x h h v v v−+ − − = + + .  Since 0( )f x′ =   
0( )v x , the equation (6) for the first derivative implies 

 

( )1 0 10
0

229 1
( )

8 2 8 6
 

h v v vhv
v x

h h
− + +

= −
⎛ ⎞⎛ ⎞

⎜ ⎟ ⎜ ⎟
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    0 1 0 1
1 0 1

9 1 13 1
 .

8 24 24 12 24
v

v v v v
v v−

−

+ +
= − = − + −

 
 
In a similar way, the equation (7) leads to the follow-

ing representation for 0( )v x′ , 
 

 ( )0 1 0 1 0 1

1 1 1
( ) (2 )

4 4
v x v v v v v

h − −
′ = − + + + +⎛ ⎞

⎜ ⎟
⎝ ⎠

 

1 1        .
4

v v

h
−−

=  

 
Equations (5) in Proposition 3.1 motivate the follow-

ing approximations for the option price and the Delta ( Δ , 
sensitivity measure of option value with respect to 
changes in the underlying asset's price) 

 

  

0 0 0

0 1 0 1

1 13 1
( ,  0)

24 12 24
V X V V V−= − + −      (8) 

0 0

1 1
0and ( ,  0) .

4

V V
X

h
−−

Δ =

 

In fact, the price evaluated by the binomial method 
may not be of class 1C  in x , but the simulations show 
that these approximations work well. Then Richardson 
extrapolation from Richardson (1927) is used to improve 
the accuracy. The proposed algorithm of the Binomial 
Tree method using Cell Averages (termed BTCA) for the 
European vanilla option can be summarized as in Algo-
rithm 1. Note that when cell averages are taken, the speci-
fication error seems to cancel out, and this may help the 
BTCA reduce total errors. 

 

3.1 Barrier Options 

Let us apply the BTCA method to the European bar-
rier option as a benchmark test, then extend it to the 
American barrier option. Even though the proposed 
scheme is tested on barrier options, it can be applied to 
other types of options as well. When the backward itera-
tion is performed for the barrier option, it is worthwhile to 
point out that (4) can be used in all cells but one. In fact, 
when a cell contains the barrier, note that the assumption 
for (4) is not satisfied and we need to modify it. Equations 
(9) and (10) below show an example for the European 
down-and-out barrier call option and similar modification 
can be easily derived for other types of options. 

Given a cell [ ,  ]x h x h− +  at ,t  if ,x h H x− < <  
the average option price of European down-and-out bar-
rier call option satisfies 

 

 { }1 1

1 (1 )
2
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j j j

x h H
V e p V p V

h
− Δ + +

+

+ −
= + −       (9) 

( )
(1 (1 )),

2
r tH x h R

e p
h

− Δ− +
+ − −

 

 
with a cash rebate 0R ≥ . If x H x h≤ < + , n

jV  satisfies 
 

 
( )

2
n

j

H x h R
V

h
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x h H
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In fact, approximations (9) and (10) are motivated by 
the following reasoning. For ,x h H x− < < since 

( ,  )V x t R=  for ,x H≤  
 

( ,  ) ( ,  ) ( ,  )
x h H x h

x h x h H
V t d V t d V t d

+ +

− −
= +∫ ∫ ∫ξ ξ ξ ξ ξ ξ  

          ( )R H x h= − +   

2
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(1 ) ( ,  )
.r t

x

H h

x h

H h
p V t t d

e
p V t t d

− Δ
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+
+ Δ

+
+ − + Δ
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⎜ ⎟
⎜ ⎟
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∫
∫

ξ ξ

ξ ξ
 

Algorithm 1 Binomial Tree method using Cell Av
erages (BTCA) 

for j = − 1 to N + 1 do 
     compute the cell averages at expiry, N

jV  in (3)
end for 
for n = N − 1 to 0 do 
     for j = − 1 to n + 1 do 
    compute the backward iteration for j

nV  in (4) 
  end for 
end for 
compute the option price and the Delta in (8)    
perform Richardson extrapolation 
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If h  is sufficiently small, the variation of V  can 
be assumed to be small and the first integral inside the 
parenthesis has the approximation 

 
2

( ,  )
2

x h

H h

x h HV t t d
h

+

+

+ −+ Δ ≈∫ ξ ξ

 2

( ,  ) .
x h

x
V t t d

+
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The second integral can be computed by 
 

( ,  )
x

H h
V t t d

−
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2 2
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2

( ,  ) ( ),
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−
= + Δ − − +∫ ξ ξ

 
 
which results in (9). Similarly for x H x h< < + , 
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Thus, we have (10) for small h , using 
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3.2 American Options  

The American option allows early exercise of the op-
tion and the update algorithm needs appropriate modifica-
tion. In case of the American put option, at each time 

nt t= , there is a unknown boundary * * ( )n n nS S t=  such 
that 
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where ( ,  )nV x t  denotes the option price from the 

backward process of the binomial method and ( ,  )nx tΛ  
denotes the exercise price. Thus, we have 
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Then, we can show that the error, 
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is identically 0 if the cell [ , ]n n

j jX h X h− +  does not 
contain *

nS , and that the error is not 0 but converges  
to 0 as h  decreases to 0 if the cell contains *

n
S . Thus, if  

n

jΛ  denotes 
1
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Λ = Λ∫ ξ ξ , we need to  

add the update procedure, 
 

max{ ,  },n

j

n n
j jV V= Λ             (11) 

 
at the end of each time step in Algorithm 1 to derive an 
algorithm for the American option. 

4.  SIMULATIONS 

We use a random sample of 5,000 options following 
the same distributions as those used by Broadie and De-
temple(1996): risk free interest rate r  is uniform be-
tween 0 and 0.1; volatility σ  is uniform between 0.1 and 
0.6; strike K  is uniform between 70 and 130; time to 
maturity (years) T is uniform between 0.1 and 1 with 
probability 0.75 and uniform between 1 and 5 with prob-
ability 0.25; The initial price of the underlying 0S  is 100. 
We consider the European down-and-out barrier call op-
tion whose barrier H  is uniform between 55 and 85, 
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and the American up-and-out barrier put option whose 
barrier H  is uniform between 115 and 145. The rebate 
R  for both barrier options is 0.R =  The exact formula 
in Haug (1997) and Reimer and Rubinstein (1991) is used 
for the European option. For the American option, the 
benchmark price and hedging parameters are computed 
by the binomial model with 20,000 steps. The error 
measure we use is the root mean squared relative error 
(RMSRE), 

 

2

1

1
RMSRE ,

n

i
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e
n =

= ∑
  

Where ˆ( ) /i i i ie V V V= −  is the relative error, iV  is 
the true value, and îV  is the computed value. The sum-
mation is taken over options satisfying 0.5iV ≥  and 
H K≤ for European options ( K H≤  for American 
options) as in (Broadie and Detemple 1996). Out of 5,000 
options, 4,474 European options and 4,225 American 
options satisfied the criterion. 
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Figure 2. The RMSRE of the option price vs the computa-

tional time from the Boyle-Lau (solid), Ritchken 
(circle), BBSR (square), Cheuk-Vorst (rhombus), 
BIR (triangle) and BTCA (star) methods for the 
European down-and-out barrier call option. 

 
Figure 2 shows the accuracy of the option price 

measured by RMSRE vs the computational cost (meas-
ured by the CPU time, obtained with Intel Core 2 Duo 
processor at 2.4 GHz). Some papers consider the conver-
gence error of the computational scheme in terms of the 
number of time steps. Since different schemes take differ-

ent computation time even with the same number of time 
steps as seen in Table 1 below, the CPU time is used as 
the measure of the computational cost in this study. The 
result of BTCA method is compared to the binomial 
method by Boyle and Lau (1994), the trinomial method 
by Ritchken (1995), the BBSR method by Broadie and 
Detemple (1996), another trinomial method by Cheuk and 
Vorst (1996), and the BIR method by (Gaudenzi and 
Pressacco 2003). When the number of time step is small 
so that the CPU time is small, both the trinomial method 
by Cheuk and Vorst and the proposed BTCA method re-
sult in smallest errors. As the number of time steps in-
creases, superiority of the proposed method can be ob-
served. 

Table 1 compares the error with respect to the 
number of time steps. When the number of time steps 

100N = , the trinomial method by Cheuk and Vorst and 
the proposed BTCA method result in smallest errors as 
pointed out above. For 200N ≥ , the proposed BTCA 
method results in the smallest error.  
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Figure 3. The RMSRE of the option price vs the 

computational time from the Boyle-Lau 
(solid), Ritchken (circle), BBSR (square), 
Cheuk-Vorst (rhombus), BIR (triangle) and 
BTCA (star) methods for the American up-
and-out barrier put option. 

 
Figure 3 shows the accuracy for the American up-and-

out barrier put option. For the American option, the method 
by Boyle and Lau shows quite good result but still the pro-
posed BTCA method results in far better performance than 
the other schemes including even the Boyle-Lau scheme. 

 
Table 1. The RMSRE of the option price for the European down-and-out barrier call option as the number of steps increases. The numbers 

in the parenthesis are the CPU time in seconds. 
 

 N Boyle-Lau Ritchken BBSR Cheuk-Vorst BIR BTCA 

100 
200 
300 
400 
500 
600 

0.03328(0.00152) 
0.02412(0.00327) 
0.01978(0.00536) 
0.01701(0.00779) 
0.01554(0.01046) 
0.01414(0.01342) 

0.04278(0.00214) 
0.03441(0.00502) 
0.02856(0.00866) 
0.02354(0.01300) 
0.02120(0.01815) 
0.01965(0.02419) 

0.04919(0.00470)
0.03839(0.00791)
0.02922(0.01162)
0.02819(0.01591)
0.02264(0.02064)
0.02191(0.02583)

0.01197(0.00254)
0.00998(0.00583)
0.01123(0.01000)
0.01225(0.01491)
0.01065(0.02071)
0.01030(0.02740)

0.16077(0.00262) 
0.11419(0.00540) 
0.09140(0.00873) 
0.08109(0.01253) 
0.07216(0.01686) 
0.06503(0.02162) 

0.01476(0.00873)
0.00960(0.01770)
0.00699(0.02728)
0.00689(0.03717)
0.00584(0.04760)
0.00558(0.05835)
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Figure 4 compares the results for Delta. Note that 

similar results to those for the option price are obtained 
and that the errors from the proposed BTCA method are 
smaller than those from the other schemes in all cases. 
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6.  CONCLUSIONS 

A new method for option pricing based on the 
binomial method is introduced. Instead of calculating 
option prices at each node of the binomial tree, the 
proposed scheme estimates the cell average of prices 
around each node similarly to the finite volume method 

in fluid dynamics. The option price and Delta are then 
obtained by the compact scheme and Richardson 
extrapolation. Cell averaging reduces errors due to over-
and under-estimation of parameter values for the 
standard lattice method and thus improves the accuracy. 
In-depth simulation leads to the consistent results. 
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